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LINEAR RELATIONS ON
HEREDITARILY INDECOMPOSABLE NORMED SPACES

TERESA ALVAREZ

We introduce the notion of hereditarily indecomposable normed space and we prove
that this class of normed spaces may be characterised by means of F+ and strictly
singular linear relations. We also show that if X is a complex hereditarily indecom-
posable normed space then every partially continuous linear relation in X with dense
domain can be written as XI + S, where A 6 C and 5 is a strictly singular linear
relation.

1. INTRODUCTION

It has been an open question for some time whether every infinite dimensional Ba-
nach space E is decomposable; that is, whether we can write E = M © JV, with M and
N infinite dimensional closed subspaces. In [9] Gowers and Maurey constructed the first
example of a hereditarily indecomposable (HI for short) Banach space, that is, a space
with no decomposable closed subspaces.

A result, essentially due to Weiss ([15], contains the hard implications) characterises
the HI Banach spaces as those spaces E such that for every Banach space F any bounded
operator from E into F is upper semiPredholm or strictly singular. Note that, at the
time Weiss proved this result, the existence of hereditarily indecomposable Banach spaces
was an open problem. Furthermore, Gowers an Maurey [9] showed that for a complex
HI Banach space E the bounded operators in E, B[E], have a very simple structure:
B[E] = CJ + SS[E] where SS[E] is the class of all bounded strictly singular operators
in E.

The aim of this paper is to find conditions under which results of the type men-
tionated above will still be true in the much more general setting of multivalued linear
operators between normed spaces.

In Section 2 we define the notion of HI normed space which generalises the classical
definition of Gowers and Maurey [9]. We also introduce and present some properties of
essential spectrums of linear relations. These properties together with some results of
perturbation for F + and F_ linear relations will be applied in Section 3 to obtain the
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main results (Theorems 17 and 18 below) which generalise similar results of Weiss [15]
and Gowers and Maurey [9] for bounded operators between Banach spaces.
NOTATIONS. We adhered to the notation and terminology of the book [4]: X, Y are
infinite dimensional normed spaces over K = R or C, X' the dual space of X. I f M c X
and N C X', then

M x := {af € X': x'(x) = 0 for all x e M}

and
NT := {x € X : x'(x) = 0 for all x' € N}.

Let I(X), S(X), C(X) and P(X) denote the infinite dimensional, infinite dimen-
sional closed, finite codimensional and finite codimensional closed subspaces of X, re-
spectively.

A linear relation or multivalued linear operator T : X —> Y is a mapping from a
subspace D(T) C X, called the domain of T, into the collection of nonempty subsets of
Y such that T(axi + Px2) = aTx\ + f3Tx2 for all nonzero a, /? scalars and xi, x2 € D(T).
The class of such linear relations T is denoted by LR(X, Y). If T maps the points of its
domain to singletons, then T is said to be a single valued or simply an operator.

The graph G{T) of T € LR(X, Y) is defined by

G(T) :={(x,y)eX*Y:xe D(T), y € Tx)

which is a subspace of X x Y. Let M be a subspace of D{T). Then the restriction T \M

is defined in terms of its graph by

G(T \u) := {(m, y)eMxY:ye Tm}.

For any subspace M of X such that M D D{T) ^ 0, we write T\M = T \MnD{T)- We note
that T\M € LR(X,Y) but 7VW € LR(M,Y) where JM denotes the natural injection
map of M into X. The inverse of T is the linear relation T~l defined by

G(T-') = {{y,x) €YxX:(x,y)e G(T)}.

If T~l is single valued, then T is called injective, that is, T is injective if and only if its
null space N(T) := T~1(0) = {0} and T is said to be surjective if its range

R{T) := T(D(T)) = K

The conjugate T of T is defined by G(T') := G{-T~1)*-, where

This means that (y1, x1) € G(V) if and only if y'(y) - ^(x) = 0 for all (z, y) € G{T).
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For T G LR{X,Y), f denotes the linear relation defined by G(f) := G{T)

C X x Y where X denotes the completion of X. We define a(T) := dim TV(T);
0{T) ~ dimY/R{T); Jf{T) :=_dimY/R(T); k(T) := a(T) - 0{T) (if either a(T) or
P(T) are finite) and I(T) := a(T) - a(T') (if either a(f) or a(T) are finite).

