
SOME INSIGHTS INTO STELLAR STRUCTURE FROM 

NONLINEAR PULSATIONS 

M. J. GOUPIL 
Observatoire de Paris, DASGAL, URA CNRS 335, France 

1. Introduction 

Efficient tools of investigation of stellar pulsation are the integral relations 
which link oscillation frequencies to the static structure of stellar models, 
as provided by the linear theory of pulsation (for a review, see Saio, this 
conference). 

Similarly, oscillation amplitudes and phases, which arise from nonlinear 
processes, can be related to the stellar structure by means of amplitude 
equation formalisms (for a review, see Buchler, this conference). 

For the simple case of a monoperiodic oscillation, involving only one un­
stable marginal mode, such a formalism shows that the (limit cycle) radius 
variations, at time t and mass level m, can be approximated, up to second 
order of approximation, (Buchler and Goupil, 1984; Buchler and Kovacs>, 
1986) by: 

— (m,i) = 2A\Zr(m)\cosQnit + 2A2\Ci{m)\cos(2ftnit + <p) + A2Co(m)(la,) 
r 

A2 = -K/Qr; Qn, = Q(l + Aft/ft); Afi/fi = A2Qt (lb) 

where A,R, Q,,K,£T(m) respectively are the amplitude, stellar radius, lin­
ear nonadiabatic frequency, growth rate, radius eigenfunction. Second order 
nonlinearities generated first harmonic oscillations and change in equilib­
rium radius about which the star oscillates, as represented by the last two 
terms in (la) respectively. Analogous expressions are obtained for velocity 
and light variations, that can be compared with observations. 

The nonlinear, nonadiabatic coefficients, C\,Co,<p,Qr,Qt, are integrals 
over mass of kernels which depend on eigenfrequencies, eigenfunctions, on 
second and third order Taylor quantities from the equations modelling the 
star. They can either be computed from static models (Klapp et al., 1985) or 
obtained by numerical fits of hydrodynamical results (Kovacs and Buchler, 
1989). 

2. Nonlinearities as Probes of Stellar Structure 

When local quasiadiabaticity is assumed, approximated expressions for the 
eigenfunctions and their adjoints in terms of adiabatic ones can be used to 
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simplify the nonlinear coefficients entering (1). 
The amplitude and Afi/fi are then found to be composed of two types 

of competiting contributions. The first one comes from nonlinearities of the 
restoring forces and energy transfer. The radius variations, initially sinu­
soidal (small amplitude), thereby become nonlinear i.e. are contaminated 
by harmonics (as in (la)). This nonlinear contamination changes the magni­
tude of the restoring forces and energy transfer. This, in turn, modifies the 
radius variations. This feedback gives rise to the second contribution. 

Further simplification (taking the adiabatic exponent as Ti ~ 5/3 and 
neglecting spatial derivatives of £(m) in linear variations of densities) leads 
to 

^ = A2Jdm 18^(3^ - 4)(^\ - fr(m)) (2) 

For a fundamental mode, £r > 0. Then, each stellar region contributes nega­
tively or positively to (2), according to its position with respect to the critical 
value 5/4.Fi, which depends on the whole stellar structure (consequence of 
the aforementioned feedback). To Fi's value, however, mainly contributes 
the exterior where ^(m)dm peaks. Roughly, F\ ~ 1 for a fundamental 
mode, therefore Afi/D > 0. The nonlinear period is longer than the linear 
one, in agreement with results from numerical models. The discussion must 
be slightly changed when stable modes are taken into account. 

Contributions to the amplitude, A2 = {Q2 + G3 + Q4 + GstY1'? come from 
eigenvectors nonadiabaticity, nonlinear dependence of pressure on entropy, 
nonlinear energy gains and losses and indirect influence of stable modes. 
Saturation effects that contribute to the existence of a limit cycle (A2 > 0) 
can be locally discussed as above. In particular, energy nonlinearities play 
an important role in modifying the impact on the pulsation of the nonlinear 
variation of pressure with entropy. 

To lowest quasiadiabatic order, the nonlinear change in equilibrium ra­
dius is A2Co = 2A2F\£(m). It increases towards the exterior with £r as it is 
observed in numerical models (Fadeyev, this conference). In quasiadiabatic 
regions, a phase lag of a exists between the main and first harmonic oscil­
lations and their amplitude ratio, (1/3)2*1/4, is independent of mass level. 
Existence of stable modes introduces a slight dependence with mass level. 

In conclusion, the above work can be extended to more realistic cases in­
volving mode interactions. Though the necessary assumptions (local quasia-
diabaticity, simplified boundary conditions) limit the discussion to qualita­
tive behaviors, they provide simplified expressions of nonlinear coefficients 
which enable to investigate which processes, in what stellar regions, affect 
finite amplitude pulsations. 
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