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Abstract Let F = GF(q). To any polynomial G € F[x] there is associated a mapping G on the set If
of monic irreducible polynomials over F. We present a natural and effective theory of the dynamics of G
for the case in which G is a monic q-linearized polynomial. The main outcome is the following theorem.

Assume that G is not of the form xq , where I ^ 0 (in which event the dynamics is trivial). Then, for
every integer n ^ 1 and for every integer k ^ 0, there exist infinitely many /J. 6 Ip having preperiod fc
and primitive period n with respect to G.

Previously, Morton, by somewhat different means, had studied the primitive periods of G when
G = xq — ax, a a non-zero element of F. Our theorem extends and generalizes Morton's result. Moreover,
it establishes a conjecture of Morton for the class of q-linearized polynomials.
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1. Introduction

We start very generally and give the fundamental definitions needed to study the dynam-
ics of mappings. Let 7 : 5 —> 5 be a mapping defined on a non-empty set S and let a € S.
Then a is called periodic (with respect to 7) if there exist non-negative integers k and /
such that k < I and

7f c(a)=7'(a). (1.1)

Here, j h denotes the kth iterate of the mapping 7 and 70 is defined to be the identity
on 5. If every o e S i s periodic, then 7 is called periodic (on S). Let a € 5 be periodic
with respect to 7 and k < I be such that (1.1) holds. Then Z — fc is called a period of a
(with respect to 7). If k is minimal such that (1.1) holds for some I > k, then k is called
the preperiod of a. If both k and / are minimal such that k < I and (1.1) holds, then
/ — fc is called the primitive period of a. Of course, the primitive period of a divides every
period of a. If the preperiod of a is equal to zero, then a is called purely periodic. (In the
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literature, the term 'periodic' often refers to what we call 'purely' periodic.) Generally,
the set

{ 7 » | n > 0} (1.2)

is called the orbit of a. The term dynamics of'7 (on S) embraces all that pertains to the
nature of the orbits of 7 on 5. Typical questions are 'what lengths of (primitive) periods
are realized' and 'how long can the preperiods be?'

We turn to the particular situation which we are interested in. Let F = GF(q) be the
Galois field of order q and F be an algebraic closure of F. If G G F[x] is a polynomial
with coefficients in F, then, via evaluation, G can be regarded as a mapping on F that
leaves every intermediate field of F over F invariant. Let a G F and F(a) be the subfield
of F obtained by adjoining the element a to F. Since F(a) is a finite field (in particular
a finite set), we have that a is periodic with respect to G and, as this holds for all a G F,
G is periodic on F.

Let IF denote the set of monic irreducible polynomials over F and again let G G F[x].
Then G also induces a mapping G on Ip as follows. Let / G IF and a G F be a root
of / . Then G(f) is defined to be the minimal polynomial of G(a). Of course this is well
defined. Moreover, since every a G F is periodic with respect to G, we have that, for
every a G F, fia is periodic with respect.to G, where fia denotes the minimal polynomial
of a over F (na is irreducible). Since every /x G Ip is of the form \ia for some a G F, we
obtain that G is periodic on IF-

The study of the dynamics of a mapping G on Ip was initiated by Vivaldi [13], Batra
and Morton [1,2] and Morton [9]. In the latter three papers, the main emphasis is laid
on the case in which G = xq — ax (a G F). The main result in [9] (Theorem 1) states
that, for every n ^ 0, there exist infinitely many /z G IF, which are purely periodic and
have primitive period n with respect to G (where G = xq — ax, a / 0 ) .

In the present paper, we shall extend and generalize this result considerably. In order
to accomplish this we present a natural and effective formulation of the dynamics of G
for the case in which G is a q-linearized (additive) polynomial (of which class G = xq — ax
presents the simplest example). As a consequence, we obtain the following theorem.

Theorem 1.1. Let G 7̂  0 be a q-linearized polynomial over F. Assume that G is not
of the form xq , I > 0. Then, for every integer n ^ 1 and for every integer k > 0, there
exist infinitely many irreducible monic polynomials over F, which, with respect to G,
have primitive period n and preperiod k.

In particular, this theorem establishes the conjecture in [9, p. 12] for the class of
g-linearized polynomials. This class comprises polynomials having the shape

xqi G F[x).