For a given closed subspace Z of X let Q* or simply Qz denote the natural quotient
map from X onto X/Z. We shall denote Qfjoj1 by Qr- Clearly Q T T is single valued. For
x 6 D(T), \\Tx\\ := \\QTTx\\ and the norm of T is defined by ||T|| := \\QTT\\.

A linear relation T G LR(X, Y) is said to be

1. closed if its graph is closed,
2. continuous if ||T|| < oo,
3. open if T"1 is continuous (equivalently j(T) > 0 where j(T) is the min-

imum modulus of T defined by 7(T) := supJA ^ 0 : Adis(x, N{T))
<| |Ti | | for all x€D(T)}) ,

4. partially continuous if there exists M € C(X) such that T \M is continuous,
5. strictly singular if there is no M 6 I(D(T)) for which T \M is injective and

open,
6. F+ if there exists M e C(X) such that T \M is injective and open,
7. upper semiFredholm if i2(T) is closed and dim N(T) < oo,

8. F_ if V is F+ ) lower semiFredholm if R{T) is finite codimensional closed,
9. lower semiFredholm if R(T) is finite codiemnsional closed.

The classes of partially continuous, strictly singular, F+ upper semiFredholm, F_ and
lower semiFredholm linear relations will be denoted by PB{X,Y), SS{X,Y), F+(X,Y),
<j>+{X,Y), F.{X,Y) and <j>-(X,Y), respectively.

Square brackets will be used to indicate that only everywhere defined linear relations
are considered; for example BR[X, Y] denotes the class of everywhere defined continuous
(bounded, for short) linear relations in LR(X, Y) and we also write

B[X, Y) := {T G BR[X, Y] : T single valued} and

PBD{X, Y) := {T e PB(X, Y) : P(T) = X}.

An underlying motivation for the introduction of multivalued linear operators into
Functional Analysis by J. von Neumann [13] was to aid the investigation of differential
equations governed by non densely defined operators. The conjugate of such operators are
linear relations. Linear relations are more convenient because one can define the inverse,
the closure and the completion of a linear relation. Interesting works on multivalued
linear operators include the treatise of partial differential relations by Gromov [10], the
application of multivalued methods to solution of differential equations by Favini and
Yagi [6], the development of fixed point theory for linear relations to the existence of mild
solutions of quasi-linear differential inclusions of evolution and also to many problems of
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fuzzy theory (see, for example, [1, 8, 12, 14]); and several papers on linear relations
type semiFredholm and other classes related to them [2, 3, 4], among others.

2. BASIC DEFINITIONS AND ESSENTIAL SPECTRUMS

The following lemmata are elementary but they help to read Definition 3.

LEMMA 1. Let M be a closed subspace of X. We have:

(i) (X/M)' is isometrically isomorphic to Mx.

(ii) Let N be a subspace of X such that M C N. Then N is closed if and only
ifN/M is closed in X/M.

PROOF:

(i) See [7, 1.6.4].

(ii) The proof proceeds by direct computation. D

LEMMA 2 . A Banach space E is hereditarily indecomposable if and only if there
are no infinite dimensional closed subspaces M and N of E such that QMJN is injective
and open.

PROOF: We first note that by the Open Mapping Theorem we have the following
property:
(1) If T : X -*Y is a bounded single valued where X and Y are Banach spaces, then
T is open if and only if R(T) is closed.

Let M,N € S(E). Then the null space of QMJN \sMC\N and its range is M+N/M
and hence the result follows from Lemma 1 and property (1). D

This Lemma suggests the following notion.

DEFINITION 3: A normed space X is said to be hereditarily indecomposable (HI
for short) if there are no M, N € S(X) such that QMJN is injective and open.

PROPOSITION 4 . Let K € LR{X) be a precompact single valued and 0
< e < 1/2 such that \\K\\ < e. Then I + K is injective, open with dense range and
(I + K)-1 = / + Ki with Kx precompact and \\Ki\\ < 2e.

