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CHARACTERISATION OP DROP AND WEAK DROP PROPERTIES
FOR CLOSED BOUNDED CONVEX SETS

J.R. GILES AND DENKA N. KUTZAROVA

Modifying the concept underlying Danes' drop theorem, Rolewicz introduced the
notion of the drop property of a norm which was later generalised to the weak
drop property of a norm. Kutzarova extended the discussion to consider the
drop property for closed bounded convex sets. Here we characterise the drop and
weak drop properties for such sets by upper semi-continuous and compact valued
subdifferential mappings.

Consider a closed bounded convex set A in a Banach space (X, ||-||). Given x # A,
the set D(x, A) is the convex hull of x and A is called the drop generated by x.
Danes [2] proved that for every closed set C at positive distance from the closed unit
ball ~B{X) there exists an x £ C such that D(x, i?(X)) D C = {x}. Rolewicz [11],
modifying the Danes drop theorem assumption said that the norm \\-\\ has the drop
property if for every closed set C disjoint from B(X) there exists an x £ C such that
D(x, I?(X)) DC = {x}. Rolewicz [11, p.34] proved that if the norm || | | has the drop
property then X is reflexive. In [6] Giles, Sims and Yorke noted that Rolewicz' drop
property of the norm can be characterised by the duality mapping from the dual sphere
S{X*) into subsets of the second dual sphere S(X**), being upper semi-continuous and
compact valued. This characterisation led them to introduce a drop property weaker
than that of Rolewicz. They said that the norm \\-\\ has the weak drop property if
for every weakly sequentially closed set C disjoint from B{X) there exists an x G C
such that D{x, B(X)) (1 C = {x} and they showed that this property is equivalent to
X being reflexive and able to be characterised by the duality mapping from the dual
sphere, being upper semi-continuous from the norm to the weak topology and weak
compact valued. Kutzarova [8] generalised Rolewicz' drop property of the norm in a
different direction. Instead of drops formed from the closed unit ball she considered
drops formed from any closed bounded convex set. She said that such a set A has the
drop property if for every closed set C disjoint from A there exists an x £ C such that
D(x, A)t~\C = {*}• In papers [8] and [9] such sets with the drop property were studied.
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In this paper we carry the discussion to its next logical stage. We take Kutzarova's
idea and consider a weaker drop property for closed bounded convex sets. We say that
such a set A has the weak drop property if for every- weakly sequentially closed set C

disjoint from A there exists an x G C such that Z?(x, A)DC — {x}. Closed bounded
convex sets with the weak drop property have a very satisfying characterisation, more
so than those with the drop property, for such sets with the weak drop property are
precisely those which are weakly compact. We show that closed bounded convex sets
with the weak drop property and closed bounded convex sets with the drop property
can be characterised by the sub differential mapping / >-» dp(f) of the gauge p of the
polar A0 mapping from X* into subsets of X**, being upper semi-continuous and
compact valued on Jf *\{0} under appropriate topologies.

We need a special case of Danes' generalised drop theorem for closed bounded
convex sets, [3, p.448]. We include a simple proof derived from Ekeland's variational
principle, [4, p.169].

THEOREM 1 . Given a closed bounded convex set A in a Ba.na.ch space X, for
every closed set C at positive distance from A, there exists an io 6 C such (hat
D(x0, A)nC = {x0}.

PROOF: We may suppose that 0 G A. Since A is bounded there exists a p > 0
such that B[0; p] D A and B[0; p] ("I C ^ 0. Now consider the complete metric space
Y = B[0; p] D C with metric induced by the norm. Writing d = d(A, C) > 0, consider
the continuous function t(): Y —» R denned by ^(x) = (2p/d) \\x\\. By Ekeland's
variational principle there exists an xo G Y such that ^(sco) < ip(x) + \\x — xo\\ for all
x G Y, x ^ xo. Then x<> G D(xo, A) C\ C. Suppose that there exists another point
x' G D(x0, A) f~l C. Then x' = (1 - X)x0 + Xv for some 0 < A < 1 and v G A. So
||x'|| < (1 - A) ||*o|| + A |M| and Ad < A(||xo|| - ||v||) ^ ||xo|| - ||x'||. But then

¥ ) IM < ( f ) H*'11 + l|x' ~ xo11 = ( ¥ ) M + A l|xo ~
Now ||xo — u|| ^ 2p so ||xo|| < ||x'|| + (||xo|| — ||x'||) which is not possible. So we
conclude that D(x0, A) D C = {x0}. D

Associated with the drop property Rolewicz introduced a useful sequential con-
cept. Given a closed bounded convex set A, a sequence {xn} in X \ A such that
xn+i G D{xn, A) for all n G N, is called a stream. Rolewicz [11, p.29] proved that
the norm | | | | has the drop property if and only if each stream in X \ B(X) contains a
convergent subsequence and this was generalised in [6, p.506] to the norm ||-|| has the
weak drop property if and only if each stream in X\B(X) contains a weakly convergent
subsequence.
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Theorem 1 enables us to give a first characterisation of the drop and weak drop
properties for closed bounded convex sets by streaming sequences.

