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Eccentric compound drops, which are ubiquitous in many naturally inspired and
engineering systems, can migrate under the sole presence of a uniform electric field,
unlike the case of isolated single drops. Here, we report the migration of eccentric
compound drops under a uniform electric field, imposed parallel to the line of centres
of the constituting drops, by developing an approximate analytical model that applies to
low Reynolds number limits under negligible droplet deformation, following axisymmetric
considerations. In contrast to the sole influence of the electrohydrodynamic forces that has
thus far been established to be emphatic for the eccentric configuration, here we report the
additional effects induced by the dielectrophoretic forces to result in decisive manipulation
in the drop migration. We show that the relative velocity between the inner and outer
drops, which is a function of the eccentricity itself, dictates the dynamical evolution of
the eccentricity variation under the competing electrohydrodynamic and dielectrophoretic
interactions. This brings out four distinct regimes of the migration characteristics of the
two drops based on their relative electro-physical properties. Our results reveal that an
increase in eccentricity and the size ratio of the inner and outer droplets may induce
monotonic or non-monotonic variation in the drop velocities, depending on the operating
regime. We show how the interplay of various properties holds the control of selectively
increasing or suppressing the eccentricity with time. These findings open up various
avenues of electrically manipulative motion of encapsulated fluidic phases in various
applications encompassing engineering and biology.
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1. Introduction

Compound drops or double emulsions are special classes of drops composed of a core
(or inner drop) encapsulated by a shell (or outer drop). Such combinatorial structures find
a wide variety of applications, starting from industrial applications such as direct-contact
heat exchange and materials processing (Morton, Subramanian & Balasubramaniam 1990;
Sapei, Naqvi & Rousseau 2012) to biological applications like lipid-bilayer formation and
recovery of leucocytes (Kan et al. 1998; Das, Mandal & Chakraborty 2020). Moreover, the
outer protective shell of such a double emulsion makes it a preferred choice for controlled
delivery of drugs, food additives and chemical reactants (Li et al. 2018; Liu et al. 2017;
Muschiolik & Dickinson 2017; Thammanna Gurumurthy & Pushpavanam 2020). Such
an ever-expanding canvas of applications has accordingly motivated intensified research
in the arena of compound droplet generation (Loscertales et al. 2002; Utada et al. 2005;
Zhou, Yue & Feng 2006), as well as their dynamical manipulation including migration,
breakup and coalescence (Chen, Liu & Shi 2013; Kim & Dabiri 2017; Borthakur, Biswas
& Bandyopadhyay 2018), over the past two decades.

Drops are well known to be manipulatable via electric field mediated effects (Poddar
et al. 2019a; Vlahovska 2019; Wagoner et al. 2020; Behera & Chakraborty 2023).
Fundamentally, this stems from the establishment of electrical (Maxwell) stresses at
the fluid–fluid interface owing to jump discontinuities in the respective electrophysical
properties. Starting from the fundamental work of Taylor (1966), numerous theoretical,
experimental and application-oriented perspectives have subsequently been put forward
on single-droplet electrohydrodynamics (Lac & Homsy 2007; Karyappa, Deshmukh &
Thaokar 2014; Lanauze, Walker & Khair 2015; Xi et al. 2016; Vlahovska 2019), resulting
to the establishment of the knowhow of highly precise droplet manipulation and control.

In contrast to single-droplet electrohydrodynamics, studies reporting on the electrically
manipulated dynamics of compound droplets have been relatively limited (Behjatian
& Esmaeeli 2013; Soni, Thaokar & Juvekar 2018; Abbasi et al. 2019). This deficit
in fundamental understanding may be attributed to the challenges in deciphering the
strong coupling between the respective dynamics of the inner and outer drops as
against considering them as isolated entities, bringing in additional geometry-mediated
interactions that are by no means trivially tractable via established analytical theories,
as aptly featured by early experiments and numerical simulations (Tsukada et al. 1997).
Behjatian & Esmaeeli (2013) developed a closed-form analytical theory, albeit with
certain restrictive assumptions, to explain the preferential occurrence of single or multiple
compound droplets, depending on the relative tangential electrical stresses on the inner
to outer drop. These findings were further advanced by studies on compound drop
electrohydrodynamics under the combined effects of background flow and electric forcing,
bringing out the relative role of the hydrodynamic and electrohydrodynmic stresses in
dictating the drop migration and destabilization (Abbasi et al. 2019; Santra, Das &
Chakraborty 2020a; Santra et al. 2020b).

