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Abstract
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and
lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane
lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy
might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to
examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were
incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell
membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived
giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in
healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order.
These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate
down-stream clonal expansion.
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Although inflammatory responses are orchestrated by a wide
spectrum of cells, CD4+ T cells have been implicated as one of
major players in the induction and maintenance of chronic
inflammation in many human inflammatory diseases(1,2). The
fatty acid composition of T cell membrane lipids has been widely
reported to influence immune and inflammatory responses(3–8).
Specifically, dietary n-3 PUFA have been shown in many
clinical studies to attenuate inflammatory responses(9–11),
despite some clinical studies where a lack of effect was repor-
ted(12–14). Mechanisms underlying the anti-inflammatory actions
of n-3 PUFA include altered cell membrane phospholipid

fatty acid composition, disruption of lipid rafts, inhibition of
pro-inflammatory transcription factors, reduction of inflammatory
gene expression, and others(3,15–17). However, the membrane
altering, anti-proliferative properties of n-3 PUFA have not been
reported in primary human CD4+ T cells.

The plasma membrane is a dynamic cellular structure com-
posed of a myriad of lipids and proteins(18). These membrane
components are exquisitely organised via various forms of lipid,
protein and cytoskeletal interactions(19,20). There is a growing
body of evidence indicating that n-3 PUFA impart unique bio-
physical properties to the phospholipids they are esterified to(21,22)
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which results in alterations in the spatiotemporal organisation of
the plasma membrane(5,23–25). For example, n-3 PUFA are
rapidly incorporated primarily into membrane phospholipids at
the sn-2 position(26,27). DHA (22 : 6n-3) and EPA (20 : 5n-3) are
known to influence membrane fluidity, ion permeability, fatty
acid exchange and resident protein function in a number of cell
types including CD4+ T cells(28,29).
It has been reported that CD4+ T cells sustain a gradient of

plasma membrane lipid order that influences their function in
terms of proliferation and cytokine production. Specifically,
T cells with high membrane order formed stable immune
synapses and proliferated robustly, whereas T cells with low
membrane order were profoundly unresponsive to activa-
tion(30). In addition, patients with the autoimmune rheumatic
disease, systemic lupus erythematosus, had expanded T cell
populations with intermediate membrane order(30) and multiple
defects in T cell signalling and function that are believed
to contribute to disease pathogenesis(31). Furthermore, the
modulation of membrane order by the naturally occurring fatty
acyl species, for example, glycerol monolaurate, suppresses
primary T cell function(32). These findings raise the possibility
that the targeting of T cell membrane lipid order could have
therapeutic potential in T cell-mediated inflammatory diseases.
Although several studies have shown n-3 PUFA incorporation
results in the increase of membrane order in mouse CD4+ T cells
and splenic B-cells lipid raft(23,33), contradictory effects have been
reported in malignant transformed human Jurkat T cells(34,35).
This suggest that it is difficult to directly compare data from
in vitro and in vivo studies across different cell types(36).
Therefore, it is important to determine whether n-3 PUFA
supplementation can favourably modulate membrane lipid order
and lymphoproliferation in primary human CD4+ T cells.
Plasma membrane order is not only maintained by lipid–lipid

interactions but also through the protein–lipid interactions
of the cytoskeleton(37,38). Therefore, it is important to determine
if changes that occur to plasma membrane order are direct
(lipid–lipid) or indirect (protein–lipid). To address this, our live
cells experiments are complemented with studies using a plasma
membrane model system consisting of cytoskeletal free
membrane blebs termed, giant plasma membrane vesicles
(GPMV)(39). GPMV are microscopic (approximately 10 µM)
spheres of plasma membranes harvested from live cells following
chemical treatment(40). This model has been used to uncover the
principles underlying biological processes by minimising the
number of cellular variables (e.g. cytoskeleton), thus decreasing
experimental complexity, whereas retaining the functionality of
the plasma membrane(41).
In addition to membrane order, changes in mitochondrial

function may also regulate T cell activation in inflammatory
diseases like type II diabetes(42). Numerous studies show that
mitochondrial energy generation determines the effectiveness of
immune responses(43–47). Over the past decade, our understanding
of the metabolic requirements for the generation of ATP in
immune cells has increased dramatically(48). Fuel sources and fuel
utilisation are now recognised as key regulators of immunological
functions in CD4+ T cells. Using the Seahorse extracellular flux
analysis system, the real time mitochondrial bioenergetic profiles
in primary T cells have been quantified(42,49). This method is

capable of simultaneously measuring the two major energy
yielding pathways, aerobic mitochondrial respiration (indicated by
the VO2 rate (OCR)) and glycolysis (indicated by the extracellular
acidification rate (ECAR)). The sensitive measurement of cellular
energetics is label free, enabling time-resolved analysis and reuse
of cells. As the immune system is tightly regulated by nutrient
availability and metabolism(50,51), and we have previously shown
that n-3 PUFA suppress mitochondrial translocation and Ca2+

uptake by mitochondria in mouse CD4+ T cells(52), in this study
we investigated whether n-3 PUFA can alter primary human
CD4+ T cell membrane order and mitochondrial bioenergetics,
resulting in suppression of lymphoproliferation.

