Quantum Computing Applications

“A good way of pumping funding into the building of
an actual quantum computer would be to find an efficient
quantum factoring algorithm!”

HE risk of wide-scale cryptanalysis pervades narratives about
quantum computing. We argue in this chapter that Feynman’s
vision for quantum computing will ultimately prevail, despite the
discovery of Peter Shor’s factoring algorithm that generated excite-
ment about a use of quantum computers that people could under-
stand — and dread.

To explain this outcome, we canvass the three primary applica-
tions that have been developed for quantum computing: Feynman’s
vision of simulating quantum mechanical systems, factoring, and
search. The next chapter discusses today’s quantum computing land-
scape.

For Feynman, a quantum computer was the only way that he
could imagine to efficiently simulate the physics of quantum mechan-
ical systems. Such systems are called quantum simulators.? Quantum
simulation remains the likely first practical use of quantum comput-

!Berthiaume and Gilles Brassard, “Oracle Quantum Computing” (1994), written
hours before Peter Shor discovered such an algorithm.

2The term quantum simulators is confusing, because it is also applied to pro-
grams running on conventional computers that simulate quantum physics. For
this reason, some authors use the terms Feynman simulators or even Schrodinger—
Feynman simulators.
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ers. Oddly, this application is not responsible for most of the public
interest in quantum computers, which has instead been fueled by the
desire to make super-machines that can crack the world’s strongest
encryption algorithms. Since then, without dramatic demonstrations
of other capabilities, and with the underlying complexity of achieve-
ments that have been made, many news articles cast quantum com-
puting in a single, privacy-ending narrative.

We believe that prominence of cryptanalysis in public interest
and government funding over the past two decades is because a work-
ing quantum computer that could run Shor’s algorithm on today’s
code would give governments that owned it an incredible advantage
to use over their adversaries: the ability to crack messages that had
been collected and archives going back decades. But while this ad-
vantage may be responsible for early funding of quantum computing,
we believe that the cryptanalytic capabilities of initial quantum com-
puters will be limited and outshone by the ability of these machines
to realize Feynman’s vision. And Feynman’s vision, unlike cryptana-
lysis, confers first-mover advantage, since a working quantum physics
simulator can be used to build better quantum physics simulators.
That is, quantum physics simulations are likely to create a virtuous
circle, allowing the rate of technology change to increase over time.

The last section of this chapter turns to search, and explains the
kinds of speedups quantum computers are likely to provide. Under-
standing those likely speedups further advances our prediction that
the future of quantum computing will be Feynman’s.

5.1 Simulating Physical Chemistry

In this section we explore how one might actually go about simulat-
ing physics with quantum computers. Despite the similarity of titles,
this section is not an extended discourse on Feynman’s articles. In-
stead, it is a discussion of how chemists actually simulate the physics
of chemical reactions with classical computers today, and how they
might do so with quantum computers tomorrow.

Classical computers — like the computers used to write and type-
set this book — are designed to execute predetermined sequences of
instructions without error and as reliably as possible. Computer en-
gineers have made these machines steadily faster over the past 80
years, which makes it possible to edit this book with graphical edi-
tors and typeset its hundreds of pages in less than a minute. Both of
those activities are fundamentally a sequence of operations applied

1
https://doi.org/10.1017/9781108883719.009 Published online by Cambridge University Press


https://doi.org/10.1017/9781108883719.009

5.1. SIMULATING PHYSICAL CHEMISTRY

to a sequence of bits, starting with an input stream of 0s and 1 s,
and possibly a character typed on a computer keyboard) and deter-
ministically creating a single output stream (the PDF file that is
displayed on the computer’s screen).

Modeling molecular interactions is fundamentally different from
word processing and typesetting. When your computer is running a
word processing program and you press the key, there is typ-
ically only one thing that is supposed to happen: an “H” appears
at the cursor on the screen. But many different things can happen
when two molecules interact: they might stick together, they might
bounce, or an atom might transfer from one molecule to the other.
The probability of each of these outcomes is determined by quantum
physics.

To explore how two molecules interact, the basic approach is to
build a model of all the atomic nuclei and the electrons in the two-
molecule system and then compute how the wave function for the
system evolves over time. Such simulations quickly become unwork-
able, so scientists will consider a subset of the atoms and electrons,
with the hope that others will stay more-or-less static. This hope was
formalized in 1927 and today is known as the Born—Oppenheimer
approximation, named after Max Born and J. Robert Oppenheimer
who jointly proposed it. Other approximations exist, such as assum-
ing that the nuclei are fixed in space and are point charges, rather
than wave functions themselves. High school chemistry, which typi-
cally presents the electrons as little balls of charge spinning around
the nuclei, is a further simplification.

Many of the chemistry discoveries of the twentieth century were
possible because the Born-Oppenheimer approximation is largely
correct, but it is not perfect. For example, it may not apply in exotic
materials, such as graphene.®> More generally, it may not apply to
certain kinds of surface chemistry. “There is growing evidence that
the usual approach to modelling chemical events at surfaces is in-
complete — an important concern in studies of the many catalytic
processes that involve surface reactions.”*

Most chemistry can be understood working with the time-inde-
pendent Schrodinger equation, in which the chemist simply looks for
the most likely configuration of the atoms and electrons. Systems

3Pisana et al., “Breakdown of The Adiabatic Born — Oppenheimer Approximation
in Graphene” (2007).
4Sitz, “Approximate Challenges” (2005).
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Energy State outcome
electron 1 ‘ electron 2 || probability
low low 2%
low high 5%
high low 90%
high high 3%

Figure 5.1. The possible energy states of two electrons in a hypothetical quantum
system.

that cannot be studied this way can be modeled using what’s called
Monte Carlo methods (or a Monte Carlo simulation), in which the
chemist creates a probabilistic model and then runs the simulation
multiple times, examining the range of possible outcomes.

We present a simplified Monte Carlo simulation in Figure 5.1.
To keep things simple, we have assumed that there are only two
electrons of interest, and that each will end up in either a low or
high energy state. Facing this system, a scientist can use modeling
software to determine the probability of each of these outcomes. Here
our hypothetical scientist has used a conventional computer to run
this experiment many times, tabulate the results, and report them
in the rightmost column as an outcome probability.

Our scientist would take a fundamentally different approach to
solve this problem on a quantum computer. Instead of modeling the
probabilities, the scientist designs a quantum circuit that directly
represents (or simulates) the chemistry in question. With most quan-
tum computers today, the scientist would then turn on the quantum
computer, placing each of its quantum bits (called qubits) into a su-
perposition state. The quantum circuit plays through the quantum
computer, changing how the qubits interact with each other over
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time. This “playing” of the quantum circuit is performed by a sec-
ond computer — a classical computer — that controls the quantum
computer. When the circuit is finished playing, the second computer
measures each qubit, collapsing the superposition wave function and
revealing its quantum state. At this point each qubit is either a 0
ora 1.

In this example, each qubit might directly represent an energy
state of an electron that was previously modeled. So if our scientist
designed a quantum circuit and ran it on our hypothetical quantum
computer, the result might look like this:

Trial qubit 1 qubit 2
#1 1 0

It looks like the quantum computer has found the right answer
instantly!

Actually, no. Because if the scientist ran the experiment a second
time, the answer might be different:

Trial qubit 1 qubit 2
42 1 1

In an actual quantum computer, the experiment would run mul-
tiple times:

Trial qubit 1 qubit 2
43 1 0
#4 1
#5 0
#6 1

#7 1

1
1
1

#8
#9
#10

[elleolleliieollolieolNe]

After these trials, the results are tabulated to get a distribution
of possible answers. The statistics that are similar to those produced
by the classical computer, but a little different:
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qubit 1 qubit 2 Trial #s Count Probability
0 0 #5 1 10%
0 1 — 0 0%
1 0 #1, #3, #4, #6, 8 80%
#7, #8, #9, #10
1 1 #2 1 10%

Notice that the quantum computer does not generally produce
the same results as the classical computer. This may be because we
did not run sufficiently many trials to get results with the same sta-
tistical distribution as the results produced by the classical computer.
It might also be because the model run on the classical computer is
incomplete. More likely, both models are incomplete, but incomplete
in different ways. (Even if they were identical models, it’s unlikely
that identical statistics would emerge with just 10 runs.)

It is important to remember that in this simulation, as in real
quantum systems, there is no right answer. Instead, there is a range
of possible answers, with some more probable and some less probable.

In practice, efficient quantum computing algorithms are designed
so that “correct” or desired answers tend to generate constructive in-
terference on the quantum computing circuits, while answers that
are not desired tend to cancel each other out with destructive inter-
ference. This is possible because what quantum computers actually
do is to evolve carefully constructed probability waves in space and
time. These waves “collapse” when the final measurement is made
by the scientist (or, more specifically, by the classical computer that
is controlling the quantum computer). For a discussion of quantum
mechanics and probability, please see Appendix B.

The advantage of a quantum computer becomes clear as the scale
increases. Exploring the interaction of 32 electrons, each of which
could be in two states, requires exploring a maximum of 4 Gi® com-
binations. A classical computer would need to explore all of those
combinations one-by-one. Exponential growth is really something:
simply printing out those 4 Gi combinations at 6 lines per inch would
consume 11297 linear miles of paper. Today for certain problems,
quantum computing scientists have discovered algorithms that run
more efficiently on quantum computers than the equivalent classical

54 Gi means 4 Gigi, which is the SI prefix that denotes powers-of-two rather than
powers-of-ten counting. 4 Gi is 4 x 1024 x 1024 x 1024 = 23 = 4294967296, or
roughly 4.2 billion.
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algorithms that exist to solve the problems on conventional comput-
ers. Generally speaking, the more qubits a quantum computer has,
the more complex a system it can simulate.

Approaches for programming quantum computers are still in
their infancy. Because the machines are small — with dozens of qubits,
rather than millions — programmers need to concern themselves with
individual qubits and gates. In some notable cases quantum comput-
ers are being constructed to solve specific problems.® This is reminis-
cent of the way that the first computers were built and programmed
in the 1940s, before the invention of stored programs and computer
languages: in England the Colossus computers were built to crack
the Germans’ Lorentz code, while in the US the ENIAC was created
to print artillery tables. Programming quantum computers will get
easier as scientists shift from single-purpose to general machines and
as the machines themselves get larger.

In addition to the number of qubits, the second number that
determines the usefulness of a modern quantum computer is the sta-
bility of its qubits. Stability is determined by many things, including
the technology on which the qubits are based, the purity of the mate-
rials from which the qubits are manufactured, the degree of isolation
between the qubits and the rest of the universe, and possibly other
factors. Qubits that are exceedingly stable could be used to compute
complex, lengthy quantum programs. Such qubits do not currently
exist. In fact, an entire research field explores ways to shorten quan-
tum algorithms so that they are compatible with short-lived qubits.

Quantum engineers use the word noise to describe the thing that
makes qubits less stable. Noise is a technical term that engineers
use to describe random signals. The reason we use this term is that
random signals fed into a speaker literally sound like a burst of noise,
like the crackle between stations on an AM radio, or the sound of
crashing waves. Noise in the circuit does not help the quantum com-
puter achieve the proper distributions of randomness and uncertainty
described by quantum mechanics. Instead, noise collapses the wave
functions and scrambles the quantum computations, similar to the
way that jamming the relay contacts in the Harvard’s Mark II com-
puter caused it to compute the wrong numbers on September 9,
1947.7 Early computers only became useful after computer engineers

6Zhong et al., “Quantum Computational Advantage Using Photons” (2020).
7A moth was found pinned between the contacts of Relay #70 Panel F. Grace Hop-
per, a developer and builder of the Mark II, taped the insect into her laboratory
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Quantum Error Correction

The quantum computing applications that we discuss in this
chapter all assume the existence of a working, reliable quantum
computer with sufficient qubits, able to run quantum circuits
with sufficient size and complexity for a sufficiently long period
of time.

Although an absolutely reliable quantum computer is a use-
ful theoretical construct for thinking about quantum computing
algorithms, actual quantum computers will probably need to use
some form of quantum error correction, in which multiple noisy
qubits are used to simulate a smaller number of qubits that have
less noise.

Although quantum error correction is powerful, today’s
techniques do not appear to be up to the task of sustaining
a single quantum computation for time periods that would be
long enough to pose a threat to modern cryptographic systems.

learned how to design circuits that reduced noise to the point of ir-
relevance. They did this using an engineering technique called digital
discipline that is still used today (see p. 84), but that approach won’t
work with quantum computers.

Instead, companies like Google, IBM, and Rigetti have created
machines that have noisy qubits. As a result, most quantum pro-
grams today are small and designed to run quickly. Looking towards
the future, many noisy qubits can be combined to simulate cleaner
qubits using an error-correcting technique called surface codes,® but
today’s machines do not have enough sufficient noisy qubits for this
to be practical. Another approach is to use a quantum computing me-
dia that is largely immune to noise; that’s the approach being taken
by Microsoft with its so-called topological qubits, although other ap-
proaches using photonic qubits or ion traps might produce similar
noise-free results. But for today, noise significantly limits the com-
plexity of computations that can be done on quantum computers,
even if we could build machines with hundreds or thousands of noisy
qubits.

notebook with the notation “first actual case of bug being found.”
8Fowler et al., “Surface Codes: Towards Practical Large-Scale Quantum Compu-
tation” (2012).
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Even so, some companies are eager to get a head start, and are
having their scientists and engineers learn to program these machines
today. As a result, IBM is able to generate revenue with its “quan-
tum experience” by giving free access over the Internet to machines
with only a few qubits, and renting time to institutions who want ac-
cess to IBM’s larger machines. Likewise, Amazon Web Services has
started making small quantum computers built by other companies
available through its “Bracket” cloud service. However, the power
of these machines is dwarfed by Amazon’s conventional computing
infrastructure.