PROOF: Since ||A"|| < 7(7), we have that / + K is injective, open with dense range
by [4, III.7.7]. Moreover, from

it follows that

(I + K)-1 = I-{I + K)-1K:=I + K1 with Kr :=- ( / + K)~lK

precompact and
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Hence

and consequently \\K\\\ < 2e, as desired. D

DEFINITION 5: ([4, IV.1.1]) For a given linear relation T e LR(X,Y) we define
the quantities T(T) and A(T) as follows: If dimD(T) < oo, then T(T) := A(T) := 0 and
if dim D(T) = oo, then

T(T) := inf{||T|M|| : M € I(D{T))} and

A(T) := sup{r(r|M) : M 6

PROPOSITION 6. [4, v.2.4 and v.2.6] Let T e LR(X, Y). Then
(i) IfD(T) is infinite dimensioned, T € F+ if and only if T(T) > 0.

(ii) T e SS(X, Y) if and only if A(T) = 0.

The notions of essential spectrums given in Edmunds and Evans [5] for single valued
can be extended to linear relations as follows:

DEFINITION 7: Let T € LR{X) where X is a normed space over the complex field
C. We define the essential resolvents, pe+(T) and pe (T) of T by

Pe+(T):={\eC:\-T€F+},

Pe(T) := {X € C : A - T € F+ D F. and *(A - T) = 0}.

The essential spectrums <re+(T)and cre(T) are the respective complements of the
essential resolvents:

ae+(T) := C\pe+(T) and <re(T) := C\pe(T).

We recall that the resolvent set of T is defined by Cross [4, VI. 1.1] as

p(T) := {X € C : A — T is injective, open and has dense range}

and the spectrum of T is the set <r(T) := C\p(T).

Since every open and injective (respectively, open with dense range) multivalued
linear operator is F+ [4, V.5.1] (respectively, F_ [4, V.5.2]) we have the inclusions <re+
(T) C ffe(T) C o{T) for T e LR(X) where X is a complex normed space.

LEMMA 8 . Let T e LR{X, Y) be closed and let S € LR(X, Y) be continuous
such that D{T) C D(S) and 5(0) C T(0). Then T + S is closed.

PROOF: Assume first that T and 5 are single valued. Let (zn) be a sequence in
D{T + S) = D(T) n D{S) = D(T) such that xn ->• x and (T + S)xn -> y for some
x € X and y € Y. Then x 6 D(T)" C D(S) and 5 i n -> Sz since 5 is continuous. Thus

https://doi.org/10.1017/S0004972700035723 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035723


294 T. Alvarez [6]

Txn -* Sx — y and as T is closed, we have that i 6 D(T) and Tx = Sx — y, that is,
T + S is closed. For the general case, we observe that QTT is a closed operator and T(0)
is closed ([4, II.5.3]), (T + 5)(0) = T(0) because 5(0) c T(0) and QTS = QT{0)/s<o)QsS
by [4, IV.5.2]. Hence, from what has been proved for the single valued case, QT+S{T+S)

= QTT+QTS is closed and since (T+5)(0) is closed, applying again [4, II.5.3] we obtain
that T + S is closed, as desired. D

LEMMA 9 . LetT,Se LR(X, Y). Then

(i) If~D(TJ C D(S) is S'(0) C T'(0).

(ii) IfS is continuous and 5(0) C T(0), then D(V) C D(S').

PROOF:

(i) Since S'(0) = £>(5)x ([4, III.1.4]) and D(T) c D(S) it follows trivially the
assertion (i).

(ii) Let 5 be continuous. Then ||5'|| = ||5||_([4, III.1.13]) and D{S')
= S(0)L ([4, III.1.4]). If moreover 5(0) C T(0) we obtain that ~D(T)
C (£>(T'))TX = T(0)x ([4, III.1.4]) C 7X0)^ ([4, II.5.19])c( )
= D(S'). D

PROPOSITION 10. Let T € F+(X,Y) (respectively, T e F.(X,Y) and let S
€ LR{X,Y) such that D(f) C D{S), 5(0) C f(0) and ||5|| < j(f). Then T + S
€ F+(X, Y) (respectively, T + SeF-(X, Y)) and k(T + 5) = k{T).

PROOF: By [4, V.7.6 and V.1.9], f G </>+(X,Y) (repectively, f e <j>^{X,Y)), and
hence, by the Open Mapping Theorem [4, III.4.2], f(T) > 0. Furthermore, we note that
||5|| < | |5| | . Thus we may assume that X and Y are Banach spaces, that T is closed, and
show the stability holds for k(T). Since 5 is continuous, D(T) C D(S) and 5(0) C T(0),
T + S is closed by Lemma 8.

