Lagrangean conditions and quasiduality

B.D. Craven

For a constrained minimization problem with cone constraints, lagrangean necessary conditions for a minimum are well known, but are subject to certain hypotheses concerning cones. These hypotheses are now substantially weakened, but a counter example shows that they cannot be omitted altogether. The theorem extends to minimization in a partially ordered vector space, and to a weaker kind of critical point (a quasimin) than a local minimum. Such critical points are related to Kuhn-Tucker conditions, assuming a constraint qualification; in certain circumstances, relevant to optimal control, such a critical point must be a minimum. Using these generalized critical points, a theorem analogous to duality is proved, but neither assuming convexity, nor implying weak duality.

1. Introduction

A local minimum of a constrained differentiable minimization problem may be described by lagrangean necessary conditions [10], which extend to objective functions taking values in a partially ordered space. The necessary conditions still hold for a critical point, called a *quasimin* in [6], weaker than a local minimum; and they are also sufficient [3], [11] under additional convexity hypotheses. However, [10] and [6] assume that a cone S, in a constraint $-g(x) \in S$, has an interior; this excludes the cone L_{+}^{p} of non-negative functions in an L^{p} -space, important for optimal control.

Received 6 December 1976.

A Fritz John necessary condition for a quasimin is now proved (Theorem 1), with a weakened hypothesis on S; but a counter example shows that some restriction is necessary (and $S = L_{\perp}^{p}$ is still excluded, unless g is restricted). A quasimin was defined in [6] using differentiable arcs, which limits its applicability to optimal control problems; it is now reformulated more generally. A quasimin is necessary for the Kuhn-Tucker conditions to hold (generalized to an objective function taking values in a partially ordered space), and is also sufficient if an extended Kuhn-Tucker constraint qualification is assumed (Theorem 2). While a quasimin does not generally imply a local minimum, it does for a substantial class of problems occurring in optimal control (Theorem 5); optimal control applications will be discussed elsewhere. For real objective functions, a kind of duality relation exists, called quasiduality (Theorem 3), between a quasimin of a minimization problem (which need not be convex) and a quasimax of a related maximization problem; to each quasimin of the given problem, there corresponds a quasimax of the quasidual, with the same. objective value. No convexity assumptions are made, but there is no global weak duality property.

The following simple example, with $x, u, \lambda, \mu \in \mathbb{R}$, illustrates the phenomena. Applying to the nonconvex problem

(a) Minimize
$$x - x^2$$
 subject to $x \ge 0$,

the construction which yields the dual for a convex problem generates here a "dual" with objective function $u - u^2 - \lambda u$ and constraints $\lambda \ge 0$ and $1 - 2u - \lambda = 0$; so the "dual" is equivalent to the problem:

(b) Maximize
$$u^2$$
 subject to $u \leq \frac{1}{2}$

after substituting for λ . Now (a) has a minimum of 0 at x = 0; correspondingly, at u = 0, (b) has a quasimax described by $u^2 - 0^2 \le o(|u-0|)$. (A maximum would require $u^2 - 0^2 \le 0$. This instance of a quasimax happens also to be a local minimum.) Also (a) has a quasimin of $\frac{1}{4}$ at $x = \frac{1}{2}$, described by $(x-x^2) - (\frac{1}{2}-(\frac{1}{2})^2) \ge o(|x-\frac{1}{4}|)$; correspondingly, at $u = \frac{1}{2}$, (b) has a quasimax (in fact a maximum) of $\frac{1}{4}$. Thus the critical points of (a) and (b) correspond in pairs, with zero "duality gaps"; this is the typical situation, for nonconvex problems.

But there is no weak duality: $x \ge 0$ and $u \le \frac{1}{2}$ do not imply that $(x-x^2) \ge u^2$.

2. Preliminary results

Let X, Y, Z, W be real normed spaces, and X_0 an open subset of X; X' denotes the dual space of X, and L(X, Y) denotes the space of continuous linear maps from X into Y; $R_+ = [0, \infty)$. For a function $\omega : X_1 \rightarrow Y$, where $0 \in X_1 \subset X$, $\omega(\xi) = o(||\xi||)$ means that $||\omega(\xi)||/||\xi|| \rightarrow 0$ as $||\xi|| \rightarrow 0$, $\xi \in X_1$; if instead $X_1 = R_+$, $\omega(\alpha) = o(\alpha)$ means $||\omega(\alpha)||/\alpha \rightarrow 0$ as $\alpha \neq 0$. The function $g : X_0 \rightarrow Y$ is Fréchet differentiable at $a \in X_0$ if there is $g'(a) \in L(X, Y)$ for which