Finally, there is an important point that we need to make: there
is no mathematical proof that a quantum computer will be able to
simulate physics faster than a classical computer. The lack of such a
proof reflects humanity’s fundamental ignorance on one of the great
mathematical problems of time, NP completeness (see Section 3.5.4,
“NP-Complete and NP-Hard” (p. 110)). What we do know is that
today’s quantum simulation algorithms get exponentially slower as
the size of the problem being simulated increases in size, and the sim-
ulation algorithms that we have designed for quantum computers do
not. But this may reflect the limits of our knowledge, rather than
the limits of classical computers. It might be that work on quantum
computing leads to a breakthrough in mathematics that allows us to
create dramatically faster algorithms to run on today’s classical com-
puters. Or it may be that work on quantum computing allows us to
prove that quantum computers really are fundamentally more pow-
erful than classical computers, which would help us to solve the great
mathematical question of NP completeness. What we know today is
that quantum computers can take advantage of quantum physics to
run so-called BQP algorithms, and that today’s BQP algorithms run
more efficiently than the fastest algorithms that we know of to run
on classical computers. (See Section 3.5.4 (p. 110) and Section 3.5.6
(p. 116) for a more in-depth discussion of these topics.)

5.1.1 Nitrogen Fizxation, without Simulation
To put efforts to develop a quantum computer into context, this sec-
tion explores how such a machine might help develop more efficient
approaches for “fixing” nitrogen.

Nitrogen, in the form of organic nitrates, is both vital for bio-
logical life and in surprisingly short supply. The productivity of
pre-industrial agriculture was often limited by the lack of nitro-
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gen, rather than limitations of water or sunlight. Industrial agricul-
ture has solved this problem through the industrial production of
nitrogen-based fertilizers.

The need for added nitrogen is surprising given the fact that
plants are surrounded by nitrogen in the form of air. Nearly 80 per-
cent of dry air is nitrogen. The problem is that nitrogen in the air is
Ny, also written N=N, with a triple chemical bond between the two
nitrogen atoms. This triple bond has the charge of six electrons, mak-
ing it difficult to break. As a result, the nitrogen in air is inaccessible
to most plants.

Nitrogen fization is the process of taking No and turning it into
a more usable form, typically ammonia (NHs). The overall chemical
reaction is not very complex:

Energy+ N» + 3H, — 2NHj3 (1)

Most of the natural nitrogen fixation on Earth happens in the
roots of alfalfa and other legumes, where nitrogen-fixing bacteria live
in a symbiotic relationship with the plant host.? Instead of hydrogen
gas, biological nitrogen fixation uses ATP (adenosine triphosphate)
produced by photosynthesis, some spare electrons, and some hydro-
gen ions (present in acid) that just happen to be floating around. The
products are ammonia (containing the fixed nitrogen), hydrogen gas,
ADP (adenosine diphosphate), and inorganic potassium (written as
Pi below):

N, + 16 ATP+8e” + 8H" —— 2NH;3 + H, + 16 ADP + 16Pi  (2)

The plant then uses photosynthesis and sunlight to turn the ADP
back into ATP.

In 1909, the German chemist Fritz Haber discovered an inorganic
approach to nitrogen fixation using high pressure and the chemical
element osmium, which somehow helps the electrons to rearrange.
Chemists say that osmium catalyzes the reaction. Haber was awarded
the Nobel Prize in Chemistry in 1918, “for the synthesis of ammonia
from its elements.”!?

9There is also a small amount of nitrogen fixation that results from lightning.

0Haber is also known as the “father of chemical warfare” for his work weaponizing
the production and delivery of chlorine gas as part of Germany’s efforts during
World War I, and for his institute’s development of Zyklon A. Despite this service
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Haber sold his discovery to the German chemical firm BASF,
which assigned Carl Bosch the job of making the process commer-
cially viable. Osmium has 76 electrons that are exquisitely arranged,
which presumably is the reason for its catalytic prowess, but it is also
one of the rarest chemicals on the planet, so Bosch and his colleague
looked for a cheaper catalyst. They discovered that uranium also
worked, but settled on a catalyst made by treating iron with potas-
sium. (Iron is in the same column of the periodic table as Osmium
because they have the same arrangement of “outer” electrons, with
the result that they have some similar chemical properties.) Today
modern industrial catalysts for nitrogen fixation include mixtures of
aluminum oxide (AlO3), potassium oxide (K20), zirconium dioxide
(ZrO3), and silicon oxide (SiO2). For this work, Carl Bosch received
the 1931 Nobel Prize in Chemistry, which he shared with Friedrich
Bergius, another BASF employee.

Chemically, the modern Haber—Bosch process looks something
like this:

Energy+ Ny + 3Hy™ w) NH; + H, (3)

The energy comes from temperatures in the range from 750°F to
3000°F, with pressures as great as 350 times atmospheric pressure at
sea-level, and the hydrogen comes from natural gas. Today the world
is so hungry for nitrogen that the Haber—Bosch process is responsible
for 3 percent of the world’s carbon emissions and consumes roughly
3 percent of the world’s natural gas. Not surprisingly, scientists are
constantly looking for ways to improve nitrogen fixation. Areas of
current research including finding better catalysts'! and how biolog-

to his country and the fact that he had converted from Judaism to Christianity,
Haber was considered a Jew by the Nazi regime, and fled to England after the
Nazis rose to power. “[S]cientists there shunned him for his work with chemical
weapons. He traveled Europe, fruitlessly searching for a place to call home, then
suffered heart failure in a hotel in Switzerland in 1934. He passed away shortly
thereafter at the age of 65, but not before repenting for devoting his mind and his
talents to wage war with poison gasses.” See King, “Fritz Haber’s Experiments in
Life and Death” (2012). Zyklon A ultimately led to the development of Zyklon
B, the gas that was used in the Nazi extermination camps.

1 Ashida et al., “Molybdenum-Catalysed Ammonia Production with Samarium
Diiodide and Alcohols or Water” (2019).
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ical systems work.12:13:14 After all, alfalfa is able to fix nitrogen at
room temperature with just air, water, sunlight, and some clever
microbes.

5.1.2 Modeling Chemical Reactions

One way for industry to develop improved nitrogen fixation catalysts
would be to better understand what is happening at the atomic
level when nitrogen gas becomes ammonia inside those microbes.
Chemists think of this process in terms of some chemical bonds be-
ing broken while new chemical bonds are created. Much of modern
chemistry is devoted to describing and predicting the behavior of
such chemical bonds.

Except there is really no such thing as a chemical bond! While
students in high school chemistry class learn to visualize bonds as
little black lines connecting letters (e.g., N=N), “bonds” and indeed
our entire model of chemical reactions are really just approximations
for Schrodinger wave equations that evolve over time and describe
the probability that a collection of mass, charge and spin will interact
with our measuring devices. It is just far too hard to write down such
wave equations, let alone solve them. Meanwhile, the mental models
of chemical bonds and other approximations developed over the past
150 years all work pretty well, especially with ongoing refinements,
and so chemists continue to use these approximations.'®

More accurate models that do a better job incorporating the
underlying quantum physics would let chemists create more accu-
rate predictions of how these things we call atoms rearrange during
the course of a chemical reaction. Highly accurate models would let
chemists design and try out catalyst candidates in a computer, with-

2Molteni, “With Designer Bacteria, Crops Could One Day Fertilize Themselves”
(2017).

13 Biological Nitrogen Fization: Research Challenges — A Review of Research Grants
Funded by The US Agency for International Development (1994).

4Manglaviti, “Exploring Greener Approaches to Nitrogen Fixation” (2018).

5 A current textbook about the chemical bond reminds its readers that there are
no electrons spinning around the atoms, only a “charge wave surrounding the
nucleus” (I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond
Valence Model, 2nd ed. (2016), Chapter 2.) (See Figure 5.2 in this book, p. 186.)
Nevertheless, the author continues, “chemists have largely rejected this simple
wave picture of the atom in favor of a hybrid view in which the charge is composed
of a collection of electrons that are not waves but small particles, [with the] density
of the charge wave merely represent[ing] the probability that an electron will be
found at a given location.”
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out having to go to the trouble of actually synthesizing them in a
lab. This is the world of computational chemistry, also called quan-
tum chemistry, or even computational quantum chemistry, which
uses the math of quantum mechanics to answer questions about the
chemical nature of the world around us.

Wave equations describe probabilities, so predicting the behav-
ior of atoms at the quantum level requires programs that explore
probability distributions. One way to do this is with a Monte Carlo
simulation (see the sidebar “The Monte Carlo Method” on page 189).
Simulations take exponentially longer to run as the number of elec-
trons in the system increases — a good rule of thumb is that each
additional electron doubles the simulation’s running time.

In the Haber—Bosch nitrogen fixation equation presented above,
there are 14 electrons among the two nitrogen atoms and 6 hydro-
gen electrons for a total of 20 electrons. But do not forget that all-
important catalyst: that is where the chemical dance of the elec-
trons is happening. Iron has 26 electrons per atom, while Fe3O4 has
110, and AlyOs3 has 50. There must be some extraordinarily complex
chemistry happening at the interface of the gaseous nitrogen and the
solid catalyst.

To understand that complex chemistry, a computational chemist
creates a simulation of the electrons and nuclei. Into the simulation
the chemist programs physical constants that have been measured
over the decades as well as mathematical functions that represent
the laws of quantum mechanics. The more electrons and nuclei, the
more complex the simulation.

The math of quantum physics is based on probability, so all of
those probabilistic interactions — many coin flips — become inputs to
the simulation. For example, some of the random draws might have
less electron charge in a particular location between the two nitrogen
nuclei and more charge between the nitrogen and iron nuclei that
are interacting with some oxygen. This might sometimes push the
two nitrogen nuclei slightly further apart — their electrostatic charges
repel, after all — which might sometimes cause the charge probability
to rearrange a little more, and then all of a sudden ... wham! ... the two
nitrogen nuclei can now pick up some free floating protons, and the
physics simulation has converted simulated nitrogen into simulated
ammonia!

Running this simulation with a classical computer requires many
random draws, many crunchings of quantum mathematics, and a lot
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Figure 5.2. McMaster University Professor Emeritus |. David Brown observes: “An
electron is the smallest quantum of charge that can have an independent existence,
but the free electrons that are attracted to a nucleus in order to form a neutral
atom cease to exist the moment they are captured by the nucleus. They are absorbed
into the charge wave and, like Lewis Carroll's (1865) Cheshire Cat that disappears
leaving only its smile behind, the electron disappears bequeathing only its conserved
properties: charge, mass and spin, to the charge wave surrounding the nucleus.” |. D.
Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 2nd
ed. (2016), chapter 2.
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of matrix mathematics. Remember, classical computers are determin-
istic by design. To explore what happens when four random variables
encounter each other, the computer takes random draws on each four
variables and crunches the math. One cannot simply explore what
happens when the most-probable value of each variable happens, be-
cause there might be some important outcome when three of the
variables are in a low-probability configuration.

If it takes 10 seconds to simulate a single random variable, it will
take on the order of 10x10x10x10 = 10* = 1000 seconds to simulate
four random variables. With 10 random variables (and without any
optimization), it will take 10'° seconds or 115740 days — roughly 317
years.

These days, a computation that takes 317 years is not a big deal,
provided that the computation consists of many individual problems
that can be run in parallel. Good news: quantum simulations are such
a problem! As we write this book in 2021, cloud providers will rent
a computer with 96 cores for roughly $5/hour. One can rent 100 of
those computers for $500/hour and solve the 317-year problem in 12
days for $6000. Alternatively, one can rent 1000 of those computers
and solve the problem in 29 hours — for the same price of $6000.
(This demonstrates why cloud computing is so attractive for these
so-called embarrassingly parallel workloads.)

Today’s massive cloud computing data centers provide only [in-
ear speedup for these hard problems: if 1000 computers will solve the
problem in 29 hours, then 10000 computers will solve the problem
in 2.9 hours. And there’s the rub: absent a more elegant algorithm,
each additional electron in our hypothetical simulation increases the
problem’s difficulty exponentially. With 20 electron variables, the
problem takes on the order of 10%° seconds or 3 168 808 781 402 years
— 3168 billion years! — which is more time than anyone has.'® Even
with a million 96-core computers (a speedup of 96 million), our hy-
pothetical computation would take 33008 years, which is still too
long. Classical computers are simply not well-suited to simulating
probabilistic quantum physics.

Some people believe that quantum computers may be able to
efficiently solve problems involving quantum modeling of chemical
reactions. Even the “quantum simulators” discussed here, special-

6Current estimates are that the universe is somewhere between 15 and 20 billion
years old.
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purpose machines constructed to solve a specific problem, should
be dramatically faster than all of the world’s computers working
forever ... provided that we can scale the quantum simulators to be
large enough. As such, quantum chemistry simulation is likely to be
the first application for quantum computers in which they are used
for something other than doing research and writing papers about
quantum computers.