THEOREM 2 . A closed bounded convex set A in a Banach space X has the drop
(weak drop) property if and only if stream in X \ A has a norm (weak) convergent
subsequence.

PROOF: Suppose that there exists a stream {xn} in X \ A which does not contain
a norm (weak) convergent subsequence. Then C = {xn : n G N} is a norm (weakly
sequentially) closed set. Now xn+i G D(xn, A) for all n G N and we see that there is
no n £ N such that D(xnt A) PI C = {xn}, so A does not have the drop (weak drop)
property.

Conversely, suppose that A does not have the drop (weak drop) property. Then
there exists a norm (weakly sequentially) closed set C disjoint from A such that for each
z G C, inf {(f(z, 4 ) : i £ C n D(z, A)} = 0, otherwise we would contradict Theorem 1.
So there exists a sequence {xn} in C such that zn+i G D(xn, A) and there exists a
sequence {yn} in A such that \\xn — yn\\ —> 0. As a stream, {xn} has a subsequence
{xnjt} norm (weak) convergent to some xo. Since C is norm (weakly sequentially)
closed, xo G C. But \\xnk — ynk\\ —* 0 and so {ynt} is norm (weak) convergent to xo.
As A is closed and convex, in both cases xo G A. But this contradicts the fact that C
and A are disjoint. U

We recall some basic properties of polars and subdifferentials of gauge functionals.
Given a convex set A in X with 0 G int A, the gauge p of A is defined by p(x) =
inf {A > 0 : x G XA} and p is a continuous sublinear functional on X. A subgradient of p
at xo G X is a continuous linear functional / on X such that /(x — xo) ^ p{x) — p{xo)
for all x G X. The subdifferential of p at XQ , denoted by dp(xo), is the set of all
subgradients of p at xo. The Hahn-Banach Theorem guarantees that dp(x) ^ 0 for
each x G X, [4, p.27]. Further, for each x G X, dp(x) is a weak* compact convex
subset of X*, and the aubdifferential mapping x H-> dp(x) is a set valued mapping from
X into subsets of X* and is weak* upper semi-continuous; that is, given x G X and a
weak* neighbourhood W of 0 in X* there exists a 8 > 0 such that dp(y) C dp(x) + W
when ||x - y | | < 6, [4, p.132].

Given a closed bounded convex set A in X with 0 G A, recall that A0 the polar of
A is defined by A0 = {/ G X* : f(x) < 1 for all x G A} and A0 is closed convex and
0 G int A0. The Banach-Alaoglu Theorem tells us that if 0 G int A then A0 is weak*
compact. A point a® G A is called a support point of A if there exists a continuous
linear functional / on X, f ^ 0 such that f(a0) = sup{/(x) : x G A}. If int A ^ 0
then the set of support points of A, denoted by supp A, is the set A\ int A, [4, p.67].

We note some basic relations between polars and subdifferentials. For a closed
bounded convex set A with 0 G int A, its gauge p is a continuous sublinear functional
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on X. Given xo G X, for any /o G dp(xo) we have fo{xo) = p(zo) and fo(x) ^ p(x)

for all a £ Jf, so /o(x) ^ 1 for all x 6 A and /o € A0. Using ~ to denote natural
embedding elements, we have fo(xo) - supxo(A°) ^ /(«o) for all / e A0 and so
/o ^ 0 then / 0 G supp A0.

To develop our characterisation theorems we need the following lemma. We will
denote by r the weak (w) or norm (n) topologies and given a closed bounded convex set
A with 0 G int A we will say that the subdifferential mapping x i-» dp(x) where p is
the gauge of A, is (n — r ) upper semi-continuous at z if given a r-open neighbourhood
W of 0 in X* there exists a * > 0 such that dp(y) C 0p(x) + W when ||x - y|| < 8.

LEMMA 1 . Consider a closed bounded convex set A with 0 G A in a Banach
space X and the gauge p of the polar A0 on X*. If A is r-coznpact then for each
f G X*, dp(f) C A and the subdifferential mapping f t-> dp(f) from X* into subsets
of X** is (n — r ) upper semi-continuous and r-compact valued on X*.