CASE I. T e F+. The proof of this case is along the lines of the proof of the homologous
result proved in [4, V.15.6] for the case when 5 is single valued, with the appropriate
modifications.

Since T+ G <£+, by [4, V.3.2] is T + 5 G F+, and since T + S is closed, T+S e <j>+.
Then there is M G P(D(T)) such that T\M is injective and open. Since M is closed,
T \M is closed, and it follows from the Open Mapping Theorem that R(T \M) is closed,
that is, T \M G <j>+. We first deduce the conclusion for the case | |5| | < j(T \M)- Applying
[4, V.3.2], (T + S) \M 6 F+ and by Lemma 8, T + S is closed and hence (T + S) \M G <j>+.
Thus by [4, III.7.6],

fi{(T + S) \M) = 0((T + S)\M) = P(T \M) = P(T \M)

and it now follows from the finite dimensional extension lemma [4, V.15.5] that

k(T + S) = k((T + S) \M) + <*(T) = k(T \M) + a(T) = k(T)
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provided | | 5 | | < 7 ( T | M ) .
If now | |5 | | < 7(T), let / denote the closed interval [0,1] with the usual topology and

let Z := Z U {-oo, +00} with the discrete topology, and define

6 : X e I -> 6(X) := k(T + XS) <= Z.

It follows from the above that

0(X) = k(T + XOS + (X- XO)S) = k(T + XOS) = 6(XO)

provided Ao is sufficiently close to A. Hence, 6 is continuous and 6(1) is a connected set
and therefore consists of just one point. Hence

k(T) = 6(0) = 6(1) = k(T + S),

as required.

CASE II. T € F_. Then V e </>+ and R(T) is closed. Since 5 is continuous, D(T)
C D(S), we have that (T + S)' = T + S' ([4, III.1.5]). Furthermore, | |S' | | < | |5 | |
< 7 (T) = 7 (T ' ) ([4, III.4.6]). Thus, by Case I, R(T + S') is closed and

k(T) = -k(T) = -k(T + S') = k((T + S)') - k(T + S),

as desired. D

PROPOSITION 1 1 . Let X be a complex normed space and let T € LR(X).
Then a(T), ae+(T) and ae(T) are closed.

P R O O F : p(T) open. See [4, VI.1.3].
pe+(T) open. Indeed, clearly pe+(T) = C if dimD(T) < 00. Hence assume that

d imD(r) = 00 and let A € pe+(T). Then A - T € F+ equivalent^ T(A - T) > 0
(Proposition 6). If 6 6 C such that \5 - X\ < T(X - T), then

and so it follows from [4, V.3.2] that 6 — T £ F+, that is, pe+(T) is open and hence
CTe+(T) is closed, as desired.

pe(T) open. Let A € pe(T), that is, A - T e F+ n F_ (so that, 7(A - f ) > 0) and
ifc(A - T) = 0. Then, if 6 € C such that \6 - A| < 7(A - f ) we obtain from Proposition
10 that 6 e pe(T). Therefore pe(T) is open and so ae(T) is closed, as required. D

An example of a densely defined single valued T with empty spectrum has been
constructed by Cross [4, V.2.7] and since <re+(T) C cre(T) C a(T) we conclude that this
operator of Cross has empty essential spectrums. This shortcoming falls away in the
presence of partially continuous, as the following result shows.
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PROPOSITION 12 . Let X be a complex noimed space, and let T be partially
continuous and densely defined linear relation in LR(X). Then CT(T), ae{T) and <re+(T)
are non empty.

PROOF: O{T) ^ 0. Indeed, T partially continuous =*• T continuous [4, V.9.6]
and since T'(0) = D(T)X [4, III. 1.4] we deduce that T" is continuous and single valued
equivalent^ T is bounded [4, VIII.1.5] and thus by virtue of [4, VI3.3], <r(f) # 0. But
as o{f) = <J(T) [4, VI.1.1], o(T) jt 0, as desired.

<7e(T) ^ 0. We first prove the following properties:
(2) T G Lfl(X) =*• o-e(T) = ae(T).