Critics, meanwhile, argue that today’s software packages (both
commercial and open-source) are based on well-understood, vali-
dated approximations that have worked for decades, and that limita-
tions of these systems might be solved merely with more conventional
computing power. For example, a September 2020 article by Elfving
et al. works real-world physical chemistry problems and concludes
that a practical quantum computer that could solve these problems
in hours, rather than years, would require millions of physical qubits.
The authors’ nuanced conclusion is that while quantum computing
may one day produce systems that can make meaningful contribu-
tions to physical chemistry, a far more promising near-term solution
would be to rewrite today’s chemistry simulation packages to take
advantage of graphical processing units.”

5.2 Quantum Factoring (Shor’s Algorithm)

As we explained in Section 4.8, “Aftermath: The Quantum Com-
puting Baby” (p. 164), Peter Shor’s discovery of an algorithm that
can rapidly break numbers down into their prime factors sparked
the world’s interest in quantum computing. In this section we will
describe why Shor’s algorithm was so important, how it became a
driver of quantum computing, and why it is no longer a driver — at
least, not in the public, commercial world. (See Section 3.5.6 (p. 116)
for a discussion of what we mean by “rapidly.”)

To understand why Shor’s algorithm is such a big deal, we start
with a discussion of public key cryptography. In Section 5.2.3 (p. 199)
we discuss how a quantum computer makes factoring faster. We will
then explore whether Shor’s algorithm running on a quantum com-
puter would truly be faster than anything that could ever run on a
classical computer, or whether we just need better math.

"Elfving et al., “How Will Quantum Computers Provide an Industrially Relevant
Computational Advantage in Quantum Chemistry?” (2020).
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The Monte Carlo Method

Modeling nuclear reactions was one of the first uses of electronic
computers in the 1940s. Stanislaw Ulam at Los Alamos was try-
ing to create a mathematical model for the movement of neu-
trons through material. He couldn’t create an exact model, so
he ran hundreds of individual mathematical experiments, each
modeling the probabilistic interactions between a neutron and
the material and finding a slightly different path. Ulam called
this the Monte Carlo method, named after the casino where his
uncle frequently gambled.®

Ulam shared his idea with fellow scientist John von Neu-
mann, who directed the team at University of Pennsylvania to
program the ENTAC to carry out the computations.

One requirement of algorithms like Monte Carlo is that
the random numbers must be truly random. Generating such
numbers requires physical randomness, something that the early
computers didn’t have. Instead, the systems of the day used algo-
rithms to generate sequences of numbers that appeared random,
but which were actually determined from the starting mathemat-
ical “seed.” von Neumann later quipped: “Anyone who considers
arithmetical methods of producing random digits is, of course,
in a state of sin.”?

It is necessary to use algorithms such as the Monte Carlo
method when modeling quantum interactions, because it is not
possible to solve the Schrodinger wave equation for even mildly
complex systems.®

Ulam’s success was evidenced by the fusion bomb test in
November 1952 and decades of employment for physicists at
weapons laboratories around the world. By the 1990s modeling
had gotten so good that it was no longer necessary to even test
the bombs, and the United States signed (but did not ratify)
the Comprehensive Nuclear-Test-Ban Treaty.

“Metropolis, “The Beginning of The Monte Carlo Method” (1987).

byon Neumann, “Various Techniques Used in Connection with Random
Digits” (1951).

‘Random sampling can also be used to find approximate integrals to complex
mathematical functions: instead of attempting to find an exact solution,
the approach is to evaluate the function at a number of randomly chosen
locations and interpolate. This is similar to statistical sampling, except that
what’s being sampled is a mathematical universe, rather than a universe of
people or objects.
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5.2.1 An Introduction to Cryptography

In modern usage, we use the word “cryptography” to describe the
body of knowledge involved in creating and solving secret codes. Here
the word “code” means a system for representing information, while
“secret” implies that something about the code allows people who
know the secret to decode its meaning, while people who do not
know the secret cannot.

Secret Key Cryptography

One of the oldest known codes it the “Caesar cipher,” which was re-
portedly used by Julius Caesar for messages to his generals. Messages
are encrypted character-by-character by shifting each letter forward
in the alphabet by three positions, so T becomes Q, H becomes E,
E becomes B, the letter C wraps around to Z, and so on. To de-
crypt messages simply shift in the other direction. QEB ZXBPXO
ZFMEBO FP KLQ SBOV PBZROB, that is, THE CAESAR CI-
PHER IS NOT VERY SECURE.

The Caesar cipher is called a secret key algorithm because the
secrecy of the message depends upon the secrecy of the key, and the
same key is used to encrypt and decrypt each message. It’s not a
very good secret key algorithm, because once you know the secret
— shift by three — you can decrypt any encrypted message. We call
this number three the key because it is the key to decrypting the
message! You can think of the Caesar cipher as a lock that fits over
the hasp used to secure a wooden box, and the number three as a
key that opens the lock.

We can make the algorithm marginally more complicated by al-
lowing the shift to be any number between 1 and 25: that creates
25 possible encryption keys, so an attacker needs to figure out which
one is in play. It’s still not very hard to crack the code.

There are lots of ways to make this simple substitution cipher
stronger, that is, to make it harder for someone to decrypt or “crack”
a message without knowing the secret piece of information used to
encrypt the message in advance. This is directly analogous to making
the lock on the box stronger. For example, instead of shifting every
letter by the same amount, you can make the encrypted alphabet
a random permutation of the decrypted alphabet. Now you have a
word puzzle called a cryptogram. These can be easy or hard to solve
depending on the length of the message, whether or not the message
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uses common words, and the number of times each letter is present
in the message.

Humans solve these puzzles by looking for patterns in the en-
crypted message, called a ciphertert. We can eliminate such patterns
by encrypting each letter with a different key. Now there are no
patterns! This kind of encryption algorithm is sometimes called a
Vernam cipher (named after its inventor, Gilbert Vernam) or more
commonly a one-time pad (because spies of yore had encryption keys
written on pads of paper, with instructions to use each key once and
then destroy it). One-time pads are hard to use in practice, because
the key needs to be both truly random and as long as the original
message. We discuss them more in Section 7.4 (p. 276).

Public Key Cryptography

For all of human history until the 1970s, cryptography existed as
a kind of mathematical deadbolt, in which each encrypted message
was first locked and then later unlocked by the same key. There were
thus four principal challenges in creating and deploying a working
encryption system: 1) Assuring that the sender and the intended
recipient of an encrypted message had the same key; 2) Assuring
that no one else had a copy of the correct key; 3) Assuring that the
correct key could not be guessed or otherwise discovered by chance; 4)
Assuring that the message could not be decrypted without knowledge
of the key. (See Figure 5.5.)

All of this changed in the 1970s with the discovery of public key
cryptography, a term used to describe encryption systems in which
a message is encrypted with one key and decrypted with a second.

Originally called non-secret encryption, it is now generally be-
lieved that public key cryptography was discovered in 1973 by James
Ellis, Clifford Cocks, and Malcolm Williamson'® at the Government
Communications Headquarters (GCHQ), the United Kingdom’s sig-
nals intelligence and information assurance agency (roughly the UK’s
equivalent of the US National Security Agency (NSA)). The UK in-
telligence agency reportedly shared the discovery with the NSA,!
but neither sought to exploit the invention. The basic idea was then
rediscovered at Stanford by Professor Whitfield Diffie and Professor
Martin Hellman, whose paper “New Directions in Cryptography” in-

18Ellis, Cocks, and Williamson, “Public-Key Cryptography” (1975).
¥Levy, “The Open Secret” (1999).
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spired Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT to
create a working public key system.?0:21

The basic concept of public key cryptography is a mathematical
lock that is locked with one key and unlocked with a second. The key
that locks (encrypts) is called the public key, while the key that un-
locks (decrypts) is the private key. The two keys are mathematically
linked and need to be made at the same time.??

A locked suggestion box is a good mental model for how public
key cryptography works: to encrypt something, write it on a piece of
paper and drop it into the locked box. Now the only way to get that
message back is by unlocking the box and retrieving the message. In
this example, the slot in the box represents the public key, and the
key that unlocks the padlock represents the private key (Figure 5.3).

The great advantage of public key cryptography is that it dra-
matically simplifies the problem of key management. With public key
cryptography, each person in an organization simply makes their own
public/private keypair and then provides their public key to the orga-
nization’s central registry, which then prints a phone book contain-
ing each employee’s name and public key, then sends each employee
their own copy. Now any employee can send an encrypted message
to any other employee by simply looking up the intended recipient’s

20Ronald L. Rivest, Adi Shamir, and Len Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems” (1978).

21The RSA crypto system was published first in Martin Gardner’s column in Sci-
entific American (Gardner, “Mathematical Games: A New Kind of Cipher That
Would Take Millions of Years to Break” (1977)), in which the RSA-129 number
that we will discuss on p. 261 was first published. In that article, the MIT profes-
sors famously offered US$100 to anyone who could factor the 129-digit number
or otherwise decrypt the message that they had encrypted with it. The professors
also offered a copy of their technical paper to anyone who sent a self-addressed
stamped envelope to their offices at MIT. Rivest discusses this in his Turing
award lecture (Ronald L. Rivest, “The Early Days of RSA: History and Lessons”
(2011)), following Adleman’s lecture (Leonard Adleman, “Pre-RSA Days: History
and Lessons” (2011)), and followed by Shamir’s (Adi Shamir, “Cryptography:
State of The Science” (2011)).

22There is a more refined version of public key technology called identity-based
encryption (IBE) that allows the keys to be made at separate times by a trusted
third party. IBE was proposed by Adi Shamir in 1984 (Adi Shamir, “Identity-
Based Cryptosystems and Signature Schemes” (1984)). Two working IBE systems
were developed in 2001, one by Dan Boneh and Matthew K. Franklin (Boneh
and Franklin, “Identity-Based Encryption From The Weil Pairing” (2001)), the
other by Clifford Cocks of GCHQ fame (Cocks, “An Identity Based Encryption
Scheme Based on Quadratic Residues” (2001)).
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Figure 5.3. A locked suggestion box is a good metaphor for public key cryptography.
To protect your message, just drop it through the slot. To retrieve your message, you
must unlock the padlock and open the lid. Photograph by Hashir Milhan (CC BY
2.0) of a suggestion box in Sri Lanka.

key in the directory, using that key to encrypt a message, and then
sending the message using the corporate email system. Nobody will
be able to decrypt the message — not even the system administrators
who run the corporate email system or the employee who printed the
phone book.

Public key cryptography can also be used to create a kind of
digital signature. In this case, the encrypting key is retained and the
decrypting key is published. To sign a document, just encrypt it with
your private key, then publish the result as a signature. Anyone who
has access to your public key (from the directory) can decrypt your
signature and get back to the original document. If you practiced
good cryptographic hygiene and no one has obtained your private
key, now called the signing key, then we now have good proof that
you alone could have signed the document.

It is still possible for employees to send and receive messages
within an organization without using public key cryptography, but
the procedures are more involved. One possibility is for the central
authority to create a different secret key for every pair of employees
that needs to communicate, then to send each pair of employees all
of the keys that they need in a sealed envelope. This approach has
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the feature that individuals can only exchange encrypted email with
other individuals with whom they are authorized to exchange mes-
sages. Another feature is that the central key-making authority can
in theory decrypt any message exchanged by a pair of employees if
it retains that pair’s key, although the authority can choose to de-
stroy its copy if it wishes to allow the pair to communicate without
the possibility of eavesdropping. This is the sort of system that mil-
itary organizations traditionally set up, and it is presumably what
GCHQ and the NSA were using in the 1970s, which is why they saw
no need to develop the non-secret encryption that Cocks and Ellis
had invented: GCHQ and NSA already had a system that was well-
developed and deployed to meet their organizational requirements,
and the benefits of digital signatures were not immediately obvious.
For the academics at Stanford and MIT, however, the discov-
ery of public key cryptography opened the door on a new area of
intellectual pursuit that combined the fields of number theory and
computation. It was an academic green field, full of wonder, possi-
bility, and low-hanging fruit. For example, in 1978, an MIT under-
graduate named Loren Kohnfelder realized that digital signatures
made it unnecessary for an organization to publish a directory of
every employee’s public key. Instead, the organization could have
a single private/public keypair for the organization itself, and use
the private key to sign each employee’s public key. The employees
could then distribute to each other their own public keys, signed by
the organization’s public key, to other employees as needed. As long
as each employee had a copy of the organization’s public key, they
could verify each other’s keys, and the organization would not need
to send out a directory with every employee’s public key. Today we
call these signed public keys digital certificates and the central sign-
ing authority a certificate authority. With his 1978 undergraduate
thesis, Kohnfelder had invented public key infrastructure (PKI).23
The following year, Ralph Merkle’s PhD thesis?* introduced the
idea of cryptographic hash functions. A hash function is a mathe-
matical function that takes an input of any size and produces an
output of a fixed size. The basic concept was invented by IBM en-
gineer Hans Peter Luhn in the 1950s.2% Merkle’s innovation was to
have hash functions that produced an output that was both large

23Kohnfelder, “Towards a Practical Public-Key Cryptosystem” (1978).
24Merkle, Secrecy, Authentication and Public Key Systems (1979).
25Stevens, “Hans Peter Luhn and The Birth of The Hashing Algorithm” (2018).
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— more than a 100 bits — and unpredictable, so that it would be
computationally infeasible to find an input that produced a specific
hash. Given such a function, you don’t need to sign an entire docu-
ment, you just need to sign a hash of the document. Today we call
such things cryptographic hash functions and there are many, the
most prominent being the US Government’s Secure Hash Algorithm
version 3 (SHA-3).