In § 2, we amplify this definition of a g-linearized polynomial and give a formulation of
the main problem in terms of additive orders. These are fundamental when studying F
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as an F-vector space together with the Frobenius automorphism op over F. Moreover,
we will show that Theorem 1.1 is already true provided that, for every n ^ 1, there exists
one irreducible polynomial over F having primitive period n. In § 3, we use character
sums in order to prove Theorem 1.1 for primitive periods n which are not divisible by
the characteristic of F. In § 4, we deal with periods divisible by the characteristic of F
and complete the proof of Theorem 1.1.

Some remarks are in order on the relationship of this work to Morton [9], which was our
starting point. In his paper, Morton similarly divides the investigation into three parts,
which correspond loosely to our §§ 2-4, respectively. He works with the Carlitz module
rather than mere considerations of orders (as in §2): the Carlitz module, however, is
neither necessary nor even convenient for general ^-linearized polynomials. Instead of
the precise formulation using character sums (§3), he employs less effective 'Cebotarev'
notions. Finally, his treatment of primitive periods divisible by the characteristic differs
substantially from ours (§4).

2. Linearized polynomials and additive orders

The notion of a ^-linearized polynomial goes back to the work of Ore [10] (see also [11,
ch. 3, §4]). It has proved to be very useful when considering the additive structure of a
(finite) extension of F = GF(q). Let c = J2i °ixX e ^ N - Then the polynomial

* ' ' (2.1)

is called the associated q-linearized polynomial of c, or, more simply, the associated
q-polynomial of c. For example, xq — ax is the associated g-linearized polynomial of
x — a.

Let O~F be the Frobenius automorphism of F over F. Then, for c € F[x] and a € F,

Aq(c)(a) = c(aF)(a). (2.2)

In particular, (2.2) imparts a module structure of F over the ring F[x] with respect to
OF (see, for example, [6,7]). For an integer n ^ 0 let [c]n denote the nth iterate of the
polynomial c, i.e. [c]° := 1, [c]1 := c and, inductively, [c]n := [c]n~1(c). Thus, again for
aeF,

[Aq(c))n(a) = cn{aF){a). (2.3)

If F(a) has degree d over F then (xd — l)(ap){a) = 0. Thus, there exists a monic
polynomial / G F[x] of least degree such that f(ap)(a) = 0. This polynomial is uniquely
determined. It is called the F-order of a and is denoted by OrdF(a)- It is the monic
polynomial / of least degree such that a is a root of the associated g-polynomial Aq(f)
of/.

If U is a o-f-invariant F-subspace of F, then U will simply be called a submodule of
F. Let VF be the set of monic polynomials in F[x] that are not divisible by x. Then the
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following gives the connection between finite submodules of F, g-linearized polynomials
and members of VF, again see [6,7].

Proposition 2.1. The set VF corresponds bijectively to the finite submodules of F.
More precisely, if f € VF, then the submodule UFJ belonging to f is exactly the set of
roots of Aq(f) (in F), i.e. the kernel of the mapping /(CTF)-

Moreover, every finite submodule of F is cyclic (i.e. free on one generator). The gen-
erators of UFJ are exactly the elements of F whose F-order is equal to f.

Finally, f is the minimal polynomial of the F-vector space UFJ when considered with
respect to OF-

Next, let g be a monic polynomial in F[x], let xk be the largest power of x dividing
g, and let h be the cofactor of xk in g. Let G and H, respectively, be the associated
g-polynomials of g and h. Since Aq(x

k) = xq induces the identity mapping on IF, the
dynamics of G and H on IF are the same. We therefore restrict our attention to the case
in which g is not divisible by x, i.e. we assume from now on that g € VF, J ^ 1- We
study the dynamics of G on the set Ip, where G := Aq(g) is the associated (/-linearized
polynomial corresponding to g. We therefore refer to g as the dynamic polynomial.

The following basic result is [6, Lemma 7.4]. It is crucial for studying the preperiods
and the periods of G on IF-

Lemma 2.2. Let a € F have F-order f. Let g € F[x] be monic. Then g(oF)(a) has
F-order f / gcd(g, f) (where gcd denotes the greatest common divisor).