Despite the above advancements, the physical paradigms of electrically manipulated
compound droplet dynamics have remained far from being well understood, primarily
because of the restrictive assumption of either concentric drops (Soni, Juvekar & Naik
2013; Behjatian & Esmaeeli 2015; Abbasi et al. 2017; Su et al. 2020) or only infinitesimal
deviation from the same in the underlying theoretical propositions, which may deviate
significantly from the physical reality (Gouz & Sadhal 1989; Boruah et al. 2022).
Such deviations from a concentric ideality essentially stem from the fact that, despite
highly precise controls exercised during droplet generation, inevitable differences in
the viscous drag acting at the two interfaces (Utada et al. 2005; Nabavi et al. 2015;
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Yu et al. 2019), as well as property contrasts between the inner and the outer drops,
may result in obvious deviations from concentricity. This, in turn, leads to simultaneous
deformation and translation of the compound drop, as against the case of a concentric one
that undergoes deformation without any net migration under a uniform external electric
field (Baygents, Rivette & Stone 1998; Das, Dalal & Tomar 2021; Sorgentone et al. 2021).
While the compelling need of rationalizing this deficit in theoretical understanding has
been underpinned, the same remains far from being well resolved.

The fundamental origin of the discrepancy in rationalizing the electrically manipulated
dynamics of eccentric compound drops based on concentric-drop theory lies in the
fact that, despite uniformity in the applied external electric field, the asymmetries in
the field lines due to the eccentric drop configuration lead to inhomogeneity in the
inner-field distribution, giving rise to dielectrophoretic effects. This renders the situation
conceptually analogous to single drops subjected to non-uniform electric fields (Thaokar
2012; Mandal, Bandopadhyay & Chakraborty 2016a), resulting in an interplay of the
electrohydrodynamic (EHD) and dielectrophoretic (DEP) forces, albeit with an additional
complexity of being dynamically coupled with the spatio-temporal evolution of respective
encapsulating entities as against a single drop in isolation. The EHD forces, well known
to influence the dynamics of the individual droplet entities, essentially originate from
the interfacial flow field that acts to balance a jump in the tangential electric stress
(Taylor 1966), so as to ensure a continuity of the net local interfacial stress that stems
from the cumulative electrical and hydrodynamic stresses. On the other hand, the DEP
forces attribute fundamentally to the gradients in the local electric field, with no explicit
contextual reference to fluid motion. While the EHD effects are commonly portrayed in
the literature as playing a decisive role in the droplet migration under electrical forcing
(Gouz & Sadhal 1989; Boruah et al. 2022), there are, however, no rational premises
of precluding a possible emphatic role of the DEP forces as well, typically when the
electric field is likely to vary locally, despite its uniformity in the far stream. Further,
the DEP effects likely to be inherently imperative for fluid pairs reminiscent of either
perfect dielectrics or highly conducting entities suspended in a perfectly dielectric medium
(Behjatian & Esmaeeli 2013). However, no theoretical model has thus far been developed
to bring out the underlying physics, whereas the standard EHD models for single droplets
continue to be extended for explaining the electro-mechanics of compound droplets as
well.

Here, we formulate an approximate analytical framework, assuming Stokes flow and
negligible deformation limits, to delineate the role of DEP interactions in decisively
manipulating the resulting morpho-dynamical evolution of an eccentric compound drop
under uniform external electric field. Attributing the underlying physical features to a
dynamically evolving eccentricity, we demonstrate the various possible combinations
of the inner and the outer drop motion as functions of the pertinent electro-physical
properties, eccentricity, and the radius ratio of the inner and the outer drops, based on
an axisymmetric configuration. Our results decipher that, depending on these parameters,
the relative velocity between the inner and outer drops may be directed alongside or
opposite to the electric field direction, leading to four distinctive combinatorial migration
characteristics. The results also implicate a non-monotonic trend in the relative velocity
between the inner and outer drops with the variations in the eccentricity as well as the
radius ratio, as attributed to a dynamic nonlinear coupling between the electrical and the
hydrodynamic stresses. These central findings are likely to act as precursors towards the
establishment of a design strategy for the active control of morphologically complex drops,
cells and capsules in biological and engineered systems.
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Figure 1. (a) Schematic showing an unbounded eccentric compound drop placed in a uniform electric field
E0. The inner drop of radius a is placed inside a bigger drop of radius b at an off-centric position (0, 0, z̃0 − ẽ).
(b) Geometric orientation of the compound drop in bispherical coordinate system (ξ, η,Φ).