Methods

Materials

RPMI 1640 medium, Leibovitz medium, FBS, Glutamax, penicillin,
streptomycin and Dynabeads Human T-Activator CD3/CD28
were purchased from Gibco. Leucosep tubes were obtained from
Greiner Bio-One. Ficoll-Paque medium was purchased from GE.
Erythrocytes lysis buffer was obtained from BioLegend. EasySep
human CD4+ T cell isolation kits were purchased from StemCell
Technologies. Poly-L-lysine was purchased from Sigma.
Di-4-ANEPPDHQ was obtained from Invitrogen. Glass bottom
35-mm dishes were purchased from MatTek Corporation.
CellTiter-Blue cell viability assay was obtained from Promega.
Silica gel 60G plates and all organic solvents were purchased
from EM Science. Free fatty acids and fatty acid methyl ester
standards were purchased from Nu-Chek-Prep.

CD4+ T cell isolation and culture

Buffy-coat leucocytes from the Gulf Coast Regional Blood Center
or freshly collected whole blood was layered onto Leucosep
tubes containing Ficoll-Paque medium followed by centrifuga-
tion at 800 g for 15min. Peripheral blood mononuclear cells
(PBMC) were collected from the interphase and washed once
with PBS(53). Erythrocyte contamination was removed by incu-
bating cell pellets in 1X erythrocyte Lysis buffer on ice for 5min,
followed by washing with PBS. CD4+ T cells from PBMC were
purified by negative selection using an EasySep human CD4+

T cell isolation kit following the manufacturer’s protocol. Cell
viability was assessed by trypan blue exclusion and always
exceeded 99%. The purity of viable CD4+ T cell population
as analysed by flow cytometry(54) was 96·5 (SE 1·2)% (n 3).

CD4+ T cells isolated from buffy-coat leucocytes were
incubated with various doses (0–50 µM) of linoleic acid
(LA, 18 : 2n-6), EPA, or DHA conjugated with bovine serum
albumin for 2 d (basal state), and, basal T cell bioenergetic
profiles were measured. LA was chosen because it is the most
abundant n-6 PUFA in the Western diet(55), whereas EPA and
DHA are the major (n-3) PUFA in dietary fish oil (FO). In
addition, some cultures were activated for an additional 3 d
period with Dynabeads Human T-Activator CD3/CD28 at
a bead-to-cell ratio of 1:1 in the continuous presence of
exogenous FA (activated state). FA incorporation, membrane
order, cell proliferation and bioenergetic profiles were subse-
quently determined.
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In a pilot clinical study, CD4+ T cells isolated from volunteers
were aliquoted for the purpose of assessing basal state
membrane FA incorporation, membrane order and bioenergetic
profiles. Some cells were activated for 3 d by culture with
Human T-Activator CD3/CD28 Dynabeads at the bead-to-cell
ratio of 1:1, without exogenous FA in the medium, for membrane
order and cell proliferation assays. All cultures were incubated
in RPMI 1640 medium supplemented with 10% FBS, 2mM

Glutamax, 1× 105U/l penicillin and 100mg/l streptomycin.

Pilot clinical study design

The study protocol was approved by the Texas A&M University
Institutional Review Board and informed consent was obtained
from the human subjects or their representatives. Healthy senior
(60–87 years old) men and women were recruited to participate
in the study. Seniors were recruited for this study because it
has been previously shown that following a 12-week of FO
supplementation, the incorporation of DHA and EPA into blood
plasma TAG were significantly higher with increasing age(56).
This finding was corroborated in a 4 week n-3 PUFA supple-
mentation study in which participants age> 50 exhibited a
significant increase in the incorporation of n-3 PUFA in whole
blood(57). In addition, the beneficial effects of n-3 PUFA in the
elderly have been recently reported(58,59).
All subjects were extensively screened by research nurses and

a physician. Exclusion criteria included n-3 PUFA supplementa-
tion and any medications inconsistent with the definition
‘healthy’ according to the study physician’s judgement based on
medical history. Subjects were randomly allocated to receive
either FO or placebo (olive oil (OO)) capsules in a double-blind
manner (n 6/group). All subjects consumed eight 1 g capsules
resulting in the administration of 4 g n-3 PUFA (approximately
2·4 g EPA+1·6 g DHA) per d for 6 weeks. The placebo group
consumed eight 1 g OO capsules containing 5·6 g olive acid
(18 : 1n-9) daily. Capsules were provided by Swanson Health Pro-
ducts. Subjects were requested to record a daily accountability log
for capsule intake, and received periodic phone calls to assess
compliance and tolerance of the assigned supplement. There were
no dropouts or lack of compliance in this study. Details on body fat
mass change and major nutrient intake during the 6-week inter-
vention is reported in the online Supplementary Table S1.
Blood was collected into heparinized evacuated tubes immedi-

ately before the intervention began and at 3 and 6 weeks. Blood
samples were collected in the morning after subjects had fasted
overnight. CD4+ T cells were isolated within 2h of blood collection.