(*)
$$g(a+\xi) - g(a) = g'(a)\xi + \omega(\xi)$$
 where $\omega(\xi) = o(||\xi||)$;

continuously Fréchet differentiable if also g'(.) is continuous on X_0 ; Hadamard differentiable at $a \in X_0$ if (*) is replaced by

$$||g \circ \zeta(\alpha) - g(\alpha) - g'(\alpha) \circ \zeta'(0) \alpha|| / \alpha \to 0 \text{ as } \alpha \neq 0,$$

for each continuous are $\alpha \mapsto \zeta(\alpha)$ ($\alpha \in \mathbb{R}_+$) such that $\zeta(0) = \alpha$ and the Fréchet derivative $\zeta'(0)$ exists. Clearly Fréchet implies Hadamard.

Let $S \subset Y$, $T \subset Z$, and $P \subset \forall$ be convex cones. The *dual cone* of S is the convex cone $S^* = \{y' \in Y' : y'(S) \subset \mathbb{R}_+\}$; int S denotes the interior (perhaps empty) of S. A set $B \subset S^*$ is a *compact base* for S^* if B is weak * compact in Y', $0 \notin B$, and $S^* = \{\alpha b : \alpha \in \mathbb{R}_+, b \in B\}$. The cone S^* will be called *representable* if S^* possesses a convex weak * compact base. This is so, in particular, if int S is nonempty (see Lemma 3 below). More generally, S^* is representable, by [13, Theorem 3], if S^* is locally compact in the relative weak * topology of Y'.

Assume that $\operatorname{int} P \neq \emptyset$; let $f: X_0 \rightarrow W$ be continuous; let $Q \subset X_0$. Following the definition in [2], f(x) has a (local) minimum at $x = a \in Q$, subject to the constraint $x \in Q$, if $f(x) - f(a) \notin \operatorname{-int} P$ whenever $x \in Q$ and ||x-a|| is sufficiently small. (If $W = \mathbb{R}$ and $P = \mathbb{R}_+$, this reduces to $f(x) - f(a) \geq 0$.) The point $a \in Q$ will be called a quasimin of f(x), subject to $x \in Q$, if for some $\theta(x) = o(||x-a||)$ (as $x \neq a, x \in Q$),

$$f(x) = f(a) = \theta(x) \notin -int P$$
.

If $P = R_{\perp}$, an equivalent requirement is that

$$\lim_{x \to a, x \in Q} \inf [f(x) - f(a)] / ||x - a|| \ge 0.$$

The present definition supersedes a more complicated, and restricted, definition, given in [6] in terms of arcs. A *quasimax* of f(x) occurs if and only if -f(x) has a quasimin, subject to the same constraint.

Let $h: X_0 \rightarrow Z$ be Hadamard differentiable. The system $-h(x) \in T$ is *locally solvable* at the point a (see [6]) if $-h(a) \in T$ and, for some $\delta > 0$, whenever the direction d satisfies

 $||d|| < \delta$ and $h(a) + h'(a)d \in -T$,

there exists a solution $x = a + \alpha d + o(\alpha)$ to $-h(x) \in T$, valid for all sufficiently small $\alpha > 0$. If $-h(x) \in T$ consists of finitely many scalar equations and inequalities, then local solvability of $-h(x) \in T$ is readily shown to be equivalent to the Kuhn-Tucker constraint qualification. Thus local solvability generalizes the Kuhn-Tucker constraint qualification to more general (cone and infinite-dimensional) constraints. Suppose that $h(a)\beta + h'(a)d \in -T$ for some $\beta \in \mathbb{R}$, and that $-h(x) \in T$ is locally solvable. For sufficiently large $\gamma > 0$, $\beta + \gamma > 0$ and $||d'|| < \delta$, where $d' = (\beta + \gamma)^{-1}d$; also $(\beta + \gamma)h(a) + h'(a)d \in -T$, so $h(a) + h'(a)d' \in -T$. Hence $-h(x) \in T$ has a solution $x = a + \alpha d' + o(\alpha)$. Hence $x = a + \alpha d + o(\alpha)$ is a solution.

Let B be a (weak *) compact subset of Y'. Denote by C(B) the space of continuous (from the weak * topology of B) real functions on B, with the supremum norm. It is readily shown that the cone of non-negative functions in C(B) has nonempty interior.