PROOF: Note that the polar A0 in X* is closed convex and 0 G int A0, so its

gauge p is a continuous sublinear functional on X*. Consider the set-valued mapping

/ i-» dp(f) D A from X* into subsets of X**. As dp(f) is weak* compact and A is

r-compact so dp(f) D A is T-compact. We show that the mapping / >->• dp(f) D A is

(n — T) upper semi-continuous. Suppose that it is not (n — T) upper semi-continuous

at /o G X*. Then there exists a T-open neighbourhood W of 0 in X" and for each

n G N there exists an /„ G X* such that | | / n —/o|| < 1/n and an G dp(fn) but

on ^ (dp(/o) (1 J4J + W. Now since i4 is r-compact, {an} has r-cluster point 2o G A.

Given / G X* , consider

Mf) ~ «o(/o) = 2o(/) - on(/) + an(f) - an(fn) + on(/n) - Sn(/0) -I- an(/0) - ao(/o).

Now ao(/) — a n ( / ) and Sn(/o) — So(/o) can be made arbitrarily small since 3o is a r-

cluster point of {a n } . Also | a n ( / n ) — an(/o)| ^ if | | / n — /o || ^ K • 1/n for some A" > 0

since 2 is bounded. Further, a n ( / ) - o n ( / n ) < p(f)-p{fn) = p( / ) -p( /o)+p(/o)-p( /n)

and p{fn) —* p(/o) since p is continuous. Therefore, So(/) — 2o(/o) ^ p(/) ~p(/o) for

all / G X* and so a0 G dp(fo). This contradicts the fact that for each n G N,

an g (dp(fo) HA) +W. Then both / i-> 5p(/) and / H^ 9p(/) n 2 are weak* upper

semi-continuous and weak* compact valued mappings on X*. But since p is convex

its subdifferential mapping / >-» dp(f) is a minimal weak* upper semi-continuous and

weak* compact valued mapping on X*, [10, p.100]. Therefore dp(f) C A for all

/ G X*. We conclude that the subdifferential mapping / i-» dp(f) is (n — T) upper

semi-continuous and r-compact valued. D

We now present our main characterisation theorem for closed bounded convex sets
with the weak drop property. The theorem is a generalisation of the characterisation
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theorem for the weak drop property for the norm, [6, p.506] and that theorem follows
as a particular case. Since the weak drop property is translation invariant, we may
assume that the closed bounded convex sets we are considering contain 0.

THEOREM 3 . For a closed bounded convex set A with 0 G A in a Banach space
X, the following statements are equivalent.

(i) A has the weak drop property;
(ii) A is weakly compact;

(iii) the subdifferential mapping f >-* dp(f) tor the gauge p of the polar A0

mapping from X* into subsets of X** is (n — w) upper semi-continuous
and weak compact valued on X* \ {0}.

PROOF: (i) => (ii) Consider f e X*, \\f\\ = 1. Write M = sup{/(x) : x e A};
since A is bounded M < oo. Consider Xi ^ A with /(xi) > M(2 — 1/4) and a
sequence {yn} in A such that f(yn) > M(\ — l /4n) . We define a sequence {xn} in
X \ A recursively by xn + 1 = (xn + yn)/2.

Then xn+i £ D(xn, A) and f(xn) ^ M(l +3/4"). As a stream, we have from
Theorem 2 that {xn} has a subsequence {xnjk} weakly convergent to some xo and it
follows that f(x0) > M. Write zn+1 = Vl/2

n + jte/2""1 + • • • + W 2 -
Now zn+\ is a convex combination of {0, yi, . . . , yn} in A so zn+i £ A. Also

xn +i = xi/2n + 2n + 1 so ||xn+i - zn+i| | = Hxill /2" -> 0 and n - t o o . Therefore {znk}
is weakly convergent to XQ. But A is weakly closed so XQ £ A. Therefore /(xo) = M
and / attains its supremum on A so from James' characterisation [7], A is weakly
compact.

(ii) => (i) Consider Xi $ A and a stream {xn}. Then xn +i = aj+ 1xi+a"+ 1j / i +
.. . + a" + 1 j / n , a convex combination of xi and {j/i, j/2> • • • > I/n} m -4.. Write «n+i =
a"+1j/i + aj+1y2 + • • • + a£+12/n • Then zn+i is a convex combination of {0, j/i, . . . , T/n}
in A so 2n+i € J4. Passing to a subsequence, we may assume that OQ+1 —» to some
oo as n - • oo. As A is weakly compact there exists a subsequence {znt} weakly
convergent to some ZQ 6 A. Then {xnjt} is weakly convergent to a^xx + ZQ and our
result follows from Theorem 2.