Giant plasma membrane vesicle generation and membrane
order measurement

GPMV generation was performed as described previously(39). In
brief, basal or activated CD4+ T cells were pelleted and
re-suspended in GPMV vesiculation buffer (10mM HEPES,
150mM NaCl, 2mM CaCl2, pH 7·4, 25mM PFA, 2mM dithiothreitol)
for at least 1 h at 37°C. T cells with attached GPMV were
then centrifuged at 2000 g for 3·5min and pellets were
re-suspended in serum-free Leibovitz medium containing
Di-4-ANEPPDHQ (5μM), transferred to a 35-mm glass bottom
dish, and immediately imaged.

Basal or activated whole CD4+ T cells were stained with
Di-4-ANEPPDHQ for membrane order determination as
previously described(17,60). In brief, CD4+ T cells were gently
pelleted by centrifugation at 200 g for 5min, re-suspended in
serum-free Leibovitz medium containing Di-4-ANEPPDHQ
(5 μM), transferred to a 35-mm glass bottom dish, and immedi-
ately imaged to avoid dye internalisation.

Imaging experiments were conducted on a Zeiss 510 or a
Zeiss 780 confocal microscope equipped with a 32-channel
GaAsP line-array spectral detector. Cells and GPMV were
imaged at 63× magnification at room temperature. Laser light
at 488 was used to excite Di-4-ANEPPDHQ and emission
wavelengths were collected in two channels representing
order (O: 508-544) and disordered (D: 651-695). Generalised
polarisation (GP) was calculated using the equation below:
GP= (I(O) − I(D))/(I(O) + I(D)). The same laser power and
settings were used for every experiment. Image processing was
conducted using Fiji/ImageJ (NIH) software, with a GP-plugin
and a custom-built macro. Briefly, images were converted to 8-
bit tiffs, combined into RBG images. A threshold was applied to
exclude background pixels, and converted into GP images.
Average GP was determined from region of interest of
cells or GPMV.

Cellular bioenergetic profile measurement

Seahorse XF 24-well cell culture plates were pre-coated with
0·01% poly-L-lysine (50 µl/well) for 30min at room temperature,
followed by UV sterilisation for at least 1 h. Pre-coated plates
were warmed to 37°C, 30min before cell plating. Basal or
activated cells were immediately seeded into plates at a
concentration of 0·5–1× 106 cells/50 µl medium. Plates were
incubated in a CO2-free incubator at 37°C for 30min to allow
cells to adhere to the pre-coated wells. XF 24-well cell culture
plates were then transferred to the XF24 Extracellular Flux
Analyzer (Seahorse Bioscience). Hydrated cartridges containing
optimal concentrations of mitochondrial mediators, oligomycin
(5 μM), FCCP (carbonylcyanide p-trifluoromethoxyphenyl
hydrazone; 1 µM), and rotenone (5 µM) were injected at timed
intervals into sample wells and the OCR and ECAR were
monitored continuously as previously described(61,62).

Membrane lipid extraction and quantification

Total cellular lipids were extracted by the method of Folch(63).
Total phospholipids and neutral lipids were separated by one-
dimensional TLC on silica gel 60G plates using chloroform–

methanol–acetic acid–water (90:8:1:0·8, by vol.) as the develop-
ing solvent. Isolated lipid fractions were transesterified in 6%
methanolic HCl overnight(64). Fatty acid methyl esters were
separated on a Durabond DB-225 column (Agilent) using a Trace
1310 GC (Thermo Scientific) coupled to a TSQ 8000 Evo mass
spectrometer (Thermo Scientific). The injection volume was 1 μl
and the injector was used in the split mode at 1:53. The inlet
injector temperature was 250°C and the oven temperature was
held constant at 200°C for 45min. Quantification was performed
using selected reaction monitoring mode of the most intense
fragments. Data acquisition and processing were performed with
TraceFinder software (Thermo Fisher).
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Cell proliferation measurement

T cell proliferation was measured by the CellTiter-Blue cell
viability assay(65). Cells were seeded in flat bottom 96-well
culture plates (50 000 cells/100 µl medium) for 3 d with or
without Dynabeads Human T-Activator CD3/CD28 at a bead-to-
cell ratio of 1:1. CellTiter-Blue reagent was added to each culture
4h before the end of the incubation period. Fluorescent intensity
was measured at 560/590 nm and the value from the culture
medium background was subtracted from the experimental
wells. Proliferation index was then calculated as the average
fluorescence intensity of activated wells/average of basal wells.