Let $E \subset X$ be convex, and let $S \subset Y$ be a convex cone; then the function $f: E \Rightarrow Y$ is *S-convex* if, whenever $u, v \in E$ and $0 \le \lambda \le 1$,

$$\lambda f(u) + (1-\lambda)f(v) - f(\lambda u + (1-\lambda)v) \in S$$
.

In particular, a linear function is S-convex.

LEMMA 1. Let X and Y be normed spaces, $S \subset Y$ a convex cone with int $S \neq \emptyset$, $E \subset X$ convex, and let $f : E \Rightarrow Y$ be S-convex. Then either $-f(x) \in int S$ for some $x \in E$, or $(p \circ f)(E) \subset R_+$ for some nonzero $p \in S^*$, but not both.

Proof. If both systems have solutions, x respectively p, then both $(p \circ f)(x) < 0$ and $(p \circ f)(x) \ge 0$, a contradiction. Assume that there is no $x \in E$ with $-f(x) \in \text{int } S$. Then H = f(E) + int S is an open convex set with $0 \notin H$, so by the separation theorem for convex sets ([17], page 64), there is a nonzero $p \in Y'$ with $p(H) \subset \mathbb{R}_+$. If $s \in \text{int } S$ and $x \in E$, then $s - \lambda^{-1}f(x) \in \text{int } S$ for λ large enough, so $\lambda s \in H$, so $p(s) \ge 0$. Since p is continuous, $p(S) \subset \mathbb{R}_+$. Also, for each $\varepsilon > 0$, $f(x) + \varepsilon \varepsilon \in H$, so $(p \circ f)(x) \ge -p(\varepsilon s) \to 0$ as $\varepsilon \neq 0$.

LEMMA 2 (Generalized Motzkin alternative theorem [5]). Let X, Y, Z be normed spaces, $A \in L(X, Z)$ and $B \in L(X, Y)$, $S \subset Y$ and $T \subset Z$ convex cones, with int $S \neq \emptyset$, T closed, and $A^{T}(T^{*})$ weak * closed. Then either

- (i) $-Ax \in T$, $-Bx \in int S$, for some $x \in X$, or
- (ii) $p \circ B + q \circ A = 0$ for some $q \in T^*$ and some nonzero $p \in S^*$, but not both.

Proof. Set f = B and $E = -A^{-1}(T)$. By Lemma 1, (*i*) does not hold if and only if $(\exists 0 \neq p \in S^*)$ $(p \circ B)(E) \subset \mathbb{R}_+$, thus if and only if $-Ax \in T \Rightarrow (p \circ B)(x) \in \mathbb{R}_+$. But this is equivalent, by the generalized Farkas Theorem (see [14], and [8], Theorem 6) since T and $A^T(T^*)$ are closed, to $p \circ B = q \circ (-A)$ for some $q \in T^*$, which is (*ii*).

LEMMA 3. Let S be a closed convex cone in the normed space Y; let int $S \neq \emptyset$. Then the dual cone S* has a convex (weak *) compact base.

Proof. Let $h \in \text{int } S$; then $h + N \subset S$ for some neighbourhood Nof zero in Y. Let $0 \neq v \in S^*$; then $vh \geq 0$ and, if vh = 0, then $v(N) = v(h+N) \subset \mathbb{R}_+$; but, given $v \neq 0$, vn < 0 for some $n \in N$. The contradiction shows that vh > 0 for each nonzero $v \in S^*$. Setting $B = \{v \in S^* : vh = 1\}$, it follows that $S^* = \{\alpha b : \alpha \in \mathbb{R}_+, b \in B\}$; also $0 \notin B$, and B is convex and weak * closed. If B is also bounded in norm, then *B* is weak * compact, from the Banach-Steinhaus Theorem. If $b \in B$, then bh = 1 and $b(h+N) \subset [0, \infty)$; hence $b(N) \subset [-1, \infty)$. So, for each $n \in N$, $bn \ge -1$ and $b(-n) \ge -1$; hence $||b|| \le \beta$ where β depends only on *N*.