In particular, g(op)(o:) has the same F-order as a if and only if g and Ordf(a) are
relatively prime.

Since the F-order of each a € F is not divisible by x (see Proposition 2.1), we see that
the conjugates of a under <JF, namely the elements of the set

{<*«* | k > 0}

(i.e. the roots of fia), all have the same F-order. Consequently, pia is purely periodic with
respect to G provided that g and Ordf(a) are relatively prime.

Assume that fj,a is purely periodic with respect to G. Let n be the primitive period of
fj,a. By definition, n ^ 1 is the minimum number such that Gn(fj,a) = Ma- Thus, n > 1 is
the minimum number such that there exists an I ^ 0 such that

= [*']'(«)• (2-4)

The latter is equivalent to the fact that the F-order of a, say / , is a divisor of

9n-xl. (2.5)

Moreover, there exists an integer m ^ 1 such that

[G]m(a) =a = a°F(a) = [x](a). (2.6)
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The latter means that / is a divisor of

9m - 1. (2.7)

Thus, (2.6) implies the following result, which can be interpreted as meaning that g is a
unit modulo / .

Lemma 2.3. Let a £ F and fj,a E IF be the minimal polynomial of a. Then \xa is
purely periodic with respect to G if and only if g and Ordf(a) are relatively prime.

If m ^ 1 is the least integer satisfying (2.6), then m is the multiplicative order of
g in the group of units modulo / . This number will be denoted by ord/(g). Since, by
the definition of VF, X and / are relatively prime, x is likewise a unit modulo / . Now,
letting [g + (/)] and [x + (/)] be the subgroups of units modulo / that are generated by
#mod/ and xxnodf, respectively, we have established the following characterization of
the primitive period of /j,a with respect to G.

Proposition 2.4. Let f be the F-order of a £ F. Assume that f is relatively prime
to g. Then u.a is purely periodic with respect to G and the primitive period of fia with
respect to G is equal to

This number is equal to the index of the group C in [g + (/)], where C is the intersection
of[x + (f)}with[g+(f)}.

Let a e F. Then Lemma 2.3 and Proposition 2.4 show, furthermore, that the funda-
mental parameters of fia with respect to G, i.e. the preperiod and the primitive period,
depend only on the F-order of a. Therefore (essentially by Lemma 2.2), g likewise induces
a mapping g on the set VF- In fact, as will emerge from the proof of Proposition 2.7 below,
the preperiodic structure of g on VF is essentially connected to the preperiodic structure
of G on IF- On the other hand, by Lemmas 2.2 and 2.3, /iQ is purely periodic with
respect to G if and only if Ordf(a) is purely periodic with respect to g. Moreover, again
by Lemma 2.2 and the remark thereafter, g only admits primitive periods of length 1.

We now introduce some notation as follows. If / € VF is relatively prime to g, then

*g{f) (2-8)

denotes the primitive period of (j,a with respect to G, where a is any element having F-
order / . For convenience, we sometimes also write irg{iJ,a} for 7rs(/), noting that, because
/ and /j,a are both members of F[x], some distinction of notation is expedient.

For n ^ 1 let

Vg(n) := {feVF\ gcd(g, f) = 1, irg(f) = n}, (2.9)

and

Ig{n) := {/iQ € IF I gcd(t?, OrdF(a)) = 1, TTS{/XQ} = n). (2.10)

The first part of the following proposition is a reformulation of what has been said above.
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Proposition 2.5. Let a G F have F-order f. Assume that f is relatively prime to g.
Then

(1) fj.a G Ig(n) if and only iff G Vg(n);

(2) Ig{n) is empty if and only ifVg(n) is empty; and

(3) Ig{ri) is finite if and only ifVg(n) is finite.

Proof. It remains to prove parts (2) and (3).
(2) If /i € Ig{n), then Ordir(a) G Pg{n) for every root a of /i. If / G Vg(n), then, by

Proposition 2.1, a generator a of UFJ has F-order / . Thus, fj,a G Ig{n).
(3) Clearly, if Vg(n) is infinite, then Ig(n) is infinite. Assume, therefore, that Ig(n) is

infinite. If / G Vg(n), then Aq(f) has only a finite number of roots. Thus, there exist
only a finite number of elements a G F such that fj.a divides Aq(f) and this is equivalent
to the fact that Ordir(a) divides / . Thus, Vg{n) has infinite cardinality as well. D

The goal of the remainder of this section is the following reduction of Theorem 1.1.

