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Abstract

For any group G, we introduce the subset S(G) of elements g which are conjugate to g2 , g3 , g4 , . . .
for some positive integer k. We show that, for any bounded representation w of G and any g in S(G),
either w(g) = 1 or the spectrum of w(g) is the full unit circle in C. As a corollary, S(G) is in the
kernel of any homomorphism from G to the unitary group of a post-liminal C*-algebra with finite
composition series.

Next, for a topological group G, we consider the subset of elements approximately conjugate to 1,
and we prove that it is contained in the kernel of any uniformly continuous bounded representation of
G, and of any strongly continuous unitary representation in a finite von Neumann algebra.

We apply these results to prove triviality for a number of representations of isotropic simple
algebraic groups defined over various fields.

1980 Mathematics subject classification (Amer. Math. Soc): 22 D 12; secondary 20 G 15, 46 L 05.

0. Introduction

Let G be a topological group; the intersection «(G) of the kernels of the
finite-dimensional continuous unitary representations of G is the von Neumann
kernel of G; this closed normal subgroup of G can be completely characterized
when G is locally compact and connected (see [13], [14]). G is said to be minimally
almost periodic (m.a.p.) if G = n(G), i.e. if G has no non-trivial finite-dimen-
sional continuous unitary representations. In their paper [11], von Neumann and
Wigner obtained the following useful sufficient condition for an element g in G
to belong to n(G): assume that there exists a function / from the set 1̂ 10 of
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positive integers to itself, such that, for any n in N 0, n divides /(«) and g is
conjugate to g^(n) inside G; then g belongs to n(G), when G is endowed with the
discrete topology.

In Section 1 of this paper, we consider the subset S(G) of elements in G for
which the function / above can be taken of the form /(«) = nk, for some k in
NQ. The interest of this case comes from the example of SL2(A:), where A: is a
field of characteristic 0; for any a in k and any X in kx, the multiplicative group
of k, we have:

(*' \o x - v l o i / \ o xj ~ \o i )'
In particular, taking for X a positive integer n, we see that g = (l

0 ") is conjugate
to g" , for any n. We will extend the von Neumann and Wigner result by showing
that, for any g in S(G) and any bounded representation Tt of G on a (complex)
Banach space, the following alternative holds: either w(g) = 1 or the spectrum of
ir(g) is the unit circle S1 in C. As a corollary, we will see that isotropic simple
algebraic groups over k (of characteristic 0) are m.a.p. in a very strong sense:
roughly speaking, we will show that any homomorphism from such a group to the
unitary group of a post-liminal C*-algebra with finite composition series, is trivial
(see Corollary 2 and Theorem 2 for the precise statement).

In Section 2, we consider, for a topological group G, two classes of continuous
representations which are "close to" finite-dimensional ones, namely uniformly
continuous bounded representations on a Banach space, and strongly continuous
unitary representations in a finite von Neumann algebra (we refer to [12] for
terminology). To explain what we have in mind, let us mention the following
result, proved by Singer [16] for unitary representations, and extended by Gurarie
[3] to more general representations: a connected Lie group G admits a faithful
uniformly continuous bounded representation if and only if G is the direct
product of a (finite-dimensional) real vector space and a compact Lie group. This
in turn is equivalent to the existence of a faithful strongly continuous unitary
representation of G in a finite von Neumann algebra (a result due to Kadison and
Singer [8, p. 64]). Moreover, it was shown by Kallman [6] that the disintegration
of any uniformly continuous unitary representation of a locally compact con-
nected group involves a measure which is compactly supported in the set of
finite-dimensional irreducible unitary representations. Finally, there are results
saying that, roughly speaking, irreducible uniformly continuous representations
are finite-dimensional (see [3], [4], [16]). We shall give a unified proof of the
following result: if A: is a non-discrete locally compact field (of any characteristic),
and if Gk is the group of A>rational points of some isotropic simple algebraic
group defined over k, endowed with its natural locally compact topology, then
any strongly continuous unitary representation of Gk in a finite von Neumann
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algebra and any uniformly continuous bounded representation of Gk on a Banach
space factorize through a compact abelian group. (Moreover, the second assertion
is even true without the boundedness assumption if k ¥= U, C.) The results are
related to the existence in Gk of a "large" (we quote Tits [17, p.314]) normal
subgroup Gk which is m.a.p. Our proof was motivated by the proof of von
Neumann and Segal [10] of the fact that strongly continuous unitary representa-
tions of a simple non-compact Lie group in a finite von Neumann algebra are
trivial; our idea is to consider elements g of a topological group G which are
approximately conjugate to 1, i.e. such that the closure of the conjugacy class of g
contains the identity 1 of G. For example, in SL2(&), the element g = (£> ?) has
this property, as we see from formula (*) by letting X tend to 0 in k. The proof
will proceed by introducing a class # of topological groups such that, if H
belongs to %', and if G is any topological group, the set of elements in G which
are approximately conjugate to 1 is in the kernel of any continuous homomor-
phism G —* H.