3. Necessary conditions for a quasimin

THEOREM 1. Let X, Y, Z, W be real Banach spaces, X_0 an open subset of X; let $P \subset W$, $S \subset Y$, $T \subset Z$ be convex cones, with int $P \neq \emptyset$, S closed, S* representable; let the functions $f: X_0 \neq W$, $g: X_0 \neq Y$, and $h: X_0 \neq Z$ be Hadamard differentiable; let $-h(x) \in T$ be locally solvable at $a \in X_0$, and let the convex cone

$$\begin{split} N &= \left[h'(a) \ h(a)\right]^T(T^*) & be weak * closed in X' \times R . & Then a necessary \\ condition for f(x) & to have a quasimin at x = a, subject to the \\ constraints -g(x) \in S & and -h(x) \in T, is that, for some u \in P^*, \\ v \in S^*, w \in T^*, with u and v not both zero, \end{split}$$

(FJ) uf'(a) + vg'(a) + wh'(a) = 0; vg(a) = 0; wh(a) = 0.

Proof. By hypothesis, S^* has a (weak *) compact convex base B . From the separation theorem for convex sets,

 $-g(x) \in S \iff (\forall v \in S^*) - vg(x) \ge 0 \iff (\forall b \in B) - bg(x) \ge 0 \iff -G(x) \in K,$ where $G: X_0 \neq C(B)$ is defined by $(\forall x \in X_0, \forall b \in B) \quad G(x)(b) = bg(x),$ and $K = \{\psi \in C(B) : \psi(B) \subset \mathbb{R}_+\}$. Then int $K \neq \emptyset$; and G is Hadamard differentiable.

Suppose that the linear system $-Aq \in T$, $-Bq \in int V$, where

$$A = [h'(a) \quad h(a)] , B = \begin{bmatrix} f'(a) & 0 \\ G'(a) & G(a) \end{bmatrix} , V = \begin{bmatrix} P \\ K \end{bmatrix} ,$$

has a solution $q = (d, \beta) \in X \times \mathbb{R}$. Then $-f'(a)d \in \operatorname{int} P$, $-g'(a)d - g(a)\beta \in \operatorname{int} S$, $-h'(a)d - h(a)\beta \in T$. From the last, local solvability gives a solution $x = x(\alpha) \equiv a + \alpha d + o(\alpha)$ ($\alpha + 0$) to $-h(x) \in T$. Then, for sufficiently small $\alpha > 0$, $-h(x(\alpha)) \in T$ and

$$-G(x(\alpha)) = -G(a) - \alpha G'(a)d + o(\alpha)$$

= $(1-\alpha\beta)[-G(a)] + \alpha[-G'(a)d-G(a)\beta] + o(\alpha)$
 $\in K + \text{int } K + o(\alpha) \subset K$.

The quasimin therefore requires that $f(x(\alpha)) - f(\alpha) - \sigma(\alpha) \notin -int P$ for some $\sigma(\alpha) = o(\alpha)$; hence $f'(\alpha)d \notin -int P$, contradicting $f'(\alpha)d \in -int P$ obtained above.

Hence the linear system has no solution q. Since also the cone N is closed, Lemma 2 shows that, for some nonzero $y = (u, \lambda) \in V^*$ (thus $u \in P^*$ and $\lambda \in K^*$) and some $w \in T^*$, wA + yB = 0. Hence

$$uf'(a) + \lambda G'(a) + wh'(a) = 0$$
; $g(a) = 0$; $wh(a) = 0$.

If $\lambda = 0$, then $u \neq 0$, and so (FJ) holds with v = 0. Suppose that $\lambda \neq 0$. Since $\lambda \in (C(B))'$, the Riesz representation theorem represents λ by a signed measure μ , such that $\lambda \psi = \int_{B} \mu(db)\psi(b)$ for each $\psi \in C(B)$. Then $\lambda \in K^*$ requires that $\mu(E) \ge 0$ for each Borel subset $E \subset B$. Since $\lambda \neq 0$, $\mu(B) > 0$. For each $x \in X$, G'(a)x maps $b \in B$ to bg'(a)x. Hence $\lambda G'(a)x = \int_{B} \mu(db)bg'(a)x = \mu(B)b^*g'(a)x$ where $b^* = \int_{B} [\mu(B)]^{-1}\mu(db)b$. So b^* is the weak * limit of a net of approximative sums of the form $\sum_{i} \gamma_i b_i$ where each $b_i \in B$, $\gamma_i > 0$, $\sum_i \gamma_i = 1$. Hence b^* is in the closed convex hull of B, and hence in B, since B is convex compact. Hence $\lambda G'(a) = vg'(a)$ where $v = \mu(B)b^* \in S^*$; $v \neq 0$ since $0 \notin B$ and $\mu(B) > 0$. Similarly $\lambda G(a) = 0$ implies $\int_{B} \mu(db)bg(a) = 0$, which implies vg(a) = 0. Thus (FJ) is proved.

