Proceedings of the Edinburgh Mathematical Society (1980), 23, 297-299 ©

NILPOTENT SUBSETS OF NEAR-RINGS WITH MINIMAL CONDITION

by S. D. SCOTT

(Received 21st February 1979)

Throughout this paper all near-rings will be zero-symmetric and left distributive. A near-ring with minimal condition on right N-subgroups will be called an \mathcal{M} near-ring. It is well known (see (1), 3.40, p. 90)) that a nil right N-subgroup of an \mathcal{M} near-ring is nilpotent. However, in a deeper study of \mathcal{M} near-rings a stronger result than this is sometimes required (2, p. 77).

Let N be an \mathcal{M} near-ring and M_i , $i \in I$, a collection of nil (hence nilpotent) right N-subgroups of N. Let $H = \bigcup_{i \in I} M_i$. Then H may no longer be a right N-subgroup, although, $HN \subseteq H$. A natural question to ask is whether H is nilpotent. This question can be answered in the affirmative (2, p. 77).

If N is a near-ring, then a subset H of N will be called a *right* N-subset, if $HN \subseteq H$. Left and two-sided N-subsets are defined in an analogous way. We prove the following theorem:

Theorem. If N is an *M* near-ring and H a nil right N-subset of N, then H is nilpotent.

Proof. Set $L_1 = HN$, and $L_{i+1} = L_i^2$, for i = 1, 2, ... We shall show the subsets L_i , i = 1, 2, ..., have the following properties:

- (a) each L_i is a right N-subset of N;
- (b) $L_{i+1} \subseteq L_i$, for i = 1, 2, ...;
- (c) each L_i is a union of nil right N-subgroups of N; and
- (d) if $NL_j = \{0\}$, for some positive integer *j* then *H* is nilpotent.

(a) We note that L_1 is a right N-subset of N. Suppose it has been shown that L_k (k is a positive integer) is a right N-subset of N. Clearly

$$L_{k+1}N = L_k^2 N \subseteq L_k^2 = L_{k+1}$$

and L_{k+1} is a right N-subset of N. Thus (a) follows.

(b) For $i = 1, 2, ..., L_i^2 \subseteq L_i N$, and, by (a) $L_i N \subseteq L_i$. Thus $L_{i+1} \subseteq L_i$, for i = 1, 2, ..., and (b) follows.

(c) Since by (b) we have each L_i is contained in L_1 and L_1 is contained in H it follows

that each L_i , i = 1, 2, ..., is nil. It remains to prove that each L_i is a union of N-subgroups. Clearly

$$L_1 = HN = \bigcup_{\alpha \in H} \alpha N$$

and (c) holds for i=1. Suppose for some positive integer k, L_k is a union $\cup M_i$ of i∈J N-subgroups. It follows that

$$L_{k+1} = L_k^2 = \bigcup_{\lambda \in L_k} \bigcup_{j \in J} \lambda M_j$$

and (c) holds.

(d) Now if $NL_i = \{0\}$, then $L_i^2 = L_{i+1} = \{0\}$. Also $H^2 \subseteq HN = L_1, (H^2)^2 \subseteq L_2$, etc. Thus if $n = 2^{j+2}$, $H^n \subseteq L_{j+1} = \{0\}$, and $H^n = \{0\}$. Therefore (d) holds.

We now proceed with the proof of the theorem. By (d) we may assume that $NL_i \neq \{0\}$, for $i = 1, 2, \dots$ Let M_i , $i = 1, 2, \dots$ be right N-subgroups of N minimal for the property that $M_i L_i \neq \{0\}$. Let $T(L_i)$ denote the ideal of N generated by $L_i = 1, 2, \dots$ By (b), $L_{i+1} \subseteq L_i$ and $T(L_i) \ge T(L_{i+1})$. If for all $i, \mathcal{M}_i L_{i+1} = \{0\}$, then $L_{i+1} \le (0, \mathcal{M}_i)$ and $T(L_{i+1}) \le \mathcal{M}_i$ $(0: M_i)$. But since $M_i L_i \neq \{0\}$, $M_i T(L_i) \neq \{0\}$, and $T(L_i) \neq \{0: M_i\}$. Thus $T(L_i) > T(L_{i+1})$, for i=1,2,... This contradicts the minimal condition. Hence we may assume that $M_j L_{j+1} \neq \{0\}$, for some positive integer j. Now L_j is a union $\bigcup_{k \in K} P_k$, of nil right N-subgroups

 $P_k, k \in K$, of N by (c). Thus

$$M_j L_j = \bigcup_{\alpha \in M_j} \bigcup_{k \in K} \alpha P_k.$$

Since $M_i L_{i+1} \neq \{0\}$ we have $M_i L_i^2 \neq \{0\}$ and thus $\alpha P_k L_i \neq \{0\}$ for some α in M_i and k in K. But $\alpha P_k \leq M_i$ and, by the minimality of M_i , $\alpha P_k = M_i$. Thus $\alpha \beta = \alpha$ where β is in P_k . Hence $\alpha\beta^m = \alpha$, for $m = 1, 2, \dots$ Since β is in P_k which is nil $\alpha = 0$ and $M_i = \{0\}$. This contradicts the fact that $M_i L_i \neq \{0\}$. The proof of the theorem is complete.

Corollary. A nil left N-subset of an *M* near-ring N is nilpotent.

Proof. Let P be a nil left N-subset of N. It is easily seen that PN is a nil right N-subset of N. By the above theorem $(PN)^k = \{0\}$, for some positive integer k. Since $P \subseteq N$, $P^{2k} = \{0\}$, and the corollary holds.

Corollary. Any union of nilpotent right N-subgroups of an M near-ring N is nilpotent.

Proof. A union of nilpotent right N-subgroups of N forms a nil right N-subset and the above theorem is applicable.

If N is an \mathcal{M} near-ring, then the union H of all nilpotent right N-subgroups of N is a two-sided N-subset of N. This two-sided N-subset is, by the second corollary, nilpotent. The subset H of N has a further property, the proof of which is omitted as it presents certain difficulties. This property is that the right ideal R(H) of N generated by H is simply the radical $(J_2(N))$.

298

NEAR-RINGS WITH MINIMAL CONDITION

REFERENCES

(1) G. PILZ, Near-rings (North-Holland publishing Company, Amsterdam, 1977).

(2) S. D. SCOTT, Near-rings with minimal condition on right N-subgroups (unpublished research report, University of Birmingham, 1973).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF AUCKLAND AUCKLAND, NEW ZEALAND