1. The set S(G)

We recall that, for any group G, we have defined S(G) to be the set of g's in G
such that, for some k in No, g is conjugate to g" for any n in No. For any
element x in a Banach algebra A, we denote by spx (respectively r(x)) the
spectrum (respectively spectral radius) of x.

PROPOSITION 1. Let A be a unital Banach algebra, and let x be an element in
1). Then either spx = {1} or spx = S1.

PROOF. First, we claim that spx is contained in S1. Indeed, since x belongs to
S(A~l), there exists a k in Ho such that

spx = sp(x" ) = (spx)" for any n in l\l0.

So, if some z in spx is such that \z\ =£ 1, then spx contains the sequence
(z" ) „ e N , which contradicts the compactness of spx in C x. Now, we identify S1

with R/Z by s -* exp(2nis). The result then follows from the next lemma.

LEMMA 1. Let X be a non-empty closed subset of U/Z, such that nkX = X for
any n in Mo. Then either X = {0} or X = R/Z.

PROOF. We use several steps.
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Step 1. If X is finite, then X = {0}. Indeed, let a be the permutation of X
defined by o(x) = 2kx (x e X). Let m be the cardinal of X; iterating m\ times
the preceding relation (although the order of a in the symmetric group Sym m
would suffice), we get

x = {2k)m'x i.e. 0 = (2km' - l)x.

So, for some positive integer /, X is contained in the set fi, of elements of order /
in R /Z . Consequently X = lkX is contained in lkti, = {0}.

Step 2. If X admits 0 as a limit-point, then X = R/Z. Indeed, let (xn)n<ENo be
an injective sequence tending to 0 in R/Z. Identify R/Z with the interval [0, 1[;
then (xn) is a sequence in [0, 1[ having at most two limit points, 0 and 1. Assume
that 0 is such a limit-point; then there is a subsequence ()>„)„eN tending to 0.
Denoting by [x] the integer part of the real number x, we consider the following
sequence:

(1) y1,2
ky1^

ky1,...,[yl-
1/kVyi^2,2ky2,...,[y21/kVy2, y , , - - - -

This sequence is clearly contained in X. Now, consider the sequence:

(2) yy
k, 2yYk, 3yl/k,..., [y^/k\y\/k, y\/k, 2yy

k,..., [y^k\yy
k,

which is dense in [0, 1[ since (yyk) tends to 0. But (2) is obtained by taking the
kth root of each term in (1), so (1) itself is dense. All this shows that X is dense in
R/Z , and this concludes our proof in the case where 0 is a limit-point of (xn).
The case where 1 is a limit-point can be reduced to the previous one by
identifying R /Z with [ -1,0[ instead of [0,1[. This concludes the second step.

Step 3. We now prove the lemma itself. Assume that X contains some irrational
number #. Then X contains the sequence («*#)„ e N which, by van der Corput's
theorem (see [7, Theorem 3.2]), is uniformly distributed, hence dense, in R/Z. So
X = R / Z in this case. It remains to show that if X is contained in Q/Z, then
necessarily X = {0}. Assume the contrary; then, by step 1 of the proof, X is
infinite, so by compactness X contains at least one limit-point x. Since X is
rational, we find a positive integer / such that 0 = Ix in R/Z. So 0 = lkx is a
limit-point of X as well, and by step 2 of the proof, we have X = R/Z, a
contradiction. This proves Lemma 1 together with Proposition 1.