In the end, the discovery catalyzed interest and innovation in
cryptography. Academics and entreprencurs were attracted to the
field; they launched companies and ultimately set in motion the
commercialization of the Internet, which was only possible because
public key cryptography allowed consumers to send their credit card
numbers securely over the Internet to buy things.

A Demonstration of RSA Public Key Cryptography

The most widely used public key encryption system today is RSA,
named after its inventors Rivest, Shamir, and Adleman. The system
is based on math that is beyond this book but it is easy to find if
you have interest, and easy to understand if you understand basic
number theory. For the purpose of this demonstration we will just
assume that you have a set of magic dice that always roll prime
numbers and a box that given these two prime numbers p and ¢
outputs two sets of numbers: your public, encrypting key and

your private, decrypting key .
We roll the prime number dice and get two prime numbers:

31 37

We drop these into our key generator and get two keys:

public key private key
e 7 d 463
n 1147 n 1147

To encrypt a plaintext message P (which is a number) to produce
an encrypted message C (which is another number), we use this
mathematical formula:

195
https://doi.org/10.1017/9781108883719.009 Published online by Cambridge University Press


https://doi.org/10.1017/9781108883719.009

CHAPTER 5. QUANTUM COMPUTING APPLICATIONS

C = P° (mod n) (4)

This means multiply the number P by itself e times and then take
the integer remainder after dividing the resultant by n. For example,
the number 53 (which represents the letter “S”) encrypts as 914:

C =537 (mod 1147) = 1174711139837 (mod 1147) = 641  (5)

To decrypt the number 914, we follow roughly the same procedure
using the values for d and n:

P =% (mod n) = 641*%* (mod 1147) = 53 (6)

We haven’t expanded 64146 above; the number is 1300 digits
long. RSA implementations use a variety of mathematical tricks to
avoid naively computing these numbers — for example, you can apply
the modulo after each multiplication to prevent the intermediate
number from getting too large — but it’s easy enough to do the math
directly using the Python programming language if you want to check
our work.

The RSA algorithm is secure as long as you can’t compute the
number d knowing e and n (and provided that you follow some im-
plementation guidance that was developed after the algorithm was
first published?9). It turns out that it’s easy to compute d, however,
if you can factor n. Not a lot was known about the difficulty of fac-
toring numbers in 1977, although the best factoring numbers took
exponentially more time as the length of the number being factored
increases. That’s still the case today. This may be something inher-
ent in the nature of factoring, or it may reflect a limitation in our
knowledge. After more than 40 years of intensely studying the ques-
tion, mathematicians, computer scientists, and cryptographers still
don’t know.

5.2.2 Forty Years of Public Key Cryptography

Despite the fact that humanity is still unsure about the fundamental
hardness of factoring, we have learned a lot about cryptography over
the past 40 years. Here we focus on three significant improvements:
speed, algorithmic improvements, and key length.

26For an example of such guidance, see Housley, “Use of The RSAES-OAEP Key
Transport Algorithm in Cryptographic Message Syntax (CMS)” (2003).
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Cryptographic Speed

The computers of the 1970s were too slow for public key cryptog-
raphy to be practical: a single RSA encryption or decryption on a
computer could take as long as 30 seconds. By the 1980s computers
were fast enough that it took just a few seconds, and some compa-
nies developed and marketed cryptographic co-processors that could
accelerate the math required to make RSA run fast as well as store
the RSA private keys in tamper-proof hardware. By the 1990s gen-
eral purpose microprocessors were fast enough that special purpose
hardware was no longer needed, and these days most microprocessors
include special instructions and dedicated silicon that can be used
to accelerate both secret and public key cryptography.

As a result, cryptography has gone from being a technology that
was only used occasionally, when it was absolutely needed, to a pro-
tection that is always enabled. For example, the early web used en-
cryption just to send passwords and credit card numbers, sending
everything else over the Internet in plaintext. These days encryption
is the default, and web browsers warn when any page is downloaded
without encryption.2”

Algorithmic Improvements

Working together, cryptographers and security engineers have also
made stunning improvements to cryptographic systems, making them
both faster and more secure.

Although the underlying math of RSA is sound, cryptographers
developed many subtle nuances to use it in practical applications. For
example, if we simply encrypt letters one code at a time, as we did
in the example above, an adversary has a straightforward method to
attack the ciphertext. The adversary can encrypt all possible combi-
nations of messages using the public key until a match emerges with
the ciphertext. The attacker can do this because the attacker always
has access to the target’s public key — that’s the core reason we are
using public key cryptography. This approach of trying every possi-
ble combination is called a brute-force attack or a key-search attack.
For this reason, whatever message that’s encrypted is always com-
bined with a random string of bits, called a pad. With a long pad it’s

270Our understanding of Internet security has also expanded, so now we know that
a single advertisement, image, or font downloaded without encryption over the
Internet can be leveraged by an attacker to compromise your computer’s interac-
tions with a remote website.
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Elliptic Curve Public Key Cryptography

In the 1980s, cryptographers Neal Koblitz and Victor S. Miller
independently suggested that mathematical constructs called
“elliptic curves over finite fields” might provide the sort of func-
tionality operations required to build a working public key cryp-
tography system.® They were right, and elliptic curve cryptogra-
phy (ECC) was developed and standardized in the 1990s, culmi-
nating with the adoption of the Elliptic Curve Digital Signature
Algorithm (ECDSA) in 1999. Following that, the US National
Security Agency aggressively promoted ECC over RSA. Since
relatively short ECC keys were just as secure as RSA keys that
were much longer, ECC systems led to faster computations that
required less power.

At first, the primary disadvantage of ECC was the need to
license patents from Certicom, the Canadian company founded
in 1985 to commercialize ECC technology. Whereas RSA was
protected by a single US patent that expired in 2000,? Certicom
aggressively patented many different aspects of both the ECC
math and efficient ECC implementations.

More recently, security experts have raised some concerns
regarding the technology — specifically that the number theory
of elliptic curves is less well-studied than the number theory that
underlies the RSA algorithm. In 2015, Neal Koblitz and Alfred
Menezes noted that the NSA was moving away from elliptic
curve cryptography.®

Like RSA, the math that underlies ECC is also vulnerable
to quantum computers. And since the ECC keys are significantly
shorter than RSA keys, quantum computers will be able to crack
the ECC keys in use today long before they are able to crack
today’s RSA keys. Assuming that there are no fundamental sci-
entific limits to scaling up the quantum computer, “it’s just a
matter of money,” observed Koblitz and Menezes.

“Neal Koblitz, “Elliptic Curve Cryptosystems” (1987); Miller, “Use of Elliptic
Curves in Cryptography” (1986).

’L. M. Adleman, R. L. Rivest, and A. Shamir, “Cryptographic Communica-
tions System and Method” (1983).

“N. Koblitz and Menezes, “A Riddle Wrapped in an Enigma” (2016).
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impossible for the attacker to try every combination; padding also
assures that the same message will always encrypt differently, which
makes cryptanalysis harder. RSA without a pad is called Textbook
RSA: it’s good enough for textbooks, but it doesn’t actually protect
your message.

Engineers developed clever encryption protocols that limit the
number of public key operations that need to be computed. This is
done by combining public key cryptography with traditional secret
key cryptography. For example, an hour of HD video (roughly 10 GB
of data, with compression) can be encrypted with a single public key
operation. This is done by first encrypting the video with a randomly
generated secret key, and then encrypting the secret key with a public
key algorithm. This approach is sometimes called a hybrid system;
it is the approach that is used by both the Trusted Layer Security
(TLS) protocol and the Secure Shell (SSH) protocols used to send
information over the Internet.

5.2.3 Cracking Public Key with Shor’s Algorithm

Here is one measure of public key technology’s success: today the vast
majority of information sent over the Internet is encrypted with TLS,
the hybrid system described above that uses public key technology
to exchange a session key, and then uses the session key to encrypt
the information itself. If you are viewing web pages, you are probably
using TLS.

TLS is sometimes called a pluggable protocol, meaning that it can
be used with many different encryption algorithms — it’s as simple
as plugging-in a new algorithm implementation. When you type a
web address into your browser, your browser opens a connection to
the remote website and the remote website sends to your browser
the website’s public key certificate, which is used to establish the
website’s identity. The two computers then negotiate which set of al-
gorithms to use based on which algorithmic plug-ins the web server
and the web browser have in common. Today there are tools built
into most web browsers to examine website certificates and the TLS
connections, but these tools can be confusing because the same web-
site can appear to provide different certificates at different times.
This is typically because a single “website” might actually be a col-
lection of several hundred computers, all configured with different
certificates.
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Because the public key certificate is sent over the Internet when
a web page is downloaded, anyone who can eavesdrop upon and
capture the Internet communications now has all of the information
that they need to decrypt the communications, provided that they
have sufficient computing power to derive the website’s matching
private key from its public key — that is, to “crack” the public key.
In the case of RSA, this is the very factoring problem posed by
decrypting the Scientific American message that was encrypted with
RSA-129. In the case of elliptic curve algorithms, other mathematical
approaches are used to crack the public key.

Before the invention of Shor’s algorithm, the fastest factoring al-
gorithms required exponentially more time to execute as the number
of bits in the public key increased. Shor’s algorithm uses an approach
for factoring that has only polynominal complexity: longer keys still
take longer to factor, just not exponentially longer. The catch is that
Shor’s algorithm requires a working quantum computer with enough
stable qubits to run a quantum algorithm that helps to factor the
number in question: with perfect qubits, factoring the numbers used
in modern cryptographic system would require thousands of qubits.
But if the qubits have even the smallest amount of noise, then it will
be necessary to use quantum error correction, increasing the num-
ber of qubits needed to roughly a hundred million (see p. 206).2
Of course, the first computer to use transistors was built in 1953 at
Manchester University: it had just 92 point-contact transistors that
had been constructed by hand. Today’s Apple M1 microprocessor has
16 billion transistors, built with a feature size of just 5 nanometers.

Shor’s algorithm contains a classical part and a quantum part.
The classical part contains some of the same number theory that
powers RSA encryption, which isn’t terribly surprising since both
are based on prime numbers, factoring, and Euler’s Theorem. To
use RSA, the code-maker randomly chooses two prime numbers, p
and ¢g. These numbers are multiplied to compute N and also used
to create the public key and private key. With Shor’s algorithm, the
attacker just has the public key, which contains N. The attacker
also has access to a quantum computer that can perform two quan-
tum functions: the quantum Fourier transform and quantum mod-
ular exponentiation. With these functions, the attacker can factor
N, learning p and ¢, and re-generate the code-maker’s private-key.

28Mohseni et al., “Commercialize Quantum Technologies in Five Years” (2017).
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With this private key, the attacker can decrypt any message that
was encrypted with the code-maker’s public key.

At a high level, one might consider Shor’s algorithm as a care-
fully designed collection of dual-slit experiments, where the slits are
arranged according to the public key, N, in such a way that the in-
terference pattern displayed on the screen reveals information about
the factors p and q. One might think of the quantum computer as
taking an X-ray of the number N. If the bits of N are arranged in
just the right way, if they are connected to just the right quantum
circuit, and if the X-rays are sent from just the right directions, then
the diffraction pattern (see Appendix B) will reveal properties of p
and q.

Alas, explaining either the classical or the quantum aspects of
Shor’s algorithm requires more math and physics than we require
for readers of this book, so we refer interested readers with sufficient
skills to other publications, including the second version of Shor’s
1997 paper?? which can be downloaded from arXiv,?? as well as the
Wikipedia article on Shor’s algorithm.3!

If you had a quantum computer with sufficiently many stable
qubits to run Shor’s algorithm, and if you had recorded the complete
encrypted communication between a web server and a web browser
at anytime from the dawn of the commercial Internet through today,
then decrypting that communication would be straightforward.

For example, consider an unscrupulous internet service provider
(ISP) that wants to eavesdrop on a user’s email. Before 2008, the
ISP merely needed to capture the user’s packets and reassemble
them into web pages — a fairly trivial task.?? But since 2008 Google
has allowed users to access the server using encryption,®® and in
2010 Google made encryption the default. Once the user started us-
ing encryption, the nosy ISP would be out of luck: the web pages

29Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer” (1997).

30arxiv.org/abs/quant-ph/9508027v2

31With some amusement, we note that in June 2021 the quantum algorithm sec-
tion of the Wikipedia article contained this note: “This section may be too
technical for most readers to understand. Please help improve it and make
it understandable to mon-experts, without removing the technical details.” We
encourage any of our readers with sufficient skill to accept this challenge.

320hm, “The Rise and Fall of Invasive ISP Surveillance” (2009b); Bellovin, “Wire-
tapping The Net” (2000).

33Rideout, “Making Security Easier” (2008).
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would be encrypted using RSA cryptography. However, if the ISP
had recorded these packets and later rented time on a sufficiently
large quantum computer, all the ISP would need to do is to extract
Gmail’s public key certificate, factor N, apply the RSA key gener-
ation algorithm to compute the private key, use the private key to
decrypt something that the master secret was used to encrypt the
web pages, and then use the master secret to decrypt the individual
pages. This is not hard to do — there exists software that readily
performs all of the reassembly and decryption — provided that you
have a copy of the server’s private key.

If you had captured the packets and didn’t have a quantum com-
puter, there are still other ways to get that private key. You might
be able to get it by hacking into Google’s server and stealing it. Al-
ternatively, you might be able to bribe someone at Google, or even
obtain a court order against Google to force the company to produce
its private key or use it to decrypt the captured transmission.