2. Theory

We consider an eccentric compound drop placed in a uniform electric field (E0 = −E0 ez)
inside an unbounded domain, as shown in figure 1(a). The inner drop (or core) of radius
a and outer drop (or shell) of radius b have their centres located at (0, 0, z̃0 − ẽ) and
(0, 0, z̃0), respectively, where ẽ is the dimensional distance between their centres and is
defined as the eccentricity. The ratio between the drop radii is defined as k = a/b. The
core, shell and external phases are denoted by 1, 2 and 3, respectively. All three phases are
assumed to have equal density ρ, to nullify the buoyancy-driven effects and bring out the
sole implications of the contrast of the electro-physical properties of the respective phases
as the central focus of this work. The other material properties such as viscosity, electrical
conductivity and electrical permittivity of the ith phase are symbolized by μi, σ i, and εi,
respectively, where i = 1, 2 and 3. The ratios between the different physical properties of
ith and jth fluid are defined as λij(= μi/μj), Rij(= σi/σj) and Sij(= εi/εj), where i, j = 1,
2 and 3. These notations are in accordance with the previous works reported on related
topics (Lac & Homsy 2007; Das & Saintillan 2017; Poddar et al. 2019b; Sorgentone et al.
2021; Behera & Chakraborty 2022) The surface tensions at the two interfaces are denoted
as γ12 and γ23. Under the action of electric-field-induced forces, the inner and outer drops
translate with velocities of U1 and U2, respectively, which are a priori unknown and are
to be obtained from the model calculations.

We normalize the model description by introducing the relevant scales consistent with
the physics of the problem. Following previously reported studies (Behjatian & Esmaeeli
2013; Santra et al. 2020a; Boruah et al. 2022), we use the radius of the outer drop, b,
as a length scale, whereas the properties of the external medium are used to estimate
the orders of magnitudes of the various stress components. The electric field and surface
charge density are normalized with the magnitude of applied electric field E0 and ε3E0,
respectively. The electric and viscous stresses are normalized by ε3E2

0 and μ3Uc/b, where
Uc = bε3E2

0/μ3 is the characteristic velocity scale, obtained by considering an interplay
of these two stresses under the dynamic evolution of the physical system. The relative
strengths between the electric stresses (ε3E2

0) and interfacial stresses (γ 12/a and γ 23/b)
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further dictate the extent of the drop deformation, as quantified by the respective electric
capillary numbers: Ca12 = aε3E2

0/γ12 and Ca23 = bε3E2
0/γ23. Similarly, the ratio between

the inertia and viscous stress is estimated by the hydrodynamic Reynolds number Re =
ρb2ε3E2

0/μ
2
3.