Theorem 2.6. Let g G VF, <7 ^ 1- Then the following assertions are equivalent.

(i) Ig(n) is not empty for all n ^ 1.

(ii) Vg{n) is not empty for alln^ 1.

(iii) Theorem 1.1 is valid.

In order to prove this we first deal with the preperiodic structure of G. Let a G F and
let h0 be the F-order of a. For n ^ 1 let hn be the F-order of [G]n(a) = gn(aF)(a).
Using Lemma 2.2 we see that the series (hn) is ultimately constant, say after k steps.
Then k is minimal such that h^ and g are relatively prime. Moreover, k is equal to the
preperiod of /ia . Altogether, this already gives a concrete description of the preperiodic
behaviour of G. In particular, we can show the following.

Proposition 2.7. Given a polynomial g G VF, 9 ¥" h ^et f e 'Pgi71)- Then, for every
k ^ 0, there exists a fj, G IF such that the preperiod of ^ is equal to k and every root of
Gk(fi) has F-order f (whence the primitive period ng{n} of /i is equal to n).

In particular, the preperiods of the mapping G on Ip can be arbitrarily long.

Proof. Let a be an irreducible divisor of g and am be the maximal power of a dividing
g. Let / be relatively prime to g and consider the polynomial h = ahmf. Then, using
Lemma 2.2, the preperiod of G on the minimal polynomial of an element having F-order
h has length k. The rest also follows from Lemma 2.2. •

Observe that for different f\ and fa in Vg (n), the construction in the above proof leads
to different Hi and fx2- Therefore, the part of Theorem 1.1 concerning the preperiods
follows from the part concerning the primitive periods.

We next give a fundamental lemma that will also be very useful in § 4.
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Lemma 2.8. Assume that f,h € VF are relatively prime to g. Let a G F have F-order
f. Then the following conditions hold.

(1) If n ^ 1 is such that Gn(/xQ) = fia, then TTS(/) is a divisor ofn.

(2) Ifn ^ 1 and / ^ 0 are such that f divides gn — xl, then irg(f) divides n.

(3) If f divides h, then TTg(f) divides irg{h).

Proof. Observe first that fia is purely periodic by our assumption. (1) follows since
n is a period of /ia and thus is divisible by ng(f).

(2) is a reformulation of (1).
(3) is an application of (2). •

The final ingredient in the proof of Theorem 2.6 is the following result.

Proposition 2.9. Given a polynomial g e VF, J ^ 1- Assume that f € VF is rela-
tively prime to g. Let n = TTS(/) be the period of fia, where a 6 F has F-order f. Then
Vg(n) is infinite.

Proof. There exists Z ^ 0 such that / divides /o := gn — xl. Let ao be an element
having F-order /o- An application of Lemma 2.8 shows that TT9(/O) = n = 7rs(/).

Next, let d be the multiplicative order of x modulo / , i.e. d ~£ 1 is the least integer
such that / divides xd — 1 (recall that x does not divide / , whence a; is a unit modulo / ) .
For k ^ 0 let fk •= gn - xl+kd and let a^ be an element having F-order //t: the existence
of oik is guaranteed by Proposition 2.1. Since / divides /0 and / divides xd — 1, we have
that / divides //t, which is equal to

gn-xl -xl • (xdk - 1).

Thus, again by using Lemma 2.8, we have that irg(fk) = n for all k > 0. Consequently,
Vg(n) has infinite cardinality. •

Proposition 2.9 can be summarized by saying that, for any n ^ 1, Vg(n) is either
empty or infinite. Thus, Theorem 2.6 follows immediately from part (2) of Proposition 2.5,
Proposition 2.9 and Proposition 2.7. The conclusion we can distil from this section is that
the obstacle that remains for the proof of Theorem 1.1 is to establish unconditionally
assertion (ii) of Theorem 2.6. This will require further ideas.