This assertion follows from the definitions upon noting that T G F_ <=> T" G F+,
T € F + *> T' € F. ([4, V.I.I and V.7.5]) and that if R{T) is closed then k(T) = -k(T)
whenever either quantity exists ([4, V.15.3]).
(3) T partially continuous and densely defined =» T" bounded and single valued.

Arguing as in the previous case, we have that T" is single valued and continuous and
hence T" is a bounded single valued.

Now, it is well known that given a complex Banach space E and a bounded operator
T € B[E], o-e(T) coincides with the spectrum of the image of T in the Calkin algebra
B[E]/K[E] ([11, 53]), where K[E] denotes the class of all bounded compact operators
on E. Combining this observation with the properties cr(T) ^ 0, (2) and (3) we deduce
that ae(T) jt 0.

<7e+(T) ^ 0. Since o~(T) is closed and non empty to prove that ae+(T) is non empty
it is sufficient to verify that the boundary of o-e(T), ae(T)b, is contained in ae+(T). Let

A e ae(T)b = o~(T)nC\ae(T) = ae(T) n C\ae(T)°.

Assume A $ o-e+(T). Then A - T € F+ equivalently A - f G 0+ and hence 7(A - f ) > 0.
Now, if \S - A| < 7(A - f) it follows from Proposition 10 that 5 - T € F+ and k(6 - T)
= ib(A - T). But k{\ - T) ^ 0 since if )fc(A - T) = 0 then 0(\ - f) = a(A - f) < oo
which implies that A - T e F + n F . ([4, VII.1.2]) and so A e pe(T) in contradiction with
A € cre(T). In consequence k(S — T) ^ 0, and hence A e o-e(T)° which contradicts that
A G ae(T)b. D

3. LINEAR RELATIONS ON HI NORMED SPACES

We recall the following result, essentially due to Weiss [15] which characterises the
HI Banach spaces in terms of bounded upper semiFredholm operators.

PROPOSITION 1 3 . A Banach space E is HI if and only if for every Banach
space F, B[E, F] = <j>+[E, F] U SS[E, F}.

We extend (Theorem 17 below) this result to partially continuous linear relations in
normed spaces. For this end, we first prove some auxiliary results.
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PROPOSITION 14. If X is a HI normed space, then for every normed space Y
and every bounded single valued T € B[X,Y], is A(T) = T(T).

PROOF: Clearly T(T) ^ A(T) < oo (as T is continuous). Assume that X is HI
and let M,N e S(X), so that QMJN is not injective and open. Then, by this property
and the Hahn-Banach theorem, the sequences (xn) in N, (yn) in M and (a/n) in X', can
be constructed as follows:

Let 0 < e < 1/2 and select xx 6 N, j/i 6 M and x\ € X' such that 1 = ||aĉ ||
= ||xi|| = «i(*i) and ||j/i - n | | < e/2. Since

N{x\) € P(X),M := N n ^ ( i ; ) e P(AT)

and thus there exist i 2 G JVj, y2 € M and Xj 6 X; such that 1 = ||i'2|| = | | i2 | | = x2(x2)
and ||y2 — i2|| < e/22. Continuing in this way, we obtain

1 = IKII = IWI = <(*„), lift. - xn|| < e /2"

with
n- l

2/n € M, i B € ^ n - i := N n ( f | AT(«J)), n € N.
i

Clearly the set {in : n € N} is linearly independent. Let Pn denote the projection
defined on N with range Nn and null space sp{x\,x2,..., xn}. Then Pn is bounded and
we can choose /„ € X' such that /„ is an extension of x{, o Pn with the same norm. Hence

fn(xm)=Snm, | | / n | | | | j / n -x n | |< e /2 n

and thus we can consider the nuclear operator

oo

K : x e X -» K{x) := ^ fn(x)(yn - xn) €
n=l

It is clear that if is a bounded precompact operator with \\K\\ < e < 1/2 and
(/ + K)xn = yn, n € N. By proposition 4, I + K is injective, open with dense range and
||(/ + if)""11| < 1 + 2e. Thus I + K induces an injective open map ip from A := sp{xn}
onto B := sp{yn} such that (/ + K) JA = JBIP- Hence

where £rI:=e(3 + 2e)||T||.
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Thus T(T\M) ^ II^UH + £1 and since we can take E\ > 0 arbitrarily small, we
obtain that A(T) ^ T(T). D

Next we present two methods of reducing an arbitrary linear relation to the contin-
uous case.