REMARK 1. Step 1 of the above proof is essentially Lemma 1 of [11]. This step
suffices to show that, for any group G, the set S(G) is contained in n(G). More
generally, for any field K and any group H of diagonalizable matrices in
Ghn(K), the set S(G) is contained in the kernel of any homomorphism G -> H.
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We denote by GL(E) the group of bounded invertible operators on the Banach
space E, and by GL0(£') the subgroup of those operators that are scalar modulo
compacts.

LEMMA 2. Let E be a Banach space; if"T' e GL(£) is such that sp T = (1} and
sup||rn| | < oo, then T = 1.

PROOF. There are two cases where this lemma is well known: if either £ is a
Hilbert space (then the representation of Z defined by T can be unitarized, by
amenability of Z), or T is an isometry on E (then the lemma is just [12, 8.1.11]).
For the general case, we find by holomorphic functional calculus a quasi-nilpo-
tent operator H such that eH = T. Then a simple interpolation argument shows
that the uniformly continuous representation t -* e'H of U is bounded; by
Lemma 1 of [3], we have H = 0, i.e. T = 1.

From Proposition 1 and Lemma 2, we deduce

THEOREM 1. Let G be a group, and let w be a bounded representation on some
Banach space. Then, for any g in S ( G ) \ K e r w , we have spw(g) = S1 and

~~ 111 3s 2, with equality if ir is unitary.

PROOF. TO prove the inequality, simply notice that

because sp -rr(g) = S1. The other statements are clear.

COROLLARY 1. If -n is a bounded representation of G whose image is contained in
GLQ(.E'), then S(G) is contained in Kerw.

This follows from Theorem 1 and from the fact that sp w(g) is countable.

COROLLARY 2. Let A be a unital post-liminal C*-algebra admitting a finite
composition series 0 = I0<Il< • • • <In — A such that Ij+i/Ij is liminal for i =
0 , 1 , . . . , n — 1. Let &(A) be the unitary group of A. Then, for any group G, the set
S(G) is contained in the kernel of any homomorphism G —> <%{A).

PROOF. (For general background on post-liminal C *-algebras and composition
series, see [12].) We have to show that S(^(A)) = {1}. Assume, by contradiction,
that there exists some u # 1 in S(<%(A)). Denoting by /, the unital C""-sub-alge-
bra generated by /,, we see that, for some / > 0, the unitary u belongs to /, but
not to /,_!; let u be the image of u in Ii/Ii_l (u ¥= 1), and let IT be an irreducible
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representation of / , / / ,_ i on some Hilbert space J ^ , such that ir(ii) # 1. Since
/ , / / , _ ! is liminal, W(M) belongs to G L 0 ( J ^ ) , but this contradicts Corollary 1.

We conclude this section by giving some examples to which the preceding
results apply.

PROPOSITION 2. Let k be a field of characteristic 0, and let H be a subgroup of
Ghm(k) admitting a cyclic vector x0 in km, and such that, for any n e No, there is
an hn G H satisfying hn(x0) = nx0. Let G be the semi-direct product km XI H, and
let ii be a representation of G satisfying the assumptions of either Corollary 1 or
Corollary 2. Then IT factorizes through H.

PROOF. It is enough to show that the subgroup generated by S(G) contains km.
Clearly, for any \ e t x and any h e H, the element h(\x0) is in S(G); by
cyclicity of x0, we may select a basis xl,...,xm inside the orbit Hx0, and the
preceding argument shows that any linear combination of the JC,'S, i.e. any
element of km, belongs to the subgroup generated by S(G).

An important application of this result is given by the "ax + b" group of k, i.e.
the semi-direct product k XI kx. In particular, any finite-dimensional unitary
representation of this group factorizes through kx (for a locally compact non-dis-
crete k and a continuous representation, this follows immediately from Mackey's
theory [8]).