Statistical analysis

Data were analysed using a two-way ANOVA and results
from treatments with significant overall changes were subjected
to the post hoc Tukey’s test with significance at P< 0·05. We
have detected significant differences with similar sample sizes
of n 3–4 when measuring the effect of n-3 PUFA on T cells lipid
rafts(66,67). In addition, clinical studies have detected significant
differences in human blood cell phospholipid fatty acid
composition, cell proliferation and DNA methylation of fatty
acid desaturase and elongase enzymes in FO v. placebo sup-
plementation with sample sizes of six to eight subjects(68,69).
These data indicate that we have sufficient sample size and
power of at least 0·80 to observe differences at significance
level α< 0·05. Data were tested for normality by the D’Agostino-
Pearson omnibus normality test, and are presented as means
with their standard errors. Analyses were conducted with the
Prism 6 program (GraphPad Software, Inc.). For phase
separation data, the χ2 test was used to compare all treatments.
To compare individual treatments with each other, a two-tailed
Fisher’s exact test was performed for each treatment pair.

Results

Exogenous PUFA differentially alter CD4+ T cell membrane
phospholipid fatty acid profiles in vitro

Following a 5-d incubation period, albumin bound LA, EPA and
DHA were dose-dependently incorporated into human CD4+ T
cell membrane phospholipids, as shown in Table 1. Compared
with the control untreated (UT) group, exogenous LA (n-6
PUFA control) significantly (P< 0·05) elevated membrane
bound LA levels 4·5–12·6-fold, whereas exogenous EPA and
DHA significantly (P< 0·05) elevated membrane n-3 PUFA
from an undetectable level to 2·8–10·1mol% for EPA, and
6·9–12·7mol% for DHA. In addition, upon incorporation into
the membrane, exogenous EPA was further elongated to
docosapentaenoic acid (DPA, 22 : 5n-3). Interestingly, exogen-
ous LA did not alter arachidonic acid (AA, 20 : 4n-6) levels,
whereas only the highest dose of exogenous n-3 PUFA pro-
duced a compensatory reduction in AA. Overall, the combined
phospholipid levels of EPA and DPA (6·4–17·6mol%) were
comparable to DHA levels. In addition, incubation with high
doses of exogenous PUFA (25 and 50 µM) resulted in the
incorporation of EPA, DPA and DHA into neutral lipid
fractions as shown in the online Supplementary Table S2. Ta
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To assess effects on Δ9 desaturase activity, the stearoyl-CoA
desaturase (SCD) index was examined. No significant differ-
ence among treatment groups was detected with regard to
the ratio of 16 : 1/16 : 0 (SCD1i1) and 18 : 1/18 : 0 (SCD1i2),
suggesting no change in enzyme activity (Table 1).

High-dose exogenous n-3 PUFA modulate CD4+ T cell
membrane order and induce phase separation in giant
plasma membrane vesicles

Following a 5-d fatty acid incubation period in the presence
of CD3/CD28 stimulation (for 3 d), all three PUFA treatments
resulted in a decrease in whole cell membrane order, relative to
UT cells. However, n-3 PUFA (EPA and DHA) exhibited
significantly (P< 0·05) lower GP values compared with n-6
PUFA (LA) at the highest dose (50 µM) only (Fig. 1(A)). In order
to determine if PUFA can directly modulate plasma membrane
biophysical properties without the contribution of a cytoskele-
ton, membrane order was assessed in GPMV derived from
activated T cells. Interestingly, n-3 PUFA treated cells exhibited
a significant (P< 0·05) elevation in membrane order compared
with n-6 PUFA (LA) at 25 and 50 µM doses (Fig. 1(B)). The
striking inversion in EPA and DHA-induced membrane order
was associated with a phase separation of the GPMV bilayer
(Fig. 1(C)). Representative images and histograms (Fig. 1(D) and
(E)) highlight how phase separation was uniquely imposed by
n-3 PUFA in disordered domains that are more disordered, and
ordered domains that are more ordered. This is apparent as the
histogram generated from the pixels of the LA treated GPMV
display a Gaussian distribution centred about −0·2, whereas the
EPA treated GPMV display a two Gaussian distribution with the
most fluid centred about −0·4 and the most ridged centred
about 0·4 (Fig. 1(E)). Interestingly, GPMV phase separation was
only correlated with the membrane level of n-3 PUFA, not the
ratio of n-3:n-6 PUFA, as shown in Table 1.