3. Primitive periods coprime to the characteristic

As we have just seen, in order to prove the validity of Theorem 1.1 for a given n and
a given dynamic polynomial g, it suffices to show that Vg(n), say, is non-empty. In the
present section, we settle directly the assertion of Theorem 1.1 concerning primitive
periods n that are coprime to the characteristic p of F. Our method mainly involves
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character sums and ideas of Cohen [4] (see also [5]). In fact, these techniques are strong
enough even to prove the following theorem: its focus is on irreducible polynomials in
Vg(n).

Theorem 3.1. Let n ^ 1 be relatively prime to the characteristic p of F. Then
IF H Vg (n) has infinite cardinality.

We start by giving a brief motivation for assuming at this point that n is not divisible
by p and for studying the set IF H Vg(n).

Let / 6 VF be relatively prime to g. Recall that irg(f) is the least integer k ^ 1 such
that gk modulo / is contained in the subgroup generated by x modulo / . Now, assume
additionally that / is irreducible, i.e. f & IF- Let 0 be a root of / . Then

7Tp(/) = min{fc ^ 1 | g{6)k = Qi for some i ^ 0}. (3.1)

Let n := 7rg(/). Then, necessarily, n divides ord(g(6)), the multiplicative order of g(0),
which itself is a divisor of qd — 1, where d is the degree of / . Thus, in the above situation,
n is relatively prime to p and F(6) contains the nth roots of unity. Hence, for a given
n, relatively prime to p, we consider extension fields of F(£n), £„ a primitive nth root of
unity, and try to find irreducible / e VF such that n is equal to the right-hand side of
equation (3.1).

The following conditions, (3.2 a) and (3.2 6) on an integer n and any integer d such
that n divides qd — 1, guarantee that n is the minimum given by the right-hand side of
(3.1) and, therefore, is consistent with its designation as 7rg(/):

qd - 1
ord(0) = , (3.2 a)

^- ( 3 - 2 6 )

By way of explanation, note that (3.2 a) implies that 6 6 E := GF(gd). Moreover, (3.26)
means that g(6) = (3r, (3 6 E* (the multiplicative group of E), is false for any divisor
r > 1 of n, i.e. g(0) is not any kind of nth power in E (see [5]). Furthermore, (3.2a)
implies that any non-zero nth power in E is a power of 6. Note also that, if 9 is an element
of F satisfying (3.2), then its minimal polynomial / is an element of VF and has degree
d. For then, ord(g(0)) divides qd — 1 and, if ord(0) divides qd° - I, where do divides d,
then ord(c(0)) divides qd° -1. Moreover, from (3.2 a), n is a multiple of (qd - l)/(qd° - 1 )
whereas, from (3.2 6), n and (qd — l)l(qd° - 1) are relatively prime. Thus do = d.

Now the main idea for the proof of Theorem 3.1 is the following. Given n ^ 1, let
6 := ordn(q). We show that there exists a positive integer ao such that for all a ^ ao
there exists an element 0a satisfying (3.2) with d = 5a, i.e. \iea £ IF H Vg(n).

We introduce some further notation. Given g, let N*(d) be the number of / G VF
having degree d such that (3.1) holds. It follows from the above that

N*n{d)>{l/d)-Nn{d), (3.3)
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where Nn(d) is the number of elements 6 € E = GF(gd) such that (3.2) holds. Given
n, d with n dividing qd — 1, write n = niTi2, where n\ and n2 are relatively prime, the
square-free part v(n{) of ni is equal to the square-free part of

and

Moreover, let (p be the Euler totient function, /z denote the Mobius function, uj(k) the
number of different prime divisors of k, and W(k) := 2UJ(fc) be the number of square-free
divisors of k.