DEFINITION 15: ([4, IV.3.1]) Given T G LR(X, Y), let XT denote the vector space
D(T) normed by ||x||r := ||x|| + ||Tz||, x € D(T). Let GT € LR(XT, Y) be the identity
injection of XT into X. Then TGT is a bounded linear relation.

PROPOSITION 16 . ([4, IV.3.17]) Let T € LR(X,Y). There exists a normed
space Z and a bounded operator H mapping Y onto Z with the following properties:

(i) HT is continuous.
(ii) H' = GT> and hence (HT)' = TGT,.

(iii) N(H) = T(0).

THEOREM 17 . For a normed space X the following statements are equivalent:
(i) X is HI.

(ii) For every normed space Y and every partially continuous linear relation

T£LR{X,Y), TeF+(X,Y)L)SS(X,Y).

PROOF: (i) =>(ii). We observe that if Z e I{X), then C(Z) = {ZnN : N € C{X)}
and P(Z) = {Zf)N : N € P(X)}. An application of this observation and the definitions
yield immediately the following equivalences:

T € PB & QTT &PB<* QTTJD(T) € PB;

T e F+& QTT eF+<& QTTJD{T) € F+;

T e 55 <» QTT eSS<& QTTJD{T) € SS.

Hence, we can assume without loss of generality that T is everywhere defined single
valued. Let X be a HI and suppose in the first instance that T is continuous. Then
T £ F+ <=> T(T) = 0 (Proposition 6)-& A(T) = 0 (Proposition 14)<=» T € 5 5 (Proposi-
tion 6). For the general case, consider HT. Then HT is continuous and from what has
been proved for the continuous single valued case, HT € F+ U 55.

If HT e F+ so is T by virtue of [4, V.2.16]. It remains only to prove that HT
6 SS =>T € 55. To verify this assertion we first show
(4) T partially continuous single valued =*• H open and dim N(H) < oo =>• H 6 F + .

Indeed, we note that as T is a partially continuous single valued, D(T') is a closed
finite codimensional subspace of Y' and D(T') = (Z^T'))7"1 [4, V.I 1.3]. Consequently,
R(H') = R(GT>) = D{T) (Proposition 16) = (D{T'))T± = T(0)x ([4, III.1.4]) = NiH)"-
(Proposition 16), so that R{H') = N(H)-1- equivalently H is open ([4, III.4.6]). Moreover,

N{H)' = (D(T'))T)' = Y'/(D(T'))T± = Y'/D(T')
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and hence dim N(H) < co. Thus H is open with finite null space and so by [4, V.5.1],
H 6 F+ and (4) holds.

Assume that HT G SS and T £ SS. Then there exists M G I{X) for which
T(T |M) > 0, that is, T \M G F+ and since H G F+ by (4), it follows from [4, V.2.16] that
HT \M G F+ for some M G J(X) which contradicts HT G SS.

(ii) => (i). Let M,N G S(X). Since Q M £ ^+ (as dimN(QM) = co) we have
QM G SS and hence QMJN is not injective and open. D

The above Theorem fails for linear relations not partially continuous even for op-
erators in Banach spaces. For example, let T be everywhere defined and single valued
with D(T) = {0}. Then T g PB (as dimY'/D(T) = oo), T £ SS (since every strictly
singular linear relation is partially continuous by [4, V.4.3] and Proposition 6) and as
0(T) = oo is T' i F_ and hence T $ F+.

The following result generalises a result of Gowers and Maurey [9] who proved The-
orem 18 for bounded operators in Banach spaces. However, their proof is very technical
and quite long. Our scheme of proof which can be apply to the particular case of Gowers
and Maurey, is very different, it is much shorter and it is based in Proposition 12 and
Theorem 17.

THEOREM 1 8 . Let X be a complex HI normed space. Then

PROOF: Let T € PBD(X). By Proposition 12, ae+{T) ^ 0 and thus there is A e C
for which \ — T $ F+. The result now follows from Theorem 17. D

In general, this Theorem is not true if T is not required to be partially continuous.
Indeed, it suffices to note that every strictly singular linear relation is partially continuous
by [4, V.4.3] and Proposition 6.
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