DISCUSSION. Theorem 4 of [10] is applicable since the equivalent constraint $-G(x) \in K$ has int $K \neq \emptyset$. However, the following counter example shows that some restriction on S is required. (Hence Theorem 5.11 of Dempster [12] requires an additional hypothesis.) A similar example is possible with L^2 replacing l^2 .

B.D. Craven

Let l^2 denote real Hilbert sequence space. Define a continuous linear map $M: l^2 + l^2$ as the map taking $x = (x_1, x_2, \ldots) \in l^2$ to $Mx = (\alpha_1 x_1, \alpha_2 x_2, \ldots)$ where $\alpha_n = n^{-2}$. Note that M is not an open map, and hence the subspace $M(l^2)$ is not closed in l^2 . Let Q denote the convex cone $Q = \{(x_1, x_2, \ldots) \in l^2 : (\forall n) \ x_n \ge 0\}$. Then $Q^* = Q$, identifying $(l^2)^*$ with l^2 . It is readily shown that int $Q = \emptyset$. Let $f = (\alpha_1, \alpha_2, \ldots) \in (l^2)^*$. Since $Mx \in Q \Leftrightarrow (\forall n) \ x_n \ge 0$, f(x) is minimized, subject to $x \in l^2$ and $Mx \in Q$, at $x = 0 = (0, 0, \ldots)$. If (FJ) holds at this minimum, then there exist $\tau \ge 0$ and $v = (v_1, v_2, \ldots) \in Q^*$, not both zero, for which $\tau f = vM$. Hence $\tau \alpha_n = v_n \alpha_n$ for each $n = 1, 2, \ldots$. Since $\{v_n\} \neq 0$ and $\alpha_n > 0$, $\tau = 0$; hence also $(\forall n) \ v_n = 0$, so v = 0 and $\tau = 0$. So (FJ) does *not* hold here.

Consider the minimization problem of Theorem 1 with h and Tomitted, and with g(x) = -Mx, S = Q. The example shows that S cannot then be unrestricted. If, instead, g and S are omitted, and h(x) = -Mx, T = Q, then the linear constraint $Mx \in Q$ is locally solvable; so the example shows that the hypothesis that N is closed cannot be omitted.

4. Conditions necessary and sufficient for a quasimin

Consider now the constraints $-g(x) \in S$ and $-h(x) \in T$ combined into a single constraint $k(x) \in K$. Assume that K is a closed convex cone in $V = Y \times Z$. The problem of minimizing f(x) subject to $k(x) \in K$ satisfies the generalized Kuhn-Tucker condition at the point $a \in X_0$ if $k(a) \in K$, and for some $\lambda \in K^*$ and some nonzero $\tau \in P^*$,

$$\tau f'(a) = \lambda k'(a) ; \quad \lambda k(a) = 0 .$$

In particular, if W = R and $P = R_+$, then $\tau = 1$ can be assumed, and the usual Kuhn-Tucker condition is recovered.

THEOREM 2. Let X, V, W be real Banach spaces, X_0 an open subset of X; let $P \subseteq W$ and $K \subseteq V$ be closed convex cones, with $\operatorname{int} P \neq \emptyset$; let $f: X_0 \neq W$ be Fréchet differentiable at $a \in X_0$, and let $k: X_0 \neq V$ be continuously Fréchet differentiable. If the generalized Kuhn-Tucker condition holds at a, then f(x) has a quasimin at x = a, subject to the constraint $k(x) \in K$. The converse holds under the additional hypotheses that the convex cone $N_0 = [k'(a) \ k(a)]^T(K^*)$ is (weak *) closed in X' × R and that the set U = k(a) + k'(a)(X) - K contains a neighbourhood of zero.

Proof. Let the generalized Kuhn-Tucker condition hold; let $k(x) \in K$; then $\lambda k(x) \ge 0$; setting z = x - a,

$$\tau f'(a)z = \lambda k'(a)z = \lambda k(x) - \lambda k(a) + \phi(z) \ge \phi(z)$$

where $\phi(z) = o(||z||)$. Since $0 \neq \tau \in W'$, there is $w \in W$ with $\tau w \neq 0$; setting $\psi = -(\tau w)^{-1} \phi w$, $\tau \psi = -\phi$, so that $\tau[f'(a)z + \psi(z)] \ge 0$, where $\psi(z) = o(||z||)$. If x = a is not a quasimin, then there is some sequence $\{z_n\} \neq 0$ for which $k(a+z_n) \in K$, and whenever $\theta(z) = o(||z||)$,

$$f(a+z_n) - f(a) - \theta(z_n) \in -int P$$
.