Whereas in principle an arbitrarily wide parametric space may be mathematically
considered, we refer to the experiments of Tsukada et al. (1997) for conforming to common
practically realizable regimes. In their experiments, vegetable oil (ρ = 945 kg m−3, ε =
38.05 × 10−12 F m−1, σ = 1.68 × 10−10 S m−1, μ = 0.254 Pa s) was used as the
core and continuous phases, whereas silicone oil (ρ = 945 kg m−3, ε = 22.1 ×
10−12 F m−1, σ = 2.67 × 10−12 S m−1, μ = 0.017 Pa s) was considered for the outer
drop or shell phase. Similar oil phases are very common in a wide gamut of process
engineering applications. The corresponding interfacial tension is around 3 mN m−1.
Thus, for an applied external electric field of 20 kV m−1, and the inner and outer
radii of 1 mm and 3 mm, respectively, we get: Ca12 ≈ 0.005, Ca23 ≈ 0.015 and Re ≈
0.002. In a more recent experimental study of Abbasi et al. (2019), the core and the
external medium were castor oil (ρ = 961 kg m−3, ε = 41.6 × 10−12 F m−1, σ = 3 ×
10−11 S m−1, μ = 0.78 Pa s), whereas silicone oil constituted the shell, having interfacial
tension of 4.5 mN m−1. The castor oil–silicone oil pair exemplifies a common system used
for studying the compound drop dynamics over experimentally tractable physical regimes
(Santra et al. 2020b; Borthakur, Nath & Biswas 2021). For the ranges of experimental
data traversed in Abbasi et al. (2019), the above consideration leads to: Ca12 ≈ 0.0037,
Ca23 ≈ 0.011 and Re ≈ 0.0002. Irrespective of the wide variabilities in the physical data
for these reported experimental studies, a common consensus is thus: Ca12,Ca23 � 1
and Re � 1. Physically, the same conforms to undeformed drops dynamically evolving
under creeping flow conditions. Further note that the charge relaxation time scales for the
above fluids, i.e. ε1/σ1 and ε2/σ2, are negligible compared with the fluid flow time scale
μ3/ε3E2

0. Thus, the charging of the drops occurs much earlier than the flow development,
so that the temporal regime of the dynamic distribution of the surface charge in effect
becomes ‘instantaneous’.

2.1. Bispherical coordinates
We adopt a bispherical coordinate system (ξ , η, 	), as depicted in figure 1(b), to gain
theoretical insights into the electric field and fluid flow. The corresponding cylindrical
coordinate system (r, z, 	) may be described as (Happel & Brenner 1981; Poddar,
Bandopadhyay & Chakraborty 2020, 2021)

r = c0 sin(η)
cosh(ξ)− cos(η)

, z = c0 sinh(ξ)
cosh(ξ)− cos(η)

, Φ = Φ. (2.1a,b)

The axes z = 0 and r = 0 are represented in the bispherical coordinates as ξ = 0 and η =
0 or π, respectively. The inner and outer surfaces are denoted by ξ = ξ12 and ξ = ξ23,
respectively, where ξ12 > ξ23 > 0. In (2.1), c0 is a positive scaling factor, defined as c0 =
sinh(ξ23) = k sinh(ξ12), where k = a/b is the radius ratio. In figure 1(b), the dimensionless
distances of the drop centres from the origin are z1 = k cosh(ξ12) and z2 = cosh(ξ23).
Therefore, the dimensionless eccentricity is denoted as e = |z1 − z2|. The coordinates of
drop interfaces are related to eccentricity and radius ratio as

ξ12 = cosh−1
(

1 − e2 − k2

2ek

)
, ξ23 = cosh−1

(
1 + e2 − k2

2e

)
, k < 1 − e. (2.2a,b)
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Accordingly, the z-coordinates of the drop centres can be obtained as

z1 = 1 − e2 − k2

2e
and z2 = 1 + e2 − k2

2e
. (2.3a,b)

It is to be noted that the limiting case of a concentric compound drop is recovered when
e → 0, leading to ξ12, ξ23, z1, z2 → ∞. With increase in e, the constituting drops would
approach closer to the plane z = 0 or equivalently ξ = 0.

2.2. Governing equations and boundary conditions

2.2.1. Electrostatic problem
The subjection to the electric field causes drop polarization, leading to the accumulation
of charges at the interface only (Melcher & Taylor 1969; Saville 1997). As per the
leaky-dielectric model (Taylor 1966), the electric potentials of each charge-free bulk fluid
satisfy the Laplace equation, which in bispherical coordinates reads (Moon & Spencer
1971)

∇2ϕi = (cosh ξ − cos η)3

c2
0 sin η

{
∂

∂ξ

(
sin η

cosh ξ − cos η
∂ϕi

∂ξ

)

+ ∂

∂η

(
sin η

cosh ξ − cos η
∂ϕi

∂η

)}
= 0; i = 1, 2, 3. (2.4)