THEOREM 2. Let G be an isotropic simple algebraic group defined over some field
k of characteristic 0. Let Gk be its group of k-rational points, and Gk be the
subgroup generated by all unipotent k-subgroups which are split over k. Let m be a
representation of Gk satisfying the assumptions of either Corollary 1 or Corollary 2.
Then IT factorizes through Gk/Gk.

The group G is isotropic if it admits a split torus of positive dimension (over k).
In characteristic 0, Gk may be defined more simply as the subgroup generated by
all unipotent elements of Gk (see [1, 6.2]). The structure of Gk/Gk is discussed in
[17,1.4]. A conjecture of Kneser and Tits asserts that this group is always abelian,
and is trivial if G is simply connected over k (this is known if G admits a Borel
subgroup defined over k [1, 6.6], [17, 1.4]). If G is a classical group, the structure
of Gk/Gk is given explicitly in [2]. In any case, Gk is Zariski-dense in G ([17,
3.2(20)]).

Following Howe and Moore [5], we say that a one-parameter subgroup in Gk is
a non-trivial algebraic homomorphism /?: kadd -* Gk, and that a one-parameter
subgroup /? is of Jacobson-Morosov type if there exists an homomorphism
SL2(/c) -» Gk which coincides with /} when restricted to the subgroup &add of
upper strictly triangular matrices (possibly after a reparametrization of /?). It is
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clear from formula (*) in the introduction that, in characteristic 0, the union of all
one-parameter subgroups of Jacobson-Morosov type is contained in S(Gk).

PROOF OF THEOREM 2. It suffices to show that the (normal) subgroup of Gk

generated by S(Gk) contains Gk. But, according to a theorem of Tits [17,1.1], the
group Gk is simple modulo its centre. So it is enough to prove that Gk contains
one-parameter subgroups of Jacobson-Morosov type. This follows from root
theory: to any restricted root « of G (such an a does exist, for G is isotropic), one
associates a non-trivial homomorphism /?: SL2(A:) -» Gk (see [17, 3.1(13) and
3.3]). This concludes the proof.

REMARK 2. As a consequence, we see that any finite-dimensional unitary
representation of Gk factorizes through Gk/Gk. Several variants of this result can
be found in the literature, especially in Borel and Tits' paper [1] (for example, this
is a consequence of [1,10.3] in the case where k is not a subfield of C; also, a very
particular case of [1, Theorem A] shows that there is no homomorphism Gk -»
SU(n) with Zariski-dense image).

REMARK 3. Theorem 2 implies the fact that connected simple non-compact Lie
groups are m.a.p. in the discrete topology. Taking Remark 1 into account, we see
that a finite-dimensional representation of such a group by normal operators is
trivial as well. This is a particular case of a result of Sherman [15].

REMARK 4. As a consequence of Theorem 1, we see that, for any g belonging to
a one-parameter subgroup of Jacobson-Morosov type in Gk, and any unitary
representation m of Gk such that 7r(g) # 1, the spectrum of w(g) is S1. For
k = U and strongly continuous representations m not containing the trivial
representation, there is a much more precise result due to Moore [9, Theorem 2],
which completely classifies the unitary type of w(g).

2. Elements approximately conjugate to 1

We say that a topological group G belongs to the class <€ if there exists a
function <p on G which is central (i.e. constant on conjugacy classes), continuous
at 1, and such that <p(g) = 0 if and only if g = 1.

The following proposition is an immediate consequence of the definition.

PROPOSITION 3. Let G, H be topological groups, and let /?: G -* H be a
continuous homomorphism. If H belongs to class *€, then the set of elements
approximately conjugate to 1 in G is contained in Ker/8.

https://doi.org/10.1017/S1446788700033838 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033838


i 8 ] Minimally almost periodic groups 373

This proposit ion is exemplified by the following result.

PROPOSITION 4. The following groups belong to class %'.
(i) The unitary group of a finite von Neumann algebra M, endowed with the

strong topology.
(ii) Any bounded subgroup of GL(£) , endowed with the norm topology {where E

is a Banach space).

PROOF, (i) Let T be any faithful, finite, normal trace on M; for g in
define <p(g) = T(1 - g); then <p is central, it is strongly continuous (by [12,
3.6.4]), and the third condition is proved as in [10] (using the fact that, if Re(g) is
the real part of g, then 1 - Re(g) is a positive element).