Proposition 3.2. Under the above assumptions we have (except in the trivial case
in which deg(g)qd = 2)

^ ^ { q d + R), (3.4)

where

\R\ < ndeg(g)qd/2W(qd - l)W(m). (3.5)

Proof. With the exclusion of the case mentioned in the statement, observe first that
(3.5) is weaker than the trivial estimate \R\ ̂  qd unless

qd/2 > ndeg(g)W(qd - l)W(m) > 2, (3.6)

which we henceforth assume.
The proof is along lines such as those of [4, Theorem 2.4]. We obtain an expression for

Nn(d) by employing the appropriate characteristic functions for the subsets of E satisfy-
ing (3.2 a) and (3.2 6), respectively. To describe such functions in generality, temporarily
replace E by F = GF(q) and let e be any divisor of q — 1. Then (as used, for example,
in [4]), for 0€F,

ip(e)

e ^—' (fi(r) ^ - ' • „ ,.
r\e v ' ord(x)=r ^0, otherwise,

where the sum over \ is over all <p(r) multiplicative characters of F of order r. Further,
as established in [3, Lemma 2], for /3 6 F,

l, if^^OandordOT-e,
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where the sum over 77 is over all multiplicative characters of order s and

Returning to the present context, we replace q by qd in the previous paragraph and
set e = n in (3.7) and e = (qd - l ) /n in (3.8) to yield

^n(d) = ^ ) R ^ j
W ; r|n s | ^ - l ^K ' yK ' ord(X)=r ord(r;)=s

where the sums over % a n d 7? are over all multiplicative characters of indicated order,
where

and (now)

s*:= S

gcd(s, n) '

Since 712 and (qd — l ) /n are relatively prime, it is easy to see that, in (3.9), (p(n)tp((qd —
l) /n) can be replaced with ip(ni)ip((qd — l)/n\). Furthermore, it is obvious that

d - m 0 - l , (3.11)

where mo ^ m := deg(<7) is the number of zeros of g in E, and XOJ% denote the trivial
characters. Otherwise, for characters \i V n° t both trivial, we use the consequence of
Weil's theorem given in [4, Lemma 2.3], namely

\S(X,v)\<mqd/2- (3.12)

(Of course, depending on circumstances, this may be improved.) It follows that Nn(d)
has the form (3.4), where

£ £ =: Tlt (3.13)

where A = /x2, and m is the degree of g. (In particular, the use of (3.13) to bound \R\
allows for a contribution of mqdl2 from 5(xo,?7o), which, by (3.6), certainly exceeds the
deficiency mo + 1 in (3.11).) Then, evidently,

Ti = mW(n)T2,

where
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Now, let Q be the part of qd -1 prime to n. Then, by the multiplicativity of the functions
involved, T<i can be expressed as

t\Q u|gr f-l , ^u)k(n) ^ V ;

where the definition of u* is analogous to that of s* and, since A(u*) = 0 unless u divides
ra/(ni),

If u divides ni/(ni), then u* divides ^(ni). For each divisor v of i/(ni) we consider the
contribution to T3 of those divisors u for which u* = v. For this purpose, given the divisor
v of i^(ni), write n = lvmv, where gcd(lv,mv) = 1, v divides lv, and gcd(v,mv) = 1.
Then the set of distinct divisors u of m/(ni) with u* = v is the set

{vlvr I r divides TO,,}.

Moreover, if u = vlvr is in this set, then

Hence, from (3.16),

~~ ~ ~~ ~ (3-17)
u|i/(ni) rim,, ti|i/(ni) v\v(ni)

Since, by definition of Q, W(n)W(Q) = W(qd — 1), the result now follows by combining
(3.13)-(3.17). This completes the proof. D

We now use Proposition 3.2 to show that Nn(d) and, therefore, N^(d) are generally
positive. For this we need some bound on the function W(N). In fact, from [8, §22.10],
for any e > 0,

W{N)< Ar(i+^)'°g(2)iog(iog(N))) 7v->jVo(e), (3.18)

and a form of this bound with an explicit function No(e) could be derived, for example,
from [12]. To give an indication of the magnitudes involved we use the following simple
result.

Lemma 3.3. For any positive integer N, we have

W{N) < 5JV1/4. (3.19)
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Proof. The function V(N) := W{N)/N^4 is multiplicative. If N = lb, b ^ 1, where
I > 16 is a prime, then V(N) = 2/N1/4 < 1, whereas if

N = 2b2 • 3fc3 • 565 • 767 • II6 '1 • 13bl3

with each bj ^ 0, then, clearly,

V(N) < V(2 -3 -5 -7 - l l -13 )<4 .9 .

Thus everything is proved. D

We are now able to prove the following theorem, from which the assertion of Theo-
rem 3.1 follows immediately.