In 2011, Google made a change to its computers to remove the
risk that a stolen private key could be used to compromise the privacy
of its service users: Google implemented forward secrecy by default.?*
Also known as perfect forward secrecy, the term is applied to security
protocols that use session keys that are not revealed even if long-term
secrets used to create or protect those session keys are compromised.
In the case of web protocol, forward secrecy is typically assured by
using digital signatures to certify an ephemeral cryptographic key
created using the Diffie-Hellman key agreement protocol, which is an
interactive public key encryption algorithm that allows two parties
to agree on a shared secret.3?

Google’s 2011 move to forward secrecy is a boon for privacy: it
means that after the conclusion of communications between a user’s
web browser and the Gmail server, not even Google can use its own
private key to decrypt communications that might have been covertly
recorded. This is because Google’s Gmail server destroys its copy of
the ephemeral encryption key that was used to encrypt the session
when the session concludes.

34Langley, “Protecting Data for The Long Term with Forward Secrecy” (2011).

35Diffie-Hellman is an interactive algorithm because performing the protocol re-
quires the two parties to exchange information with each other and act upon
the exchanged information. In this way it is different from RSA, which is a non-
interactive protocol, because it is possible for one party to encrypt or decrypt
information using RSA without the active participation of the other party.
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It turns out that the forward secrecy algorithm used by Google,
the Diffie-Hellman key agreement protocol, is also vulnerable to an
attacker that has a quantum computer. This is because the security
of the Diffie-Hellman algorithm depends on the difficulty of comput-
ing something known as a discrete logarithm, and the quantum part
of Shor’s algorithm can do that as well. So those packets recorded by
the ISP in our scenario are still vulnerable to some future attacker
with a large-enough quantum computer.

5.2.4 Ewaluating The Quantum Computer Threat to Public
Key Cryptography

Factoring is clearly a problem that quantum computers will be able

to solve faster than classical computers if they become sufficiently

large. Will quantum computers ever actually be large enough to pose

a threat to public key cryptography? We don’t know the answer to

this question today.

In 2001, a 7-qubit bespoke quantum computer constructed by
[saac Chuang’s group at IBM Alamaden Research Center successfully
factored the number 15 into its factors 3 and 5.3¢ The number 15
is represented in binary by four bits: 1111 . The number 15 is also,
not coincidentally, the smallest number that is not prime, not even,
and not a perfect square. So realistically, it’s the smallest number
that the IBM team could have meaningfully factored.?”

The quantum “computer” that IBM used doesn’t look anything
like our modern conception of a computer: it was a tube containing
a chemical that IBM had synthesized especially for the experiment,
a chemical called a “perfluorobutadienyl iron complex with the inner
two carbons,” and with chemical formula (Figure 5.4):

F>C=C(Fe(C5H;5)(CO)(CO))CF=CF,

The quantum circuit was played through the tube as a series
of radio frequency pulses, and the qubits were measured using nu-
clear magnetic resonance (NMR), a procedure in which a material
is placed in a strong magnetic field and probed with radio waves at

36Vandersypen et al., “Experimental Realization of Shor’s Quantum Factoring Al-
gorithm Using Nuclear Magnetic Resonance” (2001).

3"Even numbers are easy to factor: just divide them by two. Numbers that are
perfect squares are also easy to factor: just take their square root, which can
be quickly computed using Newton’s method. The number 15 is the smallest
non-even number that is the product of two different primes: three and five.
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Figure 5.4. The perfluorobutadienyl iron complex with the inner two carbons that
IBM scientists synthesized in 2001 for the purpose of factoring the number 15. The
seven qubits are represented by the five fluorine (F) and two hydrogen (H) atoms

shown surrounded by a .Vandersypen et al., “Experimental Realization of Shor's
Quantum Factoring Algorithm Using Nuclear Magnetic Resonance” (2001).

different frequencies. We discuss NMR-based quantum computers in
Section 4.8.2 (p. 168).38

Since IBM’s demonstration, other researchers have factored other
numbers on quantum computers. None of these approaches have
managed to factor a number out of reach of a conventional computer.
Most of the numbers factored can be factored with pen and paper.
For example, in 2012 a team led by Nanyang Xu at the University
of Science and Technology of China, Hefei, successfully factored the
number 143 using “a liquid-crystal NMR quantum processor with
dipole-dipole couplings.”®® The factors were 11 and 13, of course.
What’s exciting is that the researchers used a different factoring ap-
proach called adiabatic quantum computation (AQC), using only four
qubits. In 2014, Nikesh Dattani at Kyoto University and Nathaniel

38Tt may seem implausible that a tube containing a solution of a specially synthe-
sized compound inside a scientific instrument is actually computing, at least in
the way that we typically think of the term. But the IBM experiment demon-
strated that the computational media responded in a way that was consistent
with factoring the number 15, producing the numbers 3 and 5.

It turns out that computing is more fundamental than electronics, and there
are many different media that can be used for computation. For example, in the
1970s Danny Hillis created a computer from Tinkertoy rods and wheels that could
play Tic-Tac-Toe. “It could have been built by any six-year old with 500 boxes
of tinker toys and a PDP-10,” Hillis wrote at the time (D. Hillis and Silverman,
“Original Tinkertoy Computer” (1978)). Another improbable computing medium
is the seemingly haphazard but highly structured collection of lipids, proteins,
nucleic acids, small amine molecules, amino acids, and neuropeptides that make
up the human neurological system.

39Xu et al., “Quantum Factorization of 143 on a Dipolar-Coupling Nuclear Mag-
netic Resonance System” (2012).
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Bryans at University of Calgary posted a follow-up article to the
arXiv open-access archive purportedly showing that the published
results of the Chinese researchers could also be used to factor the
numbers 3599, 11663, and 56 153.4041 The work on AQC factoring is
exciting because it suggests that research in quantum computing may
eventually lead researchers to make fundamental discoveries about
factoring or even the nature of computation, with results that could
then be applied to both quantum and classical computers. Although
there have been no such discoveries to date, the field of quantum fac-
toring is still quite young compared with other branches of number
theory.

As of January 2019, the current record for factoring published
in the peer-reviewed literature is held by Chinese scientists, who
factored the 7-digit (20-bit) number 1005973 using 89 qubits on a
D-Wave quantum annealing machine. The team noted that by us-
ing a factoring algorithm based on quadratic unconstrained binary
optimization (QUBO), the team was able to constrain the factor-
ing problem to the type of qubits that D-Wave provides. “Factoring
1005973 using Shor’s algorithm would require about 41 universal
qubits, which current universal quantum computers cannot reach
with acceptable accuracy,” the authors noted wryly.*?> This develop-
ment was exciting because it demonstrated a new use for the D-Wave
annealer, discussed further in Chapter 6, which is limited to certain
kinds of applications. The scientists reasoned that because D-Wave
scaled its annealer from just 128 bits to 2000 in just seven years,
perhaps a machine capable of factoring the kinds of numbers used
to secure today’s commercial Internet might soon be constructed.

We disagree: such a capacity would require a D-Wave computer
with significantly more qubits than seems likely for the foreseeable
future. (As of June 2021, D-Wave’s largest system, the Advantage,
has just 5000 qubits.*3) To crack the RSA systems that are used

Dattani and Bryans, “Quantum Factorization of 56153 with Only 4 Qubits”
(2014).

41The Dattani/Bryans work was covered by the news site Phys.org (Zyga, “New
Largest Number Factored on a Quantum Device Is 56,153” (2014)), but the work
did not appear in the peer-reviewed literature.

12Peng et al., “Factoring Larger Integers with Fewer Qubits via Quantum Annealing
with Optimized Parameters” (2019).

43D-Wave Systems Inc., “D-Wave Announces General Availability of First Quantum
Computer Built for Business” (2020).
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to protect today’s commercial Internet would require the ability to
factor 2048- or 4096-bit numbers.*4

Even with this work on factoring — perhaps because of it — there
is still wide agreement in the scientific community that a practical
application of quantum computing to factoring is far off. It is unclear
whether the winning system will be a universal quantum computer
with stable qubits that can also factor, or a special purpose device
designed to perform factoring quickly. The advantage of the first ma-
chine is generality. The advantage of the second is that it could likely
be developed years before a general-purpose quantum computer, and
it could probably be developed for less money, and possibly in secret.

Yet another threat could come through a quantum-classical ap-
proach where the factoring problem is solved in parts with a quantum
computer, and a classical computer is used to combine and process
these parts to come to a full solution.*® The partial analysis approach
might afford today’s small quantum computers a role in cryptanaly-
sis.

Google scientists have projected that factoring a conventional
RSA public key in use on the commercial Internet today “would
take 100 million qubits, even if individual quantum operations failed
just once in every 10000 operations.”#6 A National Academies group
assessed in 2019 that “to create a quantum computer that can run
Shor’s algorithm to find the private key in a 1024-bit RSA encrypted
message requires building a machine that is more than five orders of
magnitude larger and has error rates that are about two orders of
magnitude better than current machines, as well as developing the
software development environment to support this machine.” The
authors of the report stated that it is “highly unexpected” that a
quantum computer that can break a 2048-bit RSA key will be built
before 2030.47

44For comparison, as of February 28, 2020, the largest RSA challenge number to be
publicly factored is RSA-250, a 250-digit, 829-bit number (Boudot et al., “Fac-
torization of RSA-250” (2020)). The total amount of computer time required
to perform the computation “was roughly 2700 core-years, using Intel Xenon
Gold 6t130 CPUs as a reference (2.1Ghz),” the authors reported (Goodin, “New
Crypto-Cracking Record Reached, with Less Help Than Usual From Moore’s
Law” (2019)).

45Ekerad and Hastad, “Quantum Algorithms for Computing Short Discrete Loga-
rithms and Factoring RSA Integers” (2017).

46Mohseni et al., “Commercialize Quantum Technologies in Five Years” (2017).
47Grumbling and Horowitz, Quantum Computing: Progress and Prospects (2019).
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DNA-Based Computing and Storage

DNA (deoxyribonucleic acid) is the polymerized molecule inside
cells that carries inheritance information used to synthesize pro-
teins. It has been called “the building block of life.”

Before the event of quantum computers, some researchers
thought DNA’s ability to encode and to reproduce information
might also make DNA a useful substrate for computing. One
proponent was Leonard Adleman (the “A” of RSA), who is fre-
quently credited with inventing the field.

Adleman encoded a small graph into a DNA molecule and
then used biomolecular reagents “to solve an instance of the
directed Hamiltonian path problem.”® This was highly signifi-
cant, as the Hamiltonian Path problem is NP-complete. If DNA
computing could solve it efficiently, and if the system can be
scaled up, DNA can be used to solve any other NP problem. In
particular, a DNA computer would be able to factor efficiently.?

Work on DNA computing has continued, with researchers
developing a variety of DNA-based algorithms.¢ A recent review
of “DNA-based Cryptanalysis”® found that the field remains
promising. But it has been eclipsed by quantum computing.

There have been significant breakthroughs in using DNA
to encode information directly. In June 2019, a Boston-based
startup called Catalog announced that it had encoded all 16
GB of Wikipedia into a set of DNA strands the size of a pencil
eraser.© DNA is also stable over long periods of time; DNA is
now routinely recovered from humans that lived thousands of
years ago. Since DNA is the basis of life, the ability to transcribe
DNA is likely to be re-invented by any future biologically based
civilization on Earth, should our current technological society
fail. DNA thus makes an excellent backup medium not just for
organizations, but also for the intellectual heritage of our civi-
lization.

“Leonard Adleman, “Molecular Computation of Solutions to Combinatorial
Problems” (1994).

YFactoring is not NP-complete, but it is contained within NP.

“W. Chang, Guo, and M. S. Ho, “Fast Parallel Molecular Algorithms for
DNA-Based Computation: Factoring Integers” (2005).

4Sadkhan and Yaseen, “DNA-Based Cryptanalysis: Challenges, and Future
Trends” (2019).

¢Shankland, “Startup Packs All 16GB of Wikipedia Onto DNA Strands to
Demonstrate New Storage Tech” (2019); Catalog Technologies, Inc., “Cat-
alog” (n.d.).
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5.2.5 Post-Quantum Cryptography

Fully realized, large-scale, and sufficiently error-free, quantum com-
puters will mean that public key encryption systems based on the
RSA, Diffie-Hellman, and Elliptic Curve systems are no longer se-
cure. But this will not mean the end of public-key cryptography.

Since the discovery of public key cryptography in the 1970s,
dozens of public key encryption algorithms have been devised. Of
these, many do not depend on the difficulty of factoring or comput-
ing a discrete logarithm, and as such these algorithms would not be
crushed by Shor’s algorithm and a suitably large quantum computer.
In fact there are so many choices and they are all so significantly dif-
ferent that it is not immediately clear which is the best.