(ii) Define y(g) = r(g — 1); the conclusion follows from Lemma 2.

From this, we immediately deduce

COROLLARY 3. For any topological group G, the set of elements approximately
conjugate to 1 in G is contained in n(G).

Let us give examples where these results apply

PROPOSITION 5. Let k be a non-discrete locally compact field of any characteristic,
and let H be a closed subgroup of GLm(/c). Assume that there exist a vector x0 in
km, cyclic for H, and for any X e kx, an element hx^ H such that hx(x0) = \x0.
Then any continuous homomorphism from the semi-direct product G = km X H to a
group of class *$ factorizes through H.

This is proved exactly like Proposition 2. In particular, it applies to the
"ax + b" group of k.

THEOREM 3. Let k be a non-discrete locally compact field, and let G, Gk, Gk be
as in Theorem 2. Endow Gk with its natural locally compact topology. Any
continuous homomorphism from Gk to a group of class W factorizes through G k/G

a
k,

a compact abelian group.

Note that G is isotropic if and only if Gk is non-compact in its locally compact
topology. Results of Borel-Tits [1, 6.14-15] assert that Gk is closed in Gk, and
that Gk/Gk is compact abelian. Moreover, if k = U, Gk coincides with the
topological connected component of the identity in Gk.

https://doi.org/10.1017/S1446788700033838 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033838


374 Alain Valette '91

PROOF OF THEOREM 3. We begin with G = SL2; but we saw in the introduction
that SL2(A:) is generated by elements approximately conjugate to 1. For a general
G, as in Theorem 2 we associate to any restricted root a non-trivial continuous
homomorphism SL2(A:) -+ (?£. So G°k contains non-central elements which are
approximately conjugate to 1, and the simplicity of G° modulo its centre allows
one to conclude.

REMARK 5. The preceding result shows that any uniformly continuous bounded
representation of Gk factorizes through Gk/G°k (and the proof shows that G°ki&
m.a.p.). In characteristic 0, it is possible to deduce these results from Theorem 1;
indeed, let fl: kadd -> Gk be a continuous one-parameter subgroup of Jacobson-
Morosov type. If -n is a non-trivial bounded representation of Gk, then by
Theorem l , for any s e k*: 2 < HI - w(/3(s))||. So, letting s tend to 0 in k, we
see that m cannot be uniformly continuous. Note that for k — U, C, one might
also reduce the whole problem to a finite-dimensional situation by using the fact

k mAefitt
mensional irreducible representations (see [4, Proposition 4]; this is proved using
Weyl's unitary trick).

COROLLARY 4. If k * R, C, and if G, Gk, G°k are as above, then any uniformly
continuous representation of Gk factorizes through Gk/G°k {without any bounded-
ness assumption).

PROOF. AS in Theorem 3, it is enough to give the proof for G = SL2. But since
k is distinct from U and C, k contains a valuation ring u, and SL2(u) is a
maximal compact subgroup of SL2(k); so the restriction of any uniformly
continuous representation IT to SL2(w) is bounded, and since any element g =
(o "), a e <o, is approximately conjugate to 1 in SL2(A:), we see by Proposition 3
and 4 that g belongs to Kerw (see [4, Proposition 5] for a different proof).

Concerning finite-dimensional representations, the preceding corollary has
some overlap with Theoreme (A) in Borel-Tits [1]. Indeed, it follows from this
result that Gk has no embedding in GLM(C) if char A: =£ 0, even if there is no
continuity condition. On the other hand, in characteristic 0, our corollary is in a
certain sense "best possible", since there are plenty of embeddings of /?-adic
fields into C giving rise to discontinuous representations of Gk.

To conclude, we mention that, for finite-dimensional unitary representations of
Gk (char k = 0), our Theorem 2 seems to be stronger than Theorem 3, since there
are no continuity assumptions involved in Theorem 2. However, another result of
Borel-Tits [1, 9.1] shows that any homomorphism from Gk to a compact group is
necessarily continuous; this extends an old result of van der Waerden [18] in the
case k = U.
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