Now $f(a+z_n) - f(a) = f'(a)z_n + o(||z_n||)$; so, choosing θ suitably, $f'(a)z_n + \psi(z_n) \in -int P$ as $n \to \infty$, hence $\tau |f'(a)z_n + \psi(z_n)| < 0$ as $n \to \infty$; the contradiction shows that x = a is a quasimin.

Conversely, assume a quasimin, let N_0 be closed, and let U contain a neighbourhood. The hypothesis on U, and continuous differentiability of k, imply ([1₆], Corollary 1, and [6], Theorem 3) that $k(x) \in K$ is locally solvable. Then the generalized Kuhn-Tucker condition follows from Theorem 1, with g and S omitted; since v is absent, $\tau \equiv u \neq 0$. (For this converse, f need only be Hadamard differentiable.)

5. Quasiduality

In this section only, let W = R and $P = R_+$. Consider the two problems:

(A) Minimize F(x) subject to $x \in A$;

(B) Maximize $\Phi(y)$ subject to $y \in B$.

Problem (B) will be called a *quasidual* of (A) if the following condition holds:

if (A) has a quasimin at $x = \xi \in A$, then (B) has a quasimax at some $y = \eta \in B$, and $F(\xi) = \Phi(\eta)$.

Under additional hypotheses of convexity (or related properties), which are *not* made here, a quasimin is necessarily a minimum, and a quasimax is a maximum, and quasiduality implies the usual duality.

Consider the following pair of problems:

- (QP) quasimin f(x) subject to $k(x) \in K$;
- (QD) quasimax_{u,v} f(u) vk(u) subject to $v \in K^*$, f'(u) - vk'(u) = 0.

THEOREM 3. Let $f: X_0 \rightarrow R$ be Hadamard differentiable; let k be continuously Fréchet differentiable; as in Theorem 2, let N_0 be closed and let U contain a neighbourhood of zero. Let (QP) have a quasimin at $x = a \in X_0$. Then (QD) is a quasidual of (QP).

Proof. Let (u, v) satisfy the constraints of (QD); let (QP) have a quasimin at x = a; from Theorem 2, the Kuhn-Tucker condition holds for (QP) at x = a, for some $\lambda \in K^*$. Set u = a + p and $v = \lambda + q$. Then

$$\begin{aligned} f(a) &- [f(u)-vk(u)] &= f(a) - f(a+p) - vk(a+p) \\ &= -f'(a)p - o(\|p\|) + vk(a) + (\lambda+q) \{k'(a)p+o(\|p\|)\} \\ &= -[f'(a)-\lambda k'(a)]p - o(\|p\|) + vk(a) + o(\|p\|+\|q\|) \\ &\geq o(\|p\|+\|q\|) . \end{aligned}$$

Hence (QD) has a quasimax at $(u, v) = (a, \lambda)$. Since also $\lambda k(a) = 0$, by the Kuhn-Tucker condition, $f(a) - \lambda k(a)$, so (QD) is a quasidual of (QP).

There is also a *converse quasiduality* result, analogous to the converse duality results of [9], and [4, Theorem 3.1]. These cited results however assume convexity, which is not required here. Note that (A) is a quasidual of (B) if, whenever (B) has a quasimax, (A) has a corresponding quasimin, with equal values of the two objective functions.

THEOREM 4. Let f and k be twice continuously Fréchet

differentiable; let (QD) have a quasimax at $(u, v) = (a, \lambda)$; let the adjoint M^T of the linear map $M = f''(a) - \lambda k''(a)$ be bijective. Then (QP) is a quasidual of (QD).

Proof. Since f and k are twice continuously differentiable, and M^T is invertible, the constraints of (QD) are locally solvable, and the cone-closure hypothesis of Theorem 1 is fulfilled for (QD). Hence (FJ) holds for (QD) at (a, λ) . The calculation of [4, Lemma 3.1], then applies, given M^T bijective, showing that $k(a) \in K$ and the Kuhn-Tucker condition holds for (QP). From Theorem 2, the Kuhn-Tucker condition implies a quasimin for (QP). Since also $f(a) = f(a) - \lambda k(a)$, (QP) is a quasidual to (QD).