Altered CD4+ T cell bioenergetic and proliferation profiles
following high-dose PUFA treatment

Following a 2 d PUFA incubation period, CD4+ T cell
mitochondrial OCR and ECAR were assessed. The OCR:ECAR
ratio under basal conditions was moderately modified com-
pared with the control (UT) group. LA (50 µM), EPA (12·5 µM)
and DHA (12·5 and 25 µM) treated cells exhibited significantly
(P< 0·05) higher OCR:ECAR ratios relative to UT (Fig. 2(A)). In
some cultures, cells were stimulated for an additional 3 d with
CD3/C28 beads in the presence of fatty acid. Overall, OCR:
ECAR ratios were decreased across fatty acid treatments in basal
v. activated cells. Compared with LA, EPA and DHA exhibited a
bi-phasic response in activated cells, with the 25 µM dose
increasing the ratio, relative to the 12·5 and 50 µM doses which
decreased or had no effect (Fig. 2(B)). At high doses (50 µM),
EPA and DHA promoted mitochondrial respiration-associated
protein leak compared with UT or LA groups (P< 0·05)
(Fig. 2(C)). EPA and DHA dose-dependently decreased
lymphoproliferation compared with the UT and LA treatment
groups (P< 0·05) (Fig. 2(D)), with DHA exhibiting the strongest
anti-proliferative effect across all doses.

Dietary fish oil supplementation promotes human CD4+

T cell EPA membrane incorporation

Daily supplementation with 4 g n-3 PUFA (about 2·4 g
EPA+ 1·6 g DHA) resulted in the significant (P< 0·05) enrich-
ment of EPA in CD4+ T cell membrane phospholipids
after 3 and 6 weeks (Fig. 3). Interestingly, no significant
enrichment in other n-3 PUFA, DPA and DHA, was observed in
either total phospholipid and neutral lipid fractions (online
Supplementary Figs S1 and S2). From a quantitative perspective,
the wt% of n-3 PUFA incorporated into membrane phospho-
lipids at the completion of the 6-week intervention was 1·8
(SE 0·5), 3·2 (SE 1·2), 3·3 (SE 1·2)% for EPA, DPA, DHA, respec-
tively (Fig. 3). These levels of enrichment were roughly
equivalent to those observed following in vitro incubation with
12·5 µM n-3 PUFA (2·8, 3·6, 6·9mol% for EPA, DPA, DHA,
respectively) (Table 1). No significant changes were observed
in the levels of 18 : 1n-9 and n-6 PUFA (18 : 2n-6 and 20 : 4n-6)
after 6 weeks of supplementation.

Dietary n-3 PUFA supplementation reduces plasma
membrane order in human whole CD4+ T cells
and giant plasma membrane vesicles

Although differences between FO v. OO (placebo) treatments at
either interval with respect to plasma membrane order were NS,
supplementation with FO did alter T cell membrane order at
3 and 6 weeks. Compared with control time 0, membrane
order (ΔGP values) in both basal cells at 3 and 6 weeks FO
supplementation (Fig. 4(A)) and CD3/CD28 activated cells at
3 and 6 weeks FO supplementation (Fig. 4(B)) were signi-
ficantly (P< 0·05) decreased. These observations are consistent
with our low-dose in vitro findings (Fig. 1(A)). Consistent with
whole cell data, compared with control time 0, n-3 PUFA
feeding significantly (P< 0·05) decreased delta GP values in
GPMV after 3 and 6 weeks intervention in activated cells
compared with baseline values (Fig. 4(D)). These findings
mimic the in vitro low-dose (12·5 µM) observations (Fig. 1(B)).
No differences in GPMV membrane order were observed under
basal conditions (Fig. 4(C)). No evidence of phase separation
was detected in the GPMV of study subjects at any time point
(data not shown).

Dietary n-3 PUFA supplementation does not alter human
CD4+ T cell metabolic and proliferation phenotypes

Under basal conditions, FO feeding had no significant effect on
the OCR:ECAR ratio and mitochondrial respiration related pro-
ton leak after 3 or 6 weeks of supplementation (online Sup-
plementary Fig. S3(A) and (B)). Similarly, there was no
significant effect of n-3 PUFA supplementation on cell pro-
liferation over the 6 weeks intervention period (online Sup-
plementary Fig. S3(C)).