Theorem 3.4. Let g € VF and let n ^ 1 be an integer relatively prime to the char-
acteristic p of F = GF(q). Suppose that

41og(25ndeg(g))
d ^ —7-r (3.20)

log(g)

is an integer such that qd — 1 is divisible by n. Then Nn(d) and N^(d) are positive.

Proof. Suppose that Nn(d) = 0. Then, from (3.4) and (3.5), using the same notation
as in the proof of Proposition 3.2, we have

qd/2 ^ mnW(qd - l)W(m), (3.21)

where m := deg(g). Let n[ = v{n{). Then u){n{) = ^{n'^) and, by the definition of ni,
{n\)2 divides qd — 1, so that

Hence, by Lemma 3.3, using the multiplicativity of W,

qd/2 < mnwf^^Win1!) < 25mnqd/4.
\ ni J

This implies that Nn(d) = 0 only if qd/4 < 25mn, i.e. (3.20) does not hold. This is a
contradiction. Thus, Nn(d) > 0, and the result follows with the aid of (3.3). •

We finally remark that, replacing (3.19) with a more general inequality of the form

W(N) < c(e)N£, e > 0,

we could replace the factor 4 in (3.20) with 2+e (at the cost of increasing other constants
involved).
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4. Primitive periods divisible by the characteristic

Let again g £ VF, 9 ^ 1> be the dynamic polynomial. In the present section, we consider
the additive orders of elements of F whose periods are divisible by the characteristic p of
F. We use the same notation throughout as in § 2. For / £ VF, let df be the multiplicative
order of x modulo / .

Lemma 4.1. Assume that f is relatively prime to g and that f is square free. Then
ng(f) is not divisible by p.

Proof. Let n := TT9(/). From the proof of Proposition 2.9, it is evident that there
exists a unique m < df such that / divides gn — xm. Assume that n is divisible by p. Let
TV be the multiplicative order of g modulo / . By Lemma 2.8 we have that n divides N.
Consequently, iV is divisible by p and, therefore,

gN-l = {gN'p - l)p.

Since / is assumed to be square free, we deduce that / divides gNlp — 1, but this con-
tradicts the definition of N. Consequently, n is prime to p, and the result is proved. •

The converse of Lemma 4.1 is not true. Take, for example, q = 3 = p, g = x2 -1-1 and
/ = i - l o r / = i + l . Then g2 — x2 = (x2 — I)2 is divisible by / 2 , whence irg(f

2)
divides 2.

Throughout, for / 6 F[x], let u(f) be the square-free part of / .

Proposition 4.2. Let f £ VF be relatively prime to g. Assume that 7rs(/) is not
divisible by p. Then

*»("(/)) = **(/)• (4-1)

Proof. Let A; := ng(i/(f)) and n := ng(f). Then u(f) divides gk — xm for a unique
m < dv(j). For every I > 0 we have that f ( / ) p divides

(fffc -x
m)pi =gkpl -xmp',

whence, by Lemma 2.8, irg{y(f)p ) divides kpl. Now, choose I such that / divides v(f)p •
Then n = ng(f) divides 7r5(^(/)p ). We deduce that n divides kpl. Since, by assumption,
p does not divide n, we conclude that n divides k. But, again by Lemma 2.8, k divides
n. Hence k = n and everything is proved. D

The proof of the last result also yields the following.

Lemma 4.3. Let f £ VF be relatively prime to g. Then, for every k^O, there exists
I ^ 0 such that
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Lemma 4.4. Let f 6 VF be relatively prime to g. Assume that ng(f) = n is divisible
by p. Let m < df be the unique non-negative integer such that f divides gn — xm. Then
m is divisible by p.

Proof. Assume that m is not divisible by p. Then the derivative of gn — xm is equal to
mi"1"1 and is therefore non-zero. Since, by assumption, g is not divisible by x, we see that
gn — xm and mi"1"1 are relatively prime. Thus, gn — xm is square free. Consequently,
/ , which is a divisor of gn — xm likewise is square free. But, by Lemma 4.1, this is a
contradiction to the assumption that n is divisible by p. The lemma is proved. D

We employ a final lemma whose scope, for convenience, extends to polynomials g 6 F[x]
outside VF-

Lemma 4.5. Let f e VF and g £ F[x) be non-constant monic polynomials. Suppose
that for every positive integer j , there is an integer rrij such that g — xm> is divisible by
fv*. Then g = xr for some r ^ 1.