6. When does a quasimin imply a minimum?

Let I be a compact subset of \mathbb{R}^p . Let $X = L^1(I, \mathbb{R}^n)$, the space of measurable functions x from I into \mathbb{R}^n , having finite $L^1(I)$ -norm $||x|| = \int_I |x(t)| dt$, where $|\cdot|$ denotes euclidean norm in \mathbb{R}^n , and dtdenote Lebesgue measure on I. Let X_0 be an open subset of the space X. Define $f: X_0 \neq \mathbb{R}^p$ by $f(x) = \int_I h(x(t), t) dt$, where the function $h: \mathbb{R}^n \times I \neq \mathbb{R}^p$ is continuous. Define minimum and quasimin of $f(x) \in \mathbb{R}^p$ in terms of the cone \mathbb{R}^p_+ , the nonnegative orthant in \mathbb{R}^p . Let k map X_0 into a space of continuous M-valued functions on I, where Mis a normed space; let S be a convex cone in M. Denote by K the convex cone consisting of those continuous functions $\psi: I \neq M$ for which $\psi(t) \in S$ for each $t \in I$. Then $k(x) \in K$ iff $(\forall t \in I) k(x)(t) \in S$.

Consider the minimization problem:

(P*) minimize
$$f(x)$$
 subject to $k(x) \in K$,
 $x \in X_0$

with f, k, K as specified above. This is an abstract version of an optimal control problem (see, for example, [10]).

The following measure properties will be required (see [15, Section

42]). A point $t_0 \in I$ is a point of density of a measurable set $E \subset I$ if $\sup_{J_k \neq t_0} [\limsup_k m(J_k \cap E)/m(J_k)] = 1$, taking limits over sequences $\{J_k\}$ of intervals containing t_0 . A function $g: I \neq \mathbb{R}$ is approximately continuous at t_0 if there is a measurable set $E_0 \subset I$ such that t_0 is a point of density of E_0 (and hence $m(E_0) > 0$), and also

$$\lim_{t \to t_0, t \in E_0} g(t) = g(t_0) .$$

THEOREM 5. Let (P^*) have a quasimin at $x = \eta \in k^{-1}(K)$; let X have the $L^{1}(I)$ -norm; let h satisfy a Lipschitz condition

$$|h(u, t)-h(v, t)| \leq c|u-v| \quad (u, v \in \mathbb{R}^n)$$
.

Then h(x(t), t) is minimized, almost everywhere in I, with respect to $x \in k^{-1}(K)$, at $x = \eta$. Consequently (P^*) has a minimum at $x = \eta$.

Proof. If the conclusion does not hold, then for some $x^* \in k^{-1}(K)$ and some $A^{\#} \subset I$, with measure $m(A^{\#}) > 0$,

(i)
$$(\forall t \in A^{\#}) \quad h(x^*(t), t) - h(\eta(t), t) \in -int \mathbb{R}^{2^n}_+.$$

The Lipschitz hypothesis shows that, for each component h_i of h, there is a bounded measurable function ϕ_i such that

$$(\forall t \in I) \quad h_i(x^*(t), t) - h(\eta(t), t) = \phi_i(t)|x^*(t) - \eta(t)|$$

(Where $x^*(t) = \eta(t)$, $\phi_i(t) = 0$.) From [15, Theorem 42.3], ϕ_i is approximately continuous almost everywhere on *I*, and [15, Theorem 42.2], shows that the points of a measurable set $E \subset I$, with m(E) > 0, are almost everywhere points of density of *E*. Deleting from $A^{\#}$ the finitely many subsets on which ϕ_i is not approximately continuous (i = 1, 2, ..., r), and the set of points which are not points of density of $A^{\#}$, leaves a set *A*, where $m(A) = m(A^{\#})$. Let $t_0 \in A_0$. Then

(ii)
$$\lim_{t \to t_0, t \in A} \phi_i(t) = \phi_i(t_0) < 0 ,$$

by the approximate continuity, and also using (i). Consequently, for some $\delta > 0$ and each $t \in B = \{t \in A : |t-t_0| < \delta\}$, and each i, $-\phi_i(t) \ge \beta \equiv \frac{1}{2} \min_i |-\phi_i(t_0)| > 0$.