Discussion

The plasma membrane is an essential cellular structure com-
posed of a phospholipid bilayer and a myriad of proteins, which
constitute the outer boundary of the cell. Not only does the cell
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membrane control molecular transport, but it also regulates
communication between the cell and its environment by
transducing signals. Recent studies have documented important
functions for plasma membrane lipids in regulating T cell

signalling(8). For example, the fatty acid composition of T cells
has been linked to immune(23,52,70,71) and inflammatory homo-
eostatic responses(3,72). Several clinical studies have examined
the effects of dietary fatty acid incorporation in circulating
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Fig. 1. Exogenous fatty acids dose-dependently alter human CD4+ T cell membrane order and giant plasma membrane vesicle (GPMV) phase separation. Human
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red blood cells and peripheral mononuclear cells(53,68,73,74).
However, the effects of these fatty acids on the membrane
biophysical properties of human primary CD4+ cells have
not be assessed.
We isolated highly purified, viable, primary human CD4+

T cells (>96% viability) from buffy-coat leucocytes and
demonstrated the dose-dependent in vitro incorporation and
elongation of exogenous PUFA into CD4+ T cell membrane
phospholipids (Table 1). We observed that exogenous EPA was
extensively elongated to DPA (22:5n-3), a process that is
common to other cell types(26,75). In contrast, in vivo supple-
mentation of healthy older adult subjects with 2·4 g EPA and
1·6 g DHA daily for 6 weeks resulted in only a modest incor-
poration of EPA into CD4+ T cell membrane phospholipids,
with no evidence of elongation to DPA or incorporation of DHA
(Fig. 3). The dose of EPA and DHA used in the present human
study is the maximal dose advised by the Food and Drug
Administration(76) and that is able to slow muscle mass decline
and function in older adults(58). The apparent selective incor-
poration of EPA may be related, in part, to the higher amount of
EPA relative to DHA in the capsules (3:2 mass ratio). Although
no significant incorporation was detected for DPA and DHA (P
values 0·134 and 0·144 for DPA and DHA, respectively), after
3 weeks of supplementation a broader ‘trend’ of n-3 PUFA
enrichment was detected. As the overall enrichment of n-3
PUFA was minimal, no alterations in counterpart n-6 PUFA
(18 : 2n-6 and 20 : 4n-6) levels were expected. In spite of OO
supplementation in the placebo (OO) group, similar levels of

18 : 1n-9 were observed in both groups as a result of homo-
eostatic regulation as mammals can synthesise 18 : 1n-9 de
novo(77). The 2wt% in vivo incorporation of EPA into CD4+ T
cell membrane phospholipids after 6 weeks of n-3 PUFA con-
sumption (Fig. 3) was comparable to the addition of 12·5 µM
EPA in vitro (2·8 and 3·6mol% for EPA and DPA, respectively)
(Table 1).

As changes in membrane lipid order have been associated
with immune cell function and inflammatory disease sta-
tus(5,30–32), it is noteworthy that the in vitro doses of EPA or
DHA differentially modulated membrane lipid order in whole
CD4+ T cells v. GPMV prepared from those cells as compared
with UT or n-6 PUFA control treatments (Fig. 1(A) and (B)).
Although we have previously demonstrated that n-3 PUFA
increase membrane order in specific mouse splenic CD4+

membrane domains (e.g. lipid rafts at the immunological
synapse)(23,78), this is the first time that membrane order has
been assessed in human primary CD4+ T cells and their GPMV.
These data represent ‘overall’ membrane order status, and
cannot be directly compared with immunological synapse
specific microdomains. With respect to other cell types, it
has been reported that n-3 PUFA increase lipid raft size in
mouse B-cells. These experiments were initiated following the
cross-linking of lipid raft microdomains, which were labelled
with cholera toxin B, and enriched in ganglioside GM1(79).
Importantly, the process of cholera toxin B cross-linking
itself is known to influence membrane organisation(80) which
makes the results difficult to compare. Furthermore, in the

50
(A) (B)

(C) (D)
60 50

40

30

20

10

0

40

20

0

20

15

10

5

0

40

a

a

a

a a
a

a

a

a

b b

b

e,f

f

e e
e

c
b

d

b

a

a,b a,b

a a

b
b

d

c c,d

a a
a

cc c

a,b
a,b

b,c

30

O
C

R
:E

C
A

R
P

ro
to

n 
le

ak
 (

%
 o

f c
on

tr
ol

)

P
ro

lif
er

at
io

n 
in

de
x

O
C

R
:E

C
A

R

20

10

0

UT
L1

2.
5

D50D25

D12
. 5

E50E25

E12
. 5

L5
0

L2
5 UT

L1
2.

5
D50D25

D12
. 5

E50E25

E12
. 5

L5
0

L2
5

UT
L1

2.
5

D50D25

D12
. 5

E50E25

E12
. 5

L5
0

L2
5 UT

L1
2.