(ii) => (iii) It follows as a direct application of Lemma 1 that the subdifferential
mapping / >—> dp(f) is a (n — w) upper semi-continuous mapping of X* into subsets
of X** and is weak compact valued.

(iii) => (ii) Suppose that (iii) holds but that A is not weakly compact. From James'
characterisation there exists an /o € X* \ {0} which does not attain its supremum on
A. Then dp(fo) is a weakly compact convex set disjoint from the weakly closed convex
set A. So dp(/o) and A can be strongly separated by a weakly continuous linear
functional on X**. By the Bishop-Pehlps Theorem for convex sets [1, p.30], for each
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n £ N there exists an an £ A and an /„ £ X* such that / n (a n ) = sup/n(j4) and

| | /o - /» | |< l /n .
Then p(fn) = fn(an) and p(/) ^ f(an) for aU / € X' so on(/) - Sn(/n) ^

P(f) -p(/n) for all / 6 X*; that is, an £ dp(/n).
Therefore, the sub differential mapping / i—> 9p(/) being (n — w) upper semi-

continuous at /o imphes that for every weak open neighbourhood W of 0 in X **,

dp(fo) + W contains elements from A. Since dp(fo) is weakly compact, this contradicts

the separation property we establish previously. u

A similar characterisation theorem for bounded closed convex sets with the drop

property is not nearly so straightforward. We draw on results established in [8, 9]. To

develop the proof we need to explore characterisations of the upper semi-continuity and

compact valued property of sub differential mappings which we do in the following two

lemmas. These generalise results proved for duality mappings in [5, p.102 and p.104]

Given a closed bounded convex set A in X and / £ X* \ {0} we write M(f, A) =

sup{/(a;) : x £ A} and for 8 > 0, the slice of A is the subset S(A, / , 8) = {x £ A :

f(x)>M(f,A)-6}.

LEMMA 2 . Consider a closed bounded convex set A with 0 £ int A in a Ba.na.ch

space X and p the gauge of A on X. lithe subdifferential mapping x t—> dp(x) from

X into subsets of X* is (n — r ) upper semi-continuous at x £ X \ {0} then for each

T-neighbourhood W of 0 in X* , dp(x) 4- W contains a slice of A0 determined by x.

PROOF: Suppose for some 8 > 0, we have dp(y) C dp(x)+W/2 when \\y — x\\ < 8.

Choose 0 < e < 8 such that eB(X') C W/2. Consider / £ S(A°,x,£2), then

f(x) > supz(.4o) - e2. By the Br0ndsted-Rockafeller Theorem [4, p.173], there exists

an /o £ X* and a n i o 6 l such that /o(xo) = sup£0(-<40) = p(zo), so f0 £ dp(x0),

and ||z - zo|| < e and \\f - fo\\ < e. But since dp{y) C dp{x) + W/2 when ||y - x\\ < 8

we have / £ /„ + eB{X*) C /„ + W/2 C dp{x) + W. D

LEMMA 3 . Consider a closed bounded convex set A with 0 £ int A in a Banach

space X and p the gauge of A on X. The subdifferential mapping x i—> dp(x) from

X into subsets of X* is (n — r ) upper semi-continuous at x £ X \ {0} and dp(x) is

T-compact if and only if the weak* and r topologies on A0 agree at points of dp(x).

PROOF: Given that the subdifferential mapping x i—• dp[x) is (n — r ) upper semi-

continuous at x £ X\{0} and dp(x) is T-compact, suppose that there exists a net {/Q}

in A0 weak* convergent to /o £ dp(x) but {/a} is not T-convergent to /o. Then {/a}

is not T-convergent to any element of dp(x). Since dp(x) is T-compact there exists a

T-open set G such that dp[x) C G and a subnet {fag} such that for all /?, fap $. G.

Again since dp(x) is T-compact there exists a T-neighbourhood W of 0 in X* such that

dp(x) + W C G so for all 0, fag $ dp(x) + W. However, fap(x) -> fo(x) = snpx(A°)
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so {fap} is eventually in any given slice of A0 determined by x. We see from Lemma
2 that we have contradicted the (n — T ) upper semi-continuity of the sub differential
mapping x >-» dp(x) at x.