Define the continuous (nondifferentiable) arc $\lambda \mapsto \xi_{\lambda}$ $(\lambda \in R_{\downarrow})$ by

$$\begin{split} \xi_{\lambda}(t) &= x^{*}(t) \quad \text{for } t \in B_{\lambda} \equiv \left\{ t \in B : |t-t_{0}| < \psi(\lambda) \right\} \\ \xi_{\lambda}(t) &= \eta(t) \quad \text{otherwise,} \end{split}$$

where $\psi(\lambda)$ is chosen so that, as $\lambda \neq 0$, the $L^{1}(I)$ -norm $\|\xi_{\lambda}-\eta\| = \lambda$. Then $\xi_{0} = \eta$, and the form chosen for the constraint $k(x) \in K$ ensures that $\xi_{\lambda} \in k^{-1}(K)$. Then, for each i,

(iii)
$$-f_{i}(\xi_{\lambda}) + f_{i}(n) \ge \int_{B_{\lambda}} \beta |x^{*}(t) - n(t)| dt \ge \beta \|\xi_{\lambda} - n\|$$

Hence $f(\xi_{\lambda}) - f(\eta)$ lies in -int R_{+}^{P} , and is distant at least $\beta \|\xi_{\lambda} - \eta\|$ from the boundary of -int R_{+}^{P} . This contradicts the quasimin of (P^{*}) at $x = \eta$. Thus (i) cannot hold.

Integrating h then shows that (P^*) is minimized at $x = \eta$.

REMARKS. This theorem depends on the choice of the $L^{1}(I)$ -norm. It extends a result given by Berkovitz [1, p. 288]. The case p > 1corresponds to an optimal control problem involving a partial differential equation; this will be detailed elsewhere.

The Lipschitz hypothesis need only hold almost everywhere. The theorem also holds, with slight change to the proof, if instead f is Hadamard differentiable.

References

- [1] L.D. Berkovitz, Optimal control theory (Applied Mathematical Sciences, 12. Springer-Verlag, New York, Heidelberg, Berlin, 1974).
- [2] B.D. Craven, "Nonlinear programming in locally convex spaces", J. Optimization Theory Appl. 10 (1972), 197-210.
- [3] B.D. Craven, "Sufficient Fritz John optimality conditions", Bull. Austral. Math. Soc. 13 (1975), 411-419.
- [4] B.D. Craven, "Converse duality in Banach space", J. Optimization Theory Appl. 17 (1975), 229-238.
- [5] B.D. Craven, "A generalized Motzkin alternative theorem" (Research Report, 13. School of Mathematical Sciences, University of Melbourne, Parkville, 1975).
- [6] B.D. Craven, "Lagrangean conditions for optimization in Banach spaces" (Research Report, 6. School of Mathematical Sciences, University of Melbourne, Parkville, 1976).
- [7] B.D. Craven, "Alternative theorems with convex cones" (Research Report, 15. School of Mathematical Sciences, University of Melbourne, Parkville, 1976).
- [8] B.D. Craven and J.J. Koliha, "Generalizations of Farkas's theorem", SIAM J. Math. Appl. (to appear).
- [9] B.D. Craven and B. Mond, "On converse duality in nonlinear programming", Operations Res. 19 (1971), 1075-1078.
- [10] B.D. Craven and B. Mond, "Transposition theorems for cone-convex functions", SIAM J. Appl. Math. 24 (1973), 603-612.
- [11] B.D. Craven and B. Mond, "Sufficient Fritz John optimality conditions for nondifferentiable convex programming", J. Austral. Math. Soc. Ser. B (to appear).
- [12] M.H.A. Dempster, "Lectures on abstract optimization and its applications" (Department of Mathematics, School of Mathematical Sciences, University of Melbourne, Parkville, 1975).

- [13] D.A. Edwards, "On the homeomorphic affine embedding of a locally compact cone into a Banach dual space endowed with the vague topology", Proc. London Math. Soc. (3) 14 (1964), 399-414.
- [14] Leonid Hurwicz, "Programming in linear spaces", Studies in linear and non-linear programming, 38-102 (Stanford Mathematical Studies in Social Sciences, II. Stanford University Press, Stanford, California, 1958).
- [15] M.E. Munroe, Introduction to measure and integration (Addison-Wesley, Cambridge, Massachusettes, 1953).
- [16] Stephen M. Robinson, "Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems" (MRC Technical Summary Report, 1388. University of Wisconsin-Madison, Mathematics Research Center, Madison, Wisconsin, 1974).
- [17] Helmut H. Schaefer, Topological vector spaces (Graduate Texts in Mathematics, 3. Springer-Verlag, New York, Heidelberg, Berlin, 1971).

Department of Mathematics, University of Melbourne, Parkville, Victoria.