To help the world choose, in 2016 NIST embarked on the Post-
Quantum Cryptography (PQC) Standardization effort. At the time,
NIST stated that the competition for a PQC asymmetric algorithm
would likely be more complex than its successful competitions to pick
the Advanced Encryption Standard (AES) and the Secure Hash Al-
gorithm 3 (SHA-3). “One reason is that the requirements for public-
key encryption and digital signatures are more complicated. Another
reason is that the current scientific understanding of the power of
quantum computers is far from comprehensive. Finally, some of the
candidate post-quantum cryptosystems may have completely differ-
ent design attributes and mathematical foundations, so that a direct
comparison of candidates would be difficult or impossible.”*®

NIST started with a field of 82 algorithm candidates, which
was reduced to 26 algorithms in early 2019. In July 2020 NIST an-
nounced the “Round 3 candidates” for the competition, with four
public-key and key-establishment algorithms under consideration as
“finalists:” Classic McEliece,*® CRYSTALS-KYBER,?® NTRU,%! and
SABER.5? Another three algorithms are under consideration for dig-
ital signature algorithms: CRYSTALS-DILITHIUM,?® FALCON,5*
and Rainbow.?® Each algorithm is being presented in a web-based

48National Institute of Standards and Technology, “Post-Quantum Cryptography”
(2017).

49classic.mceliece.org

50pqg-crystals.org

5lntru.org

52\www.esat.kuleuven.be/cosic/pqcrypto/saber/

53pqg-crystals.org

54falcon-sign.info

55www. pgcrainbow.org
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seminar open to the public, with the previous presentations and
videos archived on the NIST website. It is unclear when the pro-
cess will be finished, but it is likely that the scientific community
will have standardized a new family of asymmetric algorithms long
before the availability of quantum computers with sufficient power
to crack the algorithms in use today.

In the meantime, all of the algorithms that NIST is evaluating
are published, several with accompanying intellectual property state-
ments stating that the authors do not hold patents on the algorithms,
have not filed for patents, and have no intention to file for patents.
This means that the algorithms are available for experimentation
now! And indeed, July 2016, Google announced that it had deployed
its experimental CECPQ1 key agreement protocol in “Chrome Ca-
nary,” the experimental, nightly build version of its popular Chrome
web browser.

“Quantum computers exist today but, for the moment, they are
small and experimental, containing only a handful of quantum bits,”
Google’s software engineer wrote in the company’s Security Blog.%
“However, a hypothetical, future quantum computer would be able to
retrospectively decrypt any internet communication that was recorded
today, and many types of information need to remain confidential
for decades. Thus even the possibility of a future quantum computer
is something that we should be thinking about today.”

Google’s protocol uses the conventional and PQC algorithms in
parallel, so that both must be successfully attacked together, during
the same session, in order for the contents of a protected session to
be compromised.

One of the reasons that Google decided to experiment with PQC
is that the PQC data structures are significantly larger and slower to
compute than the data structures used today. Thus, it makes sense
to experiment with this technology now, on a limited scale.

In 2019 Google and the webhosting company Cloudflare contin-
ued the experiment, jointly deploying an improved algorithm called
CECPQ2. “With Cloudflare’s highly distributed network of access
points and Google’s Chrome browser, both companies are in a very
good position to perform this experiment .7

56Braithwaite, “Experimenting with Post-Quantum Cryptography” (2016).
STKwiatkowski, “Towards Post-Quantum Cryptography in TLS” (2019).
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If you are interested in learning more about the PQC algorithms,
Kwiatkowski’s illustrated blog post does a great job explaining them,
although it would be useful to have first taken a course in college-
level algebra.

5.3 Quantum Search (Grover’s Algorithm)

Two years after Shor showed that a large enough quantum computer
would be able to factor the numbers used to secure the Internet, Lov
Grover (also at Bell Labs) made a startling discovery: a properly con-
structed quantum computer could speed up all sorts of computations
that have a certain mathematical property. The speedup was not as
significant as Shor’s: instead of turning a problem that is computa-
tionally intractable into one that can be solved in just a few hours,
Grover’s algorithm gives a square-root speedup: if solving a prob-
lem takes on order of N steps without Grover, typically abbreviated
O(N), it now takes on the order of the square root of N steps — that
is, O(VN). On the other hand, whereas Shor’s algorithm can only be
applied to the relatively obscure domain of number theory, Grover’s
algorithm can be broadly applied to a wide range of practical prob-
lems. Grover’s algorithm is the second major quantum computing
algorithm.

Later in this section we will discuss how Grover’s algorithm can
be used to crack a version of one of the world’s most popular encryp-
tion algorithms. We’ll show why this was such a big deal at the time,
and then discuss why it’s not really a big deal any more. After that,
we’ll discuss other applications for Grover’s algorithm. To get started,
though, we need to further explore the world of cryptography and
code cracking.

5.3.1 Symmetric Ciphers: DES and AES

In 1977 the US Government adopted a standard algorithm for en-
crypting data that it unceremoniously named the Data Encryption
Standard. Before the adoption of the DES, the few companies that
sold data security equipment to the public generally made up their
own encryption algorithms and asserted that they were secure. This
created a difficult commercial environment, because most customers
(including most government customers) were not equipped to evalu-
ate the vendors’ claims. The DES solved this problem: after it was
adopted, vendors could simply follow Federal Information Processing
Standard 46: no longer did they need to claim that the algorithm they
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had cooked up in their labs was mathematically secure. This is the
function of standards, and with the DES the standardization process
worked beautifully. Both inside and outside the US government, the
algorithm was rapidly adopted and deployed.

The adoption of the DES was not without controversy, however.
In choosing the DES, the National Bureau of Standards did not use
an existing military encryption algorithm. Instead, NBS (the pre-
cursor to today’s National Institute of Standards and Technology)
invited submissions from industry and academia. The first submis-
sion round was unsuccessful. For the second round, IBM submitted
an algorithm it had developed called Lucifer, based on a novel con-
struction created by the German-born mathematician Horst Feistel
(1915-1990).58

Ideally, symmetric block cipher algorithms like DES and Lucifer
have the property that the only way to decrypt an encrypted mes-
sage is by knowing (or guessing) the correct key. Clearly, one way
to attack such a cipher is to try all possible keys — the brute-force
approach. In practice there are other kinds of attacks; such attacks
make it possible to correctly guess the decryption key without ex-
plicitly trying all of them.

The original Lucifer algorithm had a 128-bit key length (see the
sidebar “Key Length” on page 213), but after analysis by the Na-
tional Security Agency, the algorithm’s internals were changed some-
what and the key shortened to 56 bits. (It was widely assumed at the
time that the US Government had intentionally weakened Lucifer be-
cause US intelligence agencies didn’t want an encryption algorithm
adopted as a national standard that was too difficult to be cracked.
In fact, we now know that the final DES algorithm with its 56-bit
keys was stronger than the 128-bit algorithm: unlike Lucifer, DES
was resistant to a cryptanalysis technique called “differential crypt-
analysis” that was not widely known in the 1970s and would not be

58Feistel’s family fled Germany in 1934. He enrolled at MIT in Physics and grad-
uated in 1937, then proceeded to earn a master’s degree at Harvard. At the
outbreak of World War II Feistel immediately came under suspicion because of
his German citizenship, but his talents were well recognized by others in the
US government: Feistel was granted US citizenship on January 31, 1944, and
awarded a top secret security clearance the following day. He worked at the US
Air Force Cambridge Research Center, MIT’s Lincoln Laboratory, and MITRE,
before moving to IBM.
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discovered by academic cryptographers until the 1990s.5%)

When DES was adopted in 1977 it was not feasible for an at-
tacker to try all 2°° = 72057 594 037 927 936 possible keys to crack a
message, but this proved to be possible by the 1990s. To make DES
stronger, some organizations adopted a variant called triple-DES in
which DES was used three times over, each time with a different key,
to encrypt a message. This produced an effective key size of 168 bits,
but it was also three times slower than a single encryption. There
were also lingering doubts as to whether or not the DES had vul-
nerabilities that had been intentionally hidden by its creators which
might make even triple-DES suspect.

In the late 1990s, NIST ran a second public competition to select
a new national encryption standard. This time the vetting process
was public as well. After two years, NIST adopted the Advanced En-
cryption Standard (AES), a symmetric block encryption algorithm
developed in the 1990s that is better than DES in every possible
way.

AES has three primary modes of operation: AES-128, AES-192,
and AES-256, with 128-bit, 192-bit, and 256-bit keys respectively. In
practice, only AES-128 and AES-256 are widely used: AES-128 is the
fastest, for applications that require the fastest possible algorithm,
and AES-256 for the applications where speed is not the most im-
portant factor. Because the strength of the algorithm doubles with
each additional bit, AES-256 is at least 2!?8 times stronger than the
128-bit version.

In fact, the number is so impossibly large that it is not pos-
sible to crack a message encrypted with AES-128 using brute-force
search on a classical computer: there is simply not enough time. For
example, if you had five billion computers that could each try 90 bil-
lion AES-128 keys per second, it would take 24 billion years — roughly
the age of the Universe — to try all possible AES-128 keys. Without
a functioning quantum computer running Grover’s algorithm, the
only way that an AES-128 message will be cracked will be if a sig-
nificant underlying mathematical vulnerability is found in the AES
algorithm itself. Today such a discovery does not seem likely.

However, it may be possible to crack such messages using Grover’s
algorithm running on a sufficiently large quantum computer. We dis-

2128

59Coppersmith, “The Data Encryption Standard (DES) and Its Strength against
Attacks” (1994).
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Key Length

The most visible change in cryptography over the past 40 years
is the way that cryptographic keys have steadily increased.

Key length is traditionally expressed in bits. A key length
of two means that there are four possible secret keys: 00, 01,
10 ,and 11 . With a key length of three, there are eight possible
secret keys: 000, 001, 010, 011, 100, 101, 110 ,and 111 .
With 4 bits there are 16 possible keys, and with 8 bits there are
256. Concisely, if there are n bits, there are 2" possible secret
keys — the number of keys grows ezponentially as the number of
bits increases. With a strong secret key algorithm, it is necessary
to try every possible key in order to crack the message: there
are no algorithmic short-cuts.

Whereas adversaries will attack a message encrypted with
a secret-key algorithm by trying to decrypt the message, at-
tacks against public-key algorithms typically involve attacking
the public key itself. In the case of RSA, such attacks involve
factoring the product of the two prime numbers p and ¢g. Such
factoring is harder with longer public keys. As a result, engineers
have used longer and longer public keys as computers have got-
ten better at factoring.

In the early days of the commercial Internet, web browsers
supported an intentionally weak 512-bit RSA algorithm and a
stronger 1024-bit algorithm. The idea was that the weakened al-
gorithm was to be used outside the US and for non-commercial
applications, and the 1024-bit version was to be used within
the US for commercial applications. Today there are no signifi-
cant export restrictions on cryptographic software and 2048-bit
RSA (617 decimal digits) is widely used, although 4096-bit RSA
(1234 decimal digits) systems are increasingly being deployed.
For comparison, the original RSA-129 number is 426 bits (129
decimal digits), and the number 1147 used in the example on
page 195 is 11 bits (4 decimal digits).
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cuss this below in Section 5.3.3 (p. 218).

5.3.2 Brute-Force Key Search Attacks
As we mentioned above, messages encrypted with symmetric encryp-
tion algorithms can be forcibly decrypted, or “cracked,” by trying all
possible keys in sequence. In Table 5.1 we show how this works in
practice. We have an 8-character message that has been encrypted
with a key that was specially created for this text. The first few at-
tempts fail, but eventually we find one that succeeds. In an actual
brute force search, the computer stops when it finds a decryption
succeeds, but in the table we keep going until we've tried all 72
quadrillion possibilities.

There are two technical challenges to conducting a key search
attack: the time it takes to try all possible keys, and the difficulty of

Figure 5.5. A safe with a combination lock on its door is a good metaphor for secret
key cryptography and symmetric ciphers. To protect your message, just enter the
combination lock on the panel, open the safe, put in your message, and close the
door. To retrieve your message, enter the same combination on the panel, open
the door, and retrieve your message. Photograph by Dave L. Jones (EEVBIog),
Wikimedia Commons Account Binarysequence (CC BY-SA 4.0).
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Table 5.1. Decrypting a message encrypted with the Data Encryption Standard by
trying all possible keys. Each DES key is 56 bits long; there are roughly 72 quadrillion
keys. Characters that are not printable are displayed with a bullet (o). Notice that
when the correct key is found, all of the decrypted characters are printable. In this
case the key was found roughly halfway through because it starts with the bit se-
quence 1000. The same approach can be used with AES, except that there are
2128 = 340282 366 920 938 463 463 374 607 431 768 211 456 possible keys in its weakest
implementation.

Binary Key
Trial (56-bits) Decrypted Output Text
0 0000 ... 0000 BE47A17A2E810E8C %Giz.eee
1 0000 ... 0001 62590BB1CB678F3A bYeikge:
2 0000 ... 0010 B39BOD121FC5A97C ®eeeefo]
3 0000 ... 0011 84199DC6BOF5AD75 eeeE°3eu
4 0000 . 0100 D4E6908DSF77EAOQ7 Oxeeewde
38326038678974 151 1000 . 0111 4265726B656C6579 Berkeley
72057594 037927935 1111 1111 FB903DD599A327 3D {ie=(e&'=

recognizing a correct decryption.’0 The time is determined by how
many keys per second your code-cracking machine can attempt, and
how many code-cracking machines you happen to have. For exam-
ple, at Bletchley Park during World War II, the Bombe (see p. 80),
designed to crack the three-rotor version of the Germans’ Enigma
code, could cycle through all 17576 possible rotor combinations in
20 minutes. With two of these machines, the British could try half
the combinations on one machine and half on the other, and crack a
message in 10 minutes. Or they could attack two messages with the
two machines, and use the full 20 minutes to crack each. Of course,
20 minutes to crack a message was the worst case; on average a mes-
sage would be cracked after half of the rotor positions had been tried.
It was also necessary to detect when the correct rotor position was
found. The Germans made this easier by their tendency to begin
their encrypted messages with the same sequence of characters.