Conversely, given that for x G X \ {0}, the weak * and T-topologies on A0 agree
at points of dp(x), it follows that 9p(x) is r-compact. Suppose that the sub differential
mapping x t-» dp(x) is not (n — r) upper semi-continuous at x. Then there exists
a sequence {x n } in X such that xn —» x and a T-neighbourhood W of 0 in X*

and a sequence {/n} where fn £ 3p(xn) such that for all n £ N , / „ ^ dp(x) -f W.

Since J4° is weak* compact there exists a subnet {/„«} which is weak* convergent
to some /o G A0 and since the sub differential mapping x »-» 9p(x) is (n — w*) upper
semi-continuous then /o G 3p(x). However, {/n^} is not T-convergent to / o . 0

Given a closed bounded convex set A, a support point XQ of A is said to be a
point of continuity if, whenever a sequence {x n } in A is weakly convergent to x0 , then
it is norm convergent to xo. Kutzarova proved that if A has the drop property then
every support point of A is a point of continuity [8, p.284] and conversely if int A ^ 0
and A is weakly compact and every support point is a point of continuity then A has
the drop property, [8, p.284].

Given that a closed bounded convex set A has the drop property then by [9,
Theorem 3] we have that A is norm compact or int A ^ 0. If A is norm compact then
from Lemma 1 we have that the subdifferential mapping / h-» dp(f) for the gauge p of
the polar A" mapping from X* into subsets of X** is (n — n) upper semi-continuous
and norm compact valued on X* . We will characterise the more interesting case when
int A ^ 0. Since the drop property is translation invariant, we may assume that
0 G int A.

THEOREM 4 . A closed bounded convex set A with 0 G int A in a Banach space

X has the drop property if and only if the subdifferential mapping f i-» dp(f) for

the gauge p of the polar A0 mapping from X* into subsets of X** is (n — n) upper
semicontinuous and norm compact valued on X* \ {0}.

PROOF: If a has the drop property then by Proposition 2.3, [8, p.284] we have that
A is weakly compact. But then since int ^ 0, X is reflexive. Now the subdifferential
mapping / t-» dp(f) is (n — w) upper semi-continuous and weak compact valued on
X* . Suppose that / »-» dp(f) is not (n — n) upper semi-continuous at /o G X* \ {0}.
Then there exists a norm open neighbourhood W of 0 in X** and for each n £ N,
an /„ G X* such that | | / « - / 0 | | < 1/n and a, E dp(/n) but an g 0p(/o) + W.

Since A is weakly compact, {on} has a subsequence {an t} weakly convergent to a0

and, as in the proof of Lemma 1, a0 G dp(f0). But then a0 is a support point of A.

However, by Proposition 2.2, [8, p.284], we have that every support point is a point of
continuity so {oni} is norm convergent to ao. But this contradicts an £ dp(fo) + W.
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So we conclude that / •-» dp(f) is (n — n) upper semi-continuous on X* \ {0}. Given
/ G X * \ { 0 } , consider a sequence {an} in dp(f). Since dp(f) is weakly compact there
exists a subsequence {ank } weakly convergent to a G dp(f). But since every support
point of A is a point of continuity, {anjfc} is norm convergent to a. So dp(f) is norm
compact.

Conversely, if the subdifferential mapping / i-> dp(f) is (n — n) upper semi-
continuous and norm compact valued on X* \ {0} then it is (n — w) upper semi-
continuous and weak compact valued Jf*\{0} so from Theorem 3, A is weakly compact
and so X is reflexive. Since 0 £ int A applying Lemma 3 to A0 we see that for each
/ £ X* \ {0} the weak and norm topologies on .A00 = A agree at points of dp(f). So
every support point of A is a point of continuity and it follows from Theorem 2.1, [8,
p.284] that A has the drop property. D

The following is an example of a closed bounded convex set which does not have
the drop property but where the subdifferential condition holds. In Hilbert sequence
space {£2, IHI2)) consider A as the closed unit ball of the linear subspace £p for a
given 1 < p < 2. Now A is bounded closed and convex and int A — 0 in (£2, | |- | |2)-
Also A0 is the intersection of £2 with the closed unit ball of £q where 1/p -f I /9 = 1
and int A0 ^ 0. But the norm of £q is Frechet differentiable away from 0, which will
give us that the subdifferential mapping / 1—> dp(f) of the gauge p of A0 is (n — n)
upper semi-continuous and norm compact valued on X* \ {0} in (£2, ||-||2)> [4, p.147].
However, as A is not norm compact and int A = 0 we have from [8, p.285] that A
does not have the drop property.
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