Proof. Let r be the degree of g. For j ^ 2, we have that

and so, since f^'1 = fjf (xp), say, then

rrij = rrij-i (modp), j ^ 2.

Let i be such that 0 < i ^ p — 1 and mi + i is divisible by p. Then

rrij + i = 0 (modp), j ^ 1.

Replacing g by gx% and rrij by rrij + i, we may assume that, for all j ^ 1, p divides rrij.
Now there exist monic polynomials hj in F[x] such that

g-xm^=hjf^, 3>\- (4.2)

Differentiate this expression to yield

g' = h'jf^ =h'jft'\xp), J>1. (4.3)

Now suppose that p> > r. Then (4.3) can hold only if g' = h'j = 0. Thus hj = 0 for all
j ^ 1. We conclude that g = go(xp), say, and that, for all j ^ 1, hj = hj(xp). It follows
that

go = x ^ (modff), j>l,

where rhj = m.j+i/p for j ^ 1. Moreover, ro := deg(po) = (r + i)/p ^ r implies that
r(p — 1) ^ i, which can only happen if r = ro = 1 and i = p — 1. Furthermore, if r = 1
and g is the original polynomial (before replacement by x%g), then xp~1g = go(xp) only
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if g = x. Hence, if r = 1, the result holds. Otherwise, carry out the above procedure
with repetition, as necessary to obtain a sequence of polynomials g,go,gx,... ,g3 = x of
strictly decreasing degree all possessing the same property. Reversing this process, we
obtain

gs=x, s,_i = a*"*'= i1"-1 (r,_i ^ 1, is > 0), . . . ,

until we reach
9o = xpri-li = xr°, g = xp r°- i = xr,

whence everything is proved. •

In the corollary to Lemma 4.5 which follows, g resumes its role as the dynamic poly-
nomial (in VF)-

Proposition 4.6. Let f € VF be relatively prime to g. Assume that ng(f) =: n is
not divisible by p. Then there exists k ^ 1 such that ng(f

p ) ^ n.

Proof. Suppose the contrary. Then, for every j ^ 1, ng(f
pl) = n and, accordingly, for

some rrij ̂  0, gn — xm-> is divisible by f^. We conclude from Lemma 4.5 that g = xr,
which contradicts the fact that g € VF- This completes the proof. •

By Proposition 4.6, given / € VF we may define A;(/), the p-index of f, as the least
non-negative integer for which TTS(/P ) is divisible by p. Of course, k(f) ^ 1 whenever p
does not divide TTS(/).

Proposition 4.7. Let f € VF be relatively prime to g. Assume that TTS(/) is not
divisible by p. Set k := k(f). Then

wg(fP
k+') = ng(f) -pl+1, for all l> 0. (4.4)

Proof. Let n := irg{f) and assume that ng(f
p3) = npl, where / ^ 1. Define i by

i 1

Consider the unique m < d.pj := ord/pj(x) such that f^ divides gnp — xm. By
Lemma 4.4, m is divisible by p. Hence,

gnpl _xm =

Thus, /pi~1 divides p""'"1 - x m / p , whence ^ ( / P 3 " 1 ) divides np'"1 (Lemma 2.8), and,
therefore, i ^ I — 1. Conversely, by the definition of i, f^ ' divides gnp' — xm' for some
unique ml < d,pj-i. Therefore f^ divides

Again by Lemma 2.8, ^gif^) = npl divides npl+1. Hence, i ^ I — 1. Consequently, we
have proved that

i1) = npl-\ (4.5)
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A similar argument shows that

ng(fP
i+1)=npl+1. (4.6)

The statement now follows by induction. •

Evidently, Proposition 4.7 taken, for example, with Theorem 3.1 and Proposition 2.7
yields the truth of Theorem 1.1 in full generality.

We have, throughout, focused our attention on the latter without discussing details
that would surely come within the scope of the theory. These would include an analysis
of the p-index k(f) and of square-free non-irreducible / in Vg{n).
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