5
D50D25

D12
. 5

E50E25

E12
. 5

L5
0

L2
5

Fig. 2. Exogenous fatty acids alter human CD4+ T cell bioenergetic profiles and proliferation. See Fig. 1 legend for in vitro culture details. Cellular bioenergetic profiles
in basal and activated states were measured. (A) VO2 rate (OCR):extracellular acidification rate (ECAR) ratio under basal conditions (following 2 d FA incubation).
(B) OCR:ECAR ratio after additional 3 d activation (5 d FA incubation). (C) Mitochondrial respiration-associated proton leak after activation. (D) Cell proliferation 3 d
after activation. Values are means (n 7–21, pooled from two separate experiments for bioenergetic assays; n 14–24, pooled from four separate experiments for cell
proliferation assays), with their standard errors. The proliferation index was calculated as the ratio of live cell fluorescense in activated:basal states. a,b,c,d,e,f Mean
values with unlike letters are significantly different (P< 0·05).

n-3 PUFA alter human T cell membrane order 169

https://doi.org/10.1017/S0007114517003385  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114517003385


absence of cross-linking, FO reduced whole cell membrane
order of B-cells(79), and only upon cross-linking did membrane
order increase to an equivalent level relative to control,
resulting in the observed increase of membrane order relative to
no cross-linking.
Interestingly, at higher doses of n-3 PUFA in vitro, a

profound induction of phase transition was induced which
contributed to an increase in GPMV membrane rigidity (Fig. 1
(B) and (C)). This may have contributed to the reduction of
proliferation (Fig. 2(D)) as disruption of membrane lipid order
has been linked to suppression of CD4+ T cell clonal expan-
sion(81). Membrane phase separation was specific to n-3 PUFA,
and was likely not simply due to the fatty acid unsaturation or
the n-3:n-6 PUFA ratio level. For example, at 25 µM, although
EPA and DHA treated cells exhibited comparable levels of total
n-3 PUFA (Table 1), the number of GPMV with phase separa-
tion was 52% higher in the DHA group (P= 0·059). Consistent

with these observations, in vivo n-3 PUFA administration
modestly decreased delta GP values in both basal and activated
whole CD4+ T cells (Fig. 4(A) and (B)) and GPMV prepared
from activated T cells (Fig. 4(D)) compared with time 0, indi-
cating a more fluid membrane. The low incorporation of n-3
PUFA in vivo did not induce GPMV phase separation, which is
consistent with the results of low-dose (12·5 µM) EPA and DHA
experiments in vitro (Fig. 1(C)). Treatment with OO (placebo)
decreased delta GP values at 3 weeks in activated whole CD4+

T cells and GPMV (Fig. 4(B) and (D)) compared with time 0.
This effect may be attributed to the fact that lower concentra-
tions of 18 : 1n-9 preferentially mix with and disorder ceramide-
enriched domains in model stratum corneum(82). No significant
effect of n-3 PUFA on mitochondrial bioenergetics, respiration-
related proton leak or cell proliferation was observed in CD4+

T cells from supplemented human subjects (online Supple-
mentary Fig. S3) which is consistent with the response of CD4+
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T cells in vitro following treatment with a low dose of n-3
PUFA (Fig. 2).
Recently, GPMV have attracted great attention in studies

focusing on cell membrane biophysical properties, due to the
fact that they are comprised of the membrane bilayer without
the contribution of the cytoskeleton(39,83). Thus, the contrasting
in vitro effects of n-3 PUFA on membrane order in whole
CD4+ T cells and GPMV observed at the high dose (Fig. 1(A)
and (B)) suggest the involvement of the cytoskeleton in the
modulation of membrane lipid order. This is consistent with
our findings that n-3 PUFA alter membrane phosphatidylinositol
4,5-bisphosphate level, suppress the recruitment of Wiskott–
Aldrich syndrome protein to the immunological synapse and
impair actin remodelling in mouse CD4+ T cells(70). Although
GPMV phase separation into microscopically resolvable domains
is a process that does not generally occur in live cell mem-
branes(84), it serves as a valuable tool for understanding lipid raft
properties(39). For example, formation of phase separated GPMV
at room temperature upon 25 and 50 µM n-3 PUFA treatment
(Fig. 1(C)) indicates increased domain stability. Importantly,
domain stability determined by phase separation in GPMV is
altered by polyunsaturated lipids(25), cholesterol(85), bile acids(86),
anaesthesia(87,88), chemotherapeutics(89), cell cycle(90), epithelial-
mesenchymal transition(91) and protein–lipid interaction(92).
Furthermore, the ability of n-3 PUFA to increase phase separation
in GPMV has been linked to suppression of Snail function and
the inhibition of lung metastasis(91). Therefore, the unique phase
separation in human CD4+ T cell GPMV by high-dose n-3 PUFA
may be a biomarker for predicting the potential of n-3 PUFA to
suppress chronic disease progression.