60Many treatises on cryptography and code-breaking ignore the challenge of de-
tecting when text is correctly decrypted. In practice, this challenge is readily
overcome, provided that the attacker knows something about the format of the
decrypted messages. This is called a known plaintext attack. In some cases the
attacker can arrange for a message of its choosing to be encrypted by the system
under attack; this is called a chosen plaintext attack.
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When the US Data Encryption Standard was adopted by the
National Bureau of Standards (NBS) in 1977, Hellman wrote a letter
to NBS arguing that the reduction of the DES keysize from 64 bits
to 56 bits suggested that it was done “to intentionally reduce the
cost of exhaustive key search by a factor of 256761 In a follow-up
article, Diffie and Hellman hypothesized that it should be possible
to create a special-purpose DES-cracking microchip that could try
a million keys each second. With a million such chips, it would be
possible to try all 2°® keys in a day. They estimated the cost of
constructing such a machine at $20 million in 1977 dollars; assuming
a five-year life of the machine and a daily operating cost of $10000,
the average cost of cracking a DES-encrypted message in 1977 would
be just $5000, including the cost of developing the machine.5? With
expected improvements in microelectronics, the Stanford professors
estimated that the cost of their hypothetical DES-cracking machine
would be just $200000 by 1987. In fact, it actually took 20 years.
In 1998 the Electronic Frontier Foundation (EFF) announced that
it had spent $250000 and constructed the fabled DES Cracker. The
EFF machine tried 90 billion 56-bit DES keys every second, and
cracked its first challenge message after only 56 hours of work.%3
The project is widely credited with putting the last nail into the
coffin of weak symmetric encryption schemes.

When cracking symmetric encryption systems with a brute force
attack, each additional bit of key length doubles the difficulty of
the attack, because each additional bit doubles the number of keys
that need to be searched. With 4 bits, there are 16 keys to search;
with 8 bits there are 256, and so on. For a while, the US Govern-
ment’s proposed replacement for DES was the so-called “Clipper”
chip, which supported an 80-bit key, making it 2>* or roughly 16
million times harder to crack — except that each Clipper chip was
gimmicked so that the government didn’t need to perform such an
attack to decrypt a message encrypted with Clipper. That’s because
the Clipper implemented the government’s “Escrowed Encryption
Standard” (FIPS-185), which meant that every Clipper had its own
secret decryption key that could be used to decrypt any message that

S1Blanchette, Burdens of Proof: Cryptographic Culture and Evidence Law in The
Age of Electronic Documents (2012).

62Diffie and Hellman, “Special Feature Exhaustive Cryptanalysis of The NBS Data
Encryption Standard” (1977).

53Electronic Frontier Foundation, Cracking DES (1998).
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the chip encrypted, and the government kept copies of these keys so
that messages could be decrypted for legal process or in the event of
a national security emergency. To prevent companies from creating
software-only Clipper chips that didn’t implement key escrow, the
government declared that the encryption algorithm used by the chip
had to be kept secret in the interest of national security.

As might be expected, Clipper chip was a commercial failure.

When the National Institute of Standards and Technology initi-
ated its efforts to create a replacement algorithm for the Data En-
cryption Standard in the late 1990s, it committed itself to an open,
unclassified project. NIST invited submissions for the new algorithm,
held two academic conferences to discuss the submissions, and ulti-
mately adopted an algorithm invented outside the United States by
a pair of Belgian cryptographers, Vincent Rijmen and Joan Daemen.
The algorithm, originally named Rijndael, is faster than DES and
supports key sizes of 128, 192, and 256 bits. It was adopted by the
US government as the Advanced Encryption Standard in 2001.

For many years after it was adopted, AES-128 was the preferred
use of AES because it ran significantly faster than the more secure
AES-256. That extra security is in fact the reason that AES-256 was
slower. The design of AES is based on a function that is repeated
a certain number of “rounds” for every block of data that the algo-
rithm encrypts. AES-128 has 10 rounds, AES-256 has 14.%¢ Today
those differences are less significant than they were in 2001, as com-
puters are faster and many microprocessors now contain hardware
support to make AES run faster still. In most modern computers,
encrypting with AES-128 is essentially free. For example, the Apple
iPhone contains a chip that automatically encrypts data with AES
when it is written from the CPU out to the phone’s flash memory,
and automatically decrypts the data when it is read back in.

However, absent quantum computing, the differences between
AES-128 and AES-256 are inconsequential for most users. That’s
because 2!?8 is a really big number: in a world without quantum
computers, a message encrypted with a 128-bit key will never be
cracked using a brute-force, key search attack.

64 AES-256 may in fact be more than 2!?® times stronger than AES-128, as AES-256
has 14 internal “rounds” of computation, while AES-128 has only 10. If there is
an algorithmic weakness in the underlying AES algorithm, that weakness should
be easier to exploit if there are fewer rounds.
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5.3.3 Cracking AES-128 with Grover’s Algorithm

Grover’s algorithm makes it possible to use a quantum computer
to guess the right key with fewer steps than it would take to try
all possible keys. To understand why AES-128 is vulnerable to a
quantum computer running Grover’s algorithm but AES-256 is not,
it is necessary to understand more about how Grover’s algorithm
works in practice.

Although Grover’s discovery is frequently described as an algo-
rithm for speeding up “database search,” this gives a misleading
impression as to what the algorithm actually does. The “database”
is not the kind of database that most people are familiar with: it
doesn’t actually store data. Instead, the database is a database of
guesses and whether or not each guess is correct.

In Table 5.2, we have recast the problem of cracking an encrypted
message into a database search problem that could then be searched
using Grover’s algorithm. To perform a brute force search for the
correct key, just start at the top and examine each row until the
database value is a 1. In this example, a little more than half of the
rows need to be examined. If you have a computer that can examine
90 billion rows a second — on par with the speed of the EFF DES
Cracker — then you will find the answer in roughly five days.

A key search attack is possible because 2°% is not such a fantasti-
cally large number after all — that’s the point that Hellman made in
his letter to the NBS when he urged that 56 bits was just too small.
If NBS had gone with a 64-bit key length, then an average search
time of 20 hours would become 1280 days. That’s better, but it’s still
not good enough for government work, which requires that national
security secrets be declassified after 50 years®® unless they contain
names of confidential intelligence sources, contain information on
weapons of mass destruction technology, would “reveal information
that would impair US cryptologic systems or activities,” or meet a
few other specified requirements.®¢ Clearly for US government use,
an encryption algorithm that might be crackable at any point in the
foreseeable future due to the likely advance of computer technology
is not acceptable.

65For an explanation of the origin of this phrase and its corruption, see Lerman,
Good Enough for Government Work: The Public Reputation Crisis in America
(And What We Can Do to Fiz It) (2019).

660bama, “Executive Order 13526: Classified National Security Information”
(2009).
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Table 5.2. To use Grover's algorithm to crack an encryption key, Table 5.1 is recast
as a database search problem, where one row has the value of 1 stored and all
of the other rows have the value of 0. In this example the keys are 56-bit DES
keys. If this table instead used 128-bit AES keys, the last row would be number
340282 366920938 463 463 374 607 431 768 211 455 (2! —1).

Database
Row Row number in binary  Value
0 0000 ... 0000 0
1 0000 ... 0001 0
2 0000 ... 0010 0
3 0000 ... 0011 0
4 0000 ... 0100 0
38326038678974 151 1000 ... 0111 1
72057594 037927935 1111 ... 1111 0

As we have stated above, AES-128 doesn’t have this problem,
because 2! is fantastically larger than 2°¢ — unless the attacker has
a functioning quantum computer that’s large enough to compute
AES-128.

Cracking AES-128 with Grover’s algorithm is surprisingly straight-
forward. First, it is necessary to construct an implementation of AES-
128 on a quantum computer with at least 129 qubits, such that when
the first 128 qubits have the correct decryption key, the 129th qubit
has the value of 1 . Additional qubits are required to implement vari-
ous details of Grover’s algorithm and to properly implement AES-128
(we won’t go into the details here).

AES-128 has 10 rounds, which means there is an inner algorithm
that is repeated in a loop 10 times. Quantum computers don’t have
this kind of loop, so it is necessary to unroll the rounds, meaning
that the circuits for the inner AES function need to be repeated 10
times. Additional circuitry is required to detect when the correct
decryption key has been found.

It’s relatively straightforward to imagine how the AES-128 circuit
might be run on the kinds of superconducting quantum computers
being developed by IBM and Google. On these computers, the qubits
are “artificial atoms” made up of superconducting circuits operating
at close to absolute zero, while the quantum gates and circuits are
implemented by precisely timed and aimed pulses of radio waves. The

219
https://doi.org/10.1017/9781108883719.009 Published online by Cambridge University Press


https://doi.org/10.1017/9781108883719.009

CHAPTER 5. QUANTUM COMPUTING APPLICATIONS

speed of the quantum computation is determined by how quickly the
quantum computer can cycle through a specific combination of radio
waves that it sends into the artificial atoms. When the computation
is finished, the qubits are measured with other radio wave pulses.

To run Grover’s algorithm, each of the unknown bits (here, the

128-bit AES key) starts off as a superposition of 0 and 1. The algo-
rithm is then cycled V2N times, where N is the number of unknown
bits. At the end of these cycles, the unknown bits are measured, and
they are overwhelmingly likely to have the answer to the problem.
Superposition must be maintained for the entire time: if it is lost,
the computation is ruined.
It turns out that V2V = 2¥*2. So when cracking AES-128, only
iterations are required, rather than 2'?%. Because 2% is not a
fantastically large number, the mere existence of Grover’s algorithm
and the possible future existence of large-enough quantum computers
was enough for cryptography experts to recommend discontinuing
the use of AES-128 when these results became generally understood.
However, AES-256 is still fine, because even with Grover’s algorithm
reducing the security parameter from 22% to 2!?® that’s okay be-
cause 228 is a fantastically large number. All of this was clear from
the theory, without the need to create an actual working quantum
implementation of AES to actually try out Grover’s algorithm.

In 2016, quantum computing theoreticians in Germany and the
US carried out the hard work of actually building “working” quan-
tum circuits of AES-128, AES-192, and AES-256 — at least, in theory.
They found that implementing cracking a single AES-128 encryption
key with Grover’s algorithm requires at most 2953 qubits and on or-
der of 2% gates. For AES-256 the estimate was 6681 qubits and 23!
gates.

“One of our main findings is that the number of logical qubits re-
quired to implement a Grover attack on AES is relatively low, namely
between around 3000 and 7000 logical qubits. However, due to the
large circuit depth of unrolling the entire Grover iteration, it seems
challenging to implement this algorithm on an actual physical quan-
tum computer, even if the gates are not error corrected,” the authors
write. The authors conclude “It seems prudent to move away from
128-bit keys when expecting the availability of at least a moderate
size quantum computer.”

The word “prudent” requires additional explanation, as even a
work factor of 2% is likely to be beyond the limits of any human

264
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technology for the foreseeable future. For example, a quantum com-
puter that could sequence quantum gates every femtosecond (that
is, 1015 times per second) would still require 2451 years to crack a
single AES-128 key using the implementation described in the 2016
publication. And a femtosecond clock would be a big deal — it would
be 250 times faster than the clock speed of today’s 4 GHz micropro-
cessors. Chemical reactions take place at the femtosecond scale; the
time is so short that light only travels 300 nanometers.

Of course, given a cluster of 1024 quantum computers, each run-
ning with a femtosecond clock, each one attempting to crack AES-
128 with a different 10-bit prefix, an AES-128 message could be
cracked in less than a year. So if mass-produced femtosecond quan-
tum computers with a thousand qubits that can compute a single
calculation error-free for a year is a risk that you consider relevant,
then you should not be using AES-128 to protect your data!

But remember — the 2016 article describes an upper bound: it
might be possible to create AES-cracking quantum computing cir-
cuits that require fewer gates. In fact, two 2019 efforts” lowered the
upper bound on the work factor to crack AES-128 to 28! and 27
respectively by developing better quantum gate implementations for
the AES oracle (the quantum code that determines when the correct
key has been guessed). It has long been the case that hand-tuning
algorithms to squeeze out the last few cycles of performance has been
something of a parlor game among computer scientists.®® So instead
of looking for upper bounds, it might be more productive to look for
theoretical lower bounds.

The absolute lowest bound for a circuit that could crack AES
using Grover’s algorithm would be a circuit that executed a single
gate over a large number of qubits: such a perfect implementation
would require a minimum of 2% cycles to crack AES-128, and 2!
to crack AES-256. We (the authors) do not think that such a circuit
is possible. However, this “perfect” quantum AES implementation
would be able to crack AES-128 in 5.12 hours using our fictional

67 Jaques et al., “Implementing Grover Oracles for Quantum Key Search on AES
and LowMC” (2019); Langenberg, Pham, and Steinwandt, “Reducing The Cost
of Implementing AES As a Quantum Circuit” (2019).

88For example, in 2010, a group of researchers at the Naval Postgraduate School
that included one of us published a high-speed implementation of AES for the
Sony PlayStation. See Dinolt et al., Parallelizing SHA-256, SHA-1 MD5 and AES
on The CellBroadbandEngine (2010).
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quantum computer with the femtosecond clock; even this perfect im-
plementation would require 10782 897 billion years to crack a single
AES-256 encryption.

To push the absurd hypothetical even more, there’s no funda-
mental reason why we should limit our fictional quantum computer
to a femtosecond clock. What if we had a smaller, more compact
quantum computer that could fit in a nanosphere — perhaps two
thousand packed atoms in a blob just 10nm across. The maximum
cycle time of this computer would be roughly 31—0 of a femtosecond,
the time it takes light to move from one side of the sphere to the
other. With this computer and the (fictional) perfect Grover AES
circuit, you could crack AES-128 in just 10 minutes, but it would
still take 360 billion years to crack AES-256. Here parallelism finally
begins to help: with a billion of these computers, you could crack
an AES-256 encryption in at most 3.6 years. Of course, if you have
the kind of technology that can make and control a billion of these
computers, there are probably far more productive things you would
be able to do than to go after AES-256 keys from the 2020s.

So to summarize, although it’s conceivable that AES-128 might
one day fall to a futuristic quantum computer, there is no conceivable
technology that could crack an AES-256 encryption using exhaustive
key search. What’s more, AES-128 is sufficiently close to the bound-
ary of what a quantum computer might be able to crack over the
next 20 or 30 years that it is indeed “prudent” to stop using AES-
128 in favor of AES-256. In part, this is because the cost increase of
using AES-256 instead of AES-128 is quite minor: on a 2018 Apple
“Mac Mini” computer, encrypting a 7 GiB file took 7.1s with AES-
128 running in “cipher block chaining” mode; with AES-256 it took
9.1s. For the vast majority of applications this 28 percent increase
in encryption time is simply not significant.

But remember — all of the analysis above assumes that AES-
256 is a perfect symmetric encryption algorithm. There might be
underlying vulnerabilities that make it possible to crack AES-256
encrypted messages with significantly less work than a full brute-
force attack. To date, no such attacks have been published that offer
speedup greater than Grover’s algorithm,% but there’s always to-
morrow. Certainly, if computer scientists discover that P=NP, then

89There is one classical attack against AES-256 that lowers the work factor from
226 o 2244 Grover’s quantum algorithm lowers the work factor to 2'2%.
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attacking AES-256 could become the stuff of high school science fairs
soon thereafter.

5.3.4 Grover’s Algorithm Today

The impact of the square-root speedup offered by Grover’s algorithm
has been systematically misrepresented in the popular press over the
past two decades. Recall that although Grover’s algorithm speeds up
search, it is not the kind of search that we do with Google looking
for a web page or using an accounting system when we are look-
ing for a specific transaction. Those kinds of searches involve the
computer scanning through a database and looking for a matching
record, as we discuss in Section 3.5.1 (p. 102). Although Grover’s
algorithm could be applied to such a search, it would require storing
the entire database in some kind of quantum storage — a system that
has only been well-specified in works of science fiction — playing the
entire database through the quantum circuit, a process that would
eliminate any speedup provided by Grover’s algorithm in the first
place.

To date, scientists have accomplished only limited demonstra-
tions of Grover’s algorithm. Beit, a quantum software company with
a lab in Krakéw, Poland, released two unpublished papers in 2020 re-
porting state-of-the-science accomplishments in applications of Gro-
ver’s search. A September 2020 paper from the group demonstrated a
Grover implementation in IBM hardware, where the team performed
an unstructured search among a list with just 16 elements. The goal
of such a search is to identify one element in the list successfully, but
the system was able to do so on average only 18-24 percent of the
time.”™ A subsequent study employed Honeywell’s 6-qubit Model HO
ion trap, which is commercially available. In June 2020, Honeywell
hailed the device as the world’s most powerful quantum computer,
claiming that it has a quantum volume of 64.” The Beit team, using
Honeywell’s API, tested Grover’s search in 4, 5, and 6-qubit imple-
mentations. Respectively, the team could select the right result 66

"OGwinner et al., “Benchmarking 16-Element Quantum Search Algorithms on IBM
Quantum Processors” (2020).

™ Quantum volume (QV) is a metric that IBM created that measures the square
of the number of quantum circuits that a quantum computer can implement.
According to IBM, QV combines “many aspects of device performance,” includ-
ing “gate errors, measurement errors, the quality of the circuit compiler, and
spectator errors” (Jurcevic et al., “Demonstration of Quantum Volume 64 on a
Superconducting Quantum Computing System” (2020)).
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percent of the time with a 4-qubit circuit (selecting from a list with
16 elements), 25 percent of the time with a 5-qubit circuit (using
a list with 32 elements), and just 6 percent of the time using all 6
qubits in a circuit (using a list with 64 elements).”

Some articles in the popular press incorrectly describe quantum
computers as machines that use superposition to simultaneously con-
sider all possible answers and select the one that is correct. Such ma-
chines do exist in the computer science literature, but they are called
“nondeterministic Turing machines” (see Section 3.5.3, p. 107). And
while such machines do exist in theory, they do not exist in practice:
the conservation of mass and energy makes them impossible to build
in this universe.”

Quantum computers use superposition to simultaneously con-
sider a multitude of solutions, which does allow them to compute
the answers to some kinds of problems faster than computers that
are not based on superposition and entanglement. But they don’t
do this by coming up with the single, best answer to those problems.
Instead, modern quantum computers are like a carefully designed
collection of dual-split experiments (see Section B.1.3, p. 490): they
have a distribution of possible answers — like an interference pattern
on the screen — with the more probable answers coming up more of-
ten and the less probable answers coming up less often. The trick to
programming the machines is to set up the computer so that the an-
swers that are correct are significantly more probable and that incor-
rect answers are significantly less probable. This is done, ultimately,
with constructive and destructive interference at the quantum level,
in the machine’s Schrédinger wave equation.

Another source of confusion might be that quantum computers
can solve particular kinds of problems in polynomial time that are
thought to be harder than the complexity class known as P (polyno-
mial). The key example here is factoring. Because NP (nondetermin-

"2Hlembotskyi et al., “Efficient Unstructured Search Implementation on Current
Ion-Trap Quantum Processors” (2020).

73Such machines are not even possible if you subscribe to the many-worlds inter-
pretation of quantum physics: it may be that a computer facing an NP-hard
problem with a quantum-mechanical random number generator splits the uni-
verse 2V times and that in one of those universes a computer immediately finds
the correct answer. The problem is that in all of the other 2V — 1 universes the
computers all discover that their answer is incorrect, and there is no inter-universe
network to allow the computer that guessed correctly to inform its clones of the
correct choice.
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The Limits of Quantum Computation

“The manipulation and transmission of information is today
carried out by physical machines (computers, routers, scanners,
etc.), in which the embodiment and transformations of this infor-
mation can be described using the language of classical mechan-
ics,” wrote David P. DiVincenzo, then a theoretical physicist
at the IBM T.J. Watson Research Center, in 2000.* “But the
final physical theory of the world is not Newtonian mechanics,
and there is no reason to suppose that machines following the
laws of quantum mechanics should have the same computational
power as classical machines; indeed, since Newtonian mechanics
emerges as a special limit of quantum mechanics, quantum ma-
chines can only have greater computational power than classical
ones.”

“So, how much is gained by computing with quantum
physics over computing with classical physics? We do not seem
to be near to a final answer to this question, which is natural
since even the ultimate computing power of classical machines
remains unknown.”

For example, DiVincenzo wrote, we know that quantum
computing does not speed up some problems at all, while
some are sped up “moderately” (in the example of Grover’s al-
gorithm), and others are “apparently sped up exponentially”
(Shor’s algorithm).

DiVincenzo notes that, on purely theoretical grounds, quan-
tum computing also could result in a “quadratic reduction” in
the amount of data required to be transmitted across a link be-
tween two parties to complete certain mathematical protocols.
But such a reduction requires the data is transmitted as quan-
tum states — over a quantum network — rather than as classical
states. “The list of these tasks that have been considered in the
light of quantum capabilities, and for which some advantage has
been found in using quantum tools, is fairly long and diverse: it
includes secret key distribution, multiparty function evaluation
as in appointment scheduling, secret sharing, and game playing.”

?DiVincenzo, “The Physical Implementation of Quantum Computation”
(2000).
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istic polynomial) is the class that most people think is harder than
P, and NP is the class solved by nondeterministic Turing machines,
some people jump to the conclusion that quantum computers can
solve NP-hard problems.

There are several problems with this line of thinking. First, just
because mathematicians haven’t found an algorithm that can factor
in polynomial time doesn’t mean that such an algorithm doesn’t
exist: it wasn’t until 2002 that mathematicians had an algorithm for
primality testing that ran in polynomial time. So factoring might be
in P, and we just haven’t found the algorithm yet. Or, more likely,
factoring might be harder than P and still not in NP. Or, it might be
that P = NP, which would mean factoring in both P and NP, because
they would be the same. As we discussed in Section 3.5.6 (p. 116),
computer scientists use the complexity class called BOP to describe
the class of decision problems solvable by a quantum computer in
polynomial time. Just as we don’t know if P is equal to NP, we don’t
know if BOP is the same as or different from P or NP. This can be
written as: , )

P = BQP = NP (7)

For further discussion of this topic, we recommend Aaronson’s
article “The Limits of Quantum.”™

Similar to the situation with the NP-hard and NP-complete prob-
lems, there is no proof that quantum computers would definitely be
faster at solving these problems than classical computers. Such a
mathematical proof would put theoreticians well on their way to
solving the whole P # NP conjecture, so it is either right around
the corner or it is a long way off. It is simply the case that scien-
tists have discovered efficient algorithms for solving these problems
on quantum computers, and no such corresponding algorithms have
been discovered for classical computers.

5.4 Conclusion

Whereas the electromechanical and early electronic computers of the
1940s were transformative, allowing the United Kingdom to crack
the German Enigma code and the United States to create the hy-
drogen bomb, the main use of quantum computers today in 2021 is
by researchers who are developing better quantum computers, better
quantum algorithms, and students who are learning about quantum

7 Aaronson, “The Limits of Quantum” (2008).
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The Quantum Algorithm Zoo

Stephen Jordan, a physicist at Microsoft Research who works
on quantum computing, maintains a database of quantum al-
gorithms — the Quantum Algorithm Zoo. Jordan categorizes to-
day’s quantum algorithms into four types:®

1. Algebraic and number theoretic algorithms, which
use properties of quantum computers to solve number the-
ory problems. An example is Shor’s algorithm for factor-
ing.

2. Oracular algorithms, which depend upon an oracle
that can provide an answer to a question. An example
is Grover’s algorithm for speeding up search.

3. Approximation and simulation algorithms, such as
would be used to simulate the process of nitrogen fixation
as discussed in Section 5.1.1, “Nitrogen Fixation, without
Simulation” (p. 181).

4. Optimization, numerics, and machine learning al-
gorithms, which could be used for improving systems
based on so-called neural networks, including speech, vi-
sion, and machine translation.

“You can find the list of algorithms at Jordan’s website, http://quantuma
Igorithmzoo.org/, which is based on his May 2008 MIT PhD thesis (S. P.
Jordan, Quantum Computation beyond The Circuit Model (2008)).

computers. The main output of today’s quantum computers is not
military intelligence and might, but papers published in prestigious
journals.

Nevertheless, it would be a mistake to dismiss this research as
quantum navel gazing. Unlike the limits that have impacted Silicon
Valley’s efforts to make increasingly faster electronic computers, we
may be a far way off from hitting any fundamental limit or law of
nature that will prevent researchers from making larger and faster
quantum computers — provided that governments and industry con-
tinue to invest the necessary capital.”™

75If it turns out that we can never make machines that work at large scale, then it
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This may be why some governments continue to pour money into
quantum computing. Although promoters speak about the benefits
in terms of simulation and optimization, they are surely also driven
by that darker goal of being able to crack today’s encryption schemes
used to secure the vast majority of information transmitted over the
Internet and through the air. And because information transmitted
in secret today might be useful if decrypted many decades from today,
the mere possibility that powerful, reliable quantum computers might
exist several decades in the future is a powerful influencer today.

Today’s quantum computers are not nearly powerful enough to
break the world’s cryptography algorithms (or do anything else), but
each year they improve, as quantum computing engineers become
more adept at precisely controlling fundamental quantum processes.
For this reason alone, our society should seek to rapidly transition
from today’s quantum-vulnerable encryption algorithms like RSA
and AES-128 to the next generation of post-quantum encryption
algorithms. If our understanding of quantum mechanics is correct, it
is only a matter of time until the machines are sufficiently powerful.

We are still at the beginning of quantum computing, and very
basic questions of technology and architecture still have to be worked
out. The next chapter canvasses the research groups that are wrestling
with different physical substrates for representing quantum informa-
tion, different ways of organizing those physics packages into com-
puting platforms, and different languages that programmers can use
to express quantum algorithms. Much research in quantum comput-
ing is so preliminary and theoretical that an idea can have a major
impact years before it’s been reduced to practice and demonstrated.
What’s concerning is that the field hasn’t had a mind-blowing dis-
covery since the breakthroughs of Shor and Grover in the mid-1990s.

is likely that there is something fundamentally wrong about our understanding of
quantum physics. Many advocates say that this alone is worth the study of quan-
tum computers. And while some funding agencies might disagree, the amount
of money spent on quantum computing to date appears to be significantly less
than the $10-$20 billion that the US high energy physics community proposed
spending on the Superconducting Super Collider in the 1990s, or even the $4.75
billion that Europe spent on the Large Hadron Collider between 1994 and 2014.
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