Immunometabolism is emerging as a key regulator of both
T cell fate and function. Canonically, it is thought that T cell
activation primarily engages glycolytic pathways for energy
production(43). The switch to glycolytic metabolism increases
the availability of carbon sources which can be converted to
biosynthetic precursors that are required for cellular prolifera-
tion(93). Our data are consistent this cell activation phenotype as
the OCR:ECAR (oxidative phosphorylation:glycolysis) ratio
decreased following activation (Fig. 1(A) and (B)), indicating
that mitochondrial bioenergetics is a good indicator of human
primary CD4+ T cell fate. The significantly lower OCR:ECAR
ratio and proliferation index associated with high-dose n-3
PUFA in vitro (Fig. 2(A), (B) and (D)) are consistent with prior
reports linking a reduction in the OCR:ECAR ratio with a
suppressed cell proliferation phenotype in human glioblastoma
cell lines(94) and CD4+ T cells(95). In addition, the increased
mitochondrial respiration-associated proton leak by high-dose
n-3 PUFA (Fig. 2(C)) is consistent with a pro-apoptotic
phenotype(96).

Our in vitro data strongly support the anti-proliferative
potential of exogenous n-3 PUFA in human primary CD4+

T cells. At the 50 µM dose level, both exogenous EPA and DHA
were incorporated into membrane phospholipids and altered
membrane lipid order likely inducing phase separation.
Furthermore, high-dose n-3 PUFA altered mitochondrial bio-
energetics toward a less proliferative (lower OCR:ECAR)
phenotype. This is important in view of the central role of
CD4+ T cells in inflammatory disease modulation. In order
to further validate the anti-proliferative effect of n-3 PUFA on
CD4+ T cells in vivo, we conducted a pilot clinical study. n-3
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PUFA supplementation for 6 weeks was not associated with
a shift in mitochondrial bioenergetics or a decrease in cell
proliferation. This may be attributed to the relatively low dose
(2·4 g EPA and 1·6 g DHA), modest duration (6 weeks), and/or
sample size of the study. In addition, it has been reported that
healthy subjects are relatively insensitive to immunomodulation
with n-3 PUFA, compared with patients with inflammatory
conditions(97). Although there are examples of clinical studies
using high doses of n-3 PUFA (17-20 g n-3 PUFA daily)(98,99), our
4 g daily dose regimen is already at the high limit approved
by the Food and Drug Administration(76). Recently, Levental
et al.(25) have proposed that 20 µM DHA reasonably approximates
physiological DHA supplementation. However, our in vitro data
suggest that this dose is still above the level obtained following
FO supplementation (4 g/d for 6 weeks).
The beneficial effects of n-3 PUFA on inflammation and

chronic diseases have been reported extensively(5,100,101).
Although our in vivo data did not affirm an n-3 PUFA-induced
anti-proliferative effect in freshly isolated human CD4+ cells from
healthy elderly subjects, the alteration of membrane
lipid order in those same cells may signal a subclinical modulatory
response, as cell membrane order is a primary and fundamental
mediator of many cellular processes(102). The fact that membrane
phospholipids were enriched in EPA (Fig. 3) and membrane lipid
order was significantly reduced (Fig. 4) by short-term intervention
is encouraging, and implies that the immune-modulatory poten-
tial of n-3 PUFA cannot be dismissed. A recent meta-analysis(103),
including >150 000 men and women over 20 years, demonstrated
that an intake of > 0·35g n-3 PUFA daily was associated with a
lower incidence of colorectal cancer with high-level CD4+

FOXP3+ T cell density. These findings suggest the role of
n-3 PUFA in the immune-prevention of colorectal cancer via
modulation of regulatory T cells.
In conclusion, we have demonstrated that a high in vitro

dose of n-3 PUFA can alter human CD4+ T cell membrane
FA composition, increase membrane fluidity by reducing
lipid order, promote phase separation in GPMV, shift energy
utilisation toward glycolysis, and reduce cell proliferation. We
propose that the unique n-3 PUFA-mediated ‘phase separation’
of GPMV represents a novel phenotype/biomarker for probing
the effect of dietary supplementation on cell membrane
biophysics. Collectively, these findings provide evidence
that both the T cell plasma membrane phospholipids and
metabolic machinery are targets of n-3 PUFA. Our comple-
mentary pilot clinical trial only revealed modest effects of
low-dose n-3 PUFA supplementation on T cell membrane
order. This may be attributed to limited sample size (n 6),
healthy condition of elderly subjects, and short-term (6 weeks)
supplementation. In contrast, higher dosages are given in
intensive care unit patients(104) or after surgery(105,106) to reduce
inflammation(107) and exhibit an effect within 1 d of expo-
sure(108). We suggest that only at higher dosages do n-3 PUFA
have meaningful effects on membrane order and resultant
immunomodulation. Future clinical studies with larger sample
size, longer intervention periods, and higher doses of FO
supplementation are needed to better elucidate the rational
use of dietary n-3 PUFA as an adjunct to conventional
immunotherapies.
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