At the interface between the ith and jth phases, the surface charge density is calculated
as qS,ij = (Si3∇ϕi − Sj3∇ϕj) · nij. To obtain the final solution of ϕ1,2,3, the following
boundary conditions are further imposed: (i) the electric potential is bounded inside the
inner drop, i.e. ϕ1 is finite as ξ → ∞; (ii) far away from the drop, the electric potential
approaches the applied electric potential, i.e. ϕ3 → ϕ0 = z = c0 sinh(ξ)/(cosh(ξ)−
cos(η)) as ξ, η → 0; (iii) at the interface between the ith and jth phases, the electric
potentials satisfy continuity, i.e. ϕi = ϕj at ξ = ξij; (iv) The interfacial charge evolution
dqS/dt is governed by the ohmic conduction in the bulk fluids: (J j − J i) · nij (where
J i = Ri3Ei is the ohmic current) and surface charge convection ∇S,ij · (uS,ijqS,ij) (where
∇S is the surface gradient operator and uS is the surface velocity). The charge conservation
equation at the interface ξ = ξij takes the form

ReE

{
dqS,ij

dt
+ ∇S · (uS,ijqS,ij)

}
+ (J j − J i) · nij = 0. (2.5)

Here, ReE(= ε2
3E2

0/(σ3μ3)) is the electric Reynolds number that defines the ratio of the
charge relaxation time (ε3/σ3) and flow time scale (b/UC). Under the assumption of a
negligibly small charge relaxation time (i.e. the electrical Reynolds number ReE � 1)
justified earlier, the charge conservation equation at the interface ξ = ξij reduces to

(J j − J i) · nij = 0. (2.6)

The electric potential distribution, satisfying (2.4), is given as

ϕi = c0
√

cosh ξ − cos η
∞∑

n=0

{αn,i cosh(n + 1/2)ξ

+ βn,i sinh(n + 1/2)ξ}Pn(cos η); i = 1, 2, 3, (2.7)

where Pn is the nth-order Legendre polynomial and αn,i and βn,i are the unknown
coefficients to be obtained using the electrostatic boundary conditions described above.
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The details of calculating the electric field components are provided in Appendix A. The
expressions for the electric potentials for the bulk fluids and the electrostatic boundary
conditions as expressed in bispherical coordinates are provided in Appendix B.

Using suitable recurrence relations of Pn in (B6) and (B8), and imposing the
orthogonality conditions, one can obtain 6n linear algebraic equations from the
electrostatic boundary conditions, which can be solved numerically to obtain the unknown
coefficients (αn,1, βn,1, αn,2, βn,2, αn,3, βn,3). Although it is impracticable to consider
the contributions of all spherical harmonics, a truncation of the series given (provided in
(B3)–(B5) in Appendix B) up to a reasonably high value of n (say N) can be performed,
by noting that the said coefficients decay in magnitude after a reasonably large N. The
cutoff for N has been chosen such that the relative errors in these coefficients as well
as in the values of ϕi between the (N + 1) and Nth terms remain less than 10−6, e.g.
|{ϕ(N+1)

i − ϕ
(N)
i }/ϕ(N)i | < 10−6 . We observed that the truncation limit N needs to be

increased with the eccentricity (e) and radius ratio (k) to retain the same numerical
accuracy. A similar observation was reported by Jadhav & Ghosh (2021) in the context of a
different physical problem of thermo-capillary migration. We verified that, for k = 0.1, the
limit N = 20 can produce accurate results for eccentricities e ≤ 0.5. Since the information
of the compound drop geometry (e, k) is provided to the theoretical model through the
coordinate ξ23 or ξ12 (refer to (2.2)), instead of identifying the upper limits of (e, k),
we identified the equivalent lower limits of ξ23 up to which N = 20 can ensure series
convergence. (refer to Appendix C).

Now, the electric traction forces exerted by the ith phase can be evaluated as

T E,i = τE,i · nij = −Si3
E2
ξ,i − E2

η,i

2
eξ − Si3Eξ,iEη,ieη. (2.8)

While the electric tractions combinatorically compel the drop to migrate, the axial
component of the corresponding driving force is of particular interest for the focus of
the present work because of its explicit contribution to the DEP motion. The total DEP
force acting on the inner and outer drops can be calculated by integrating the axial traction
acting on an elementary surface area, dS, as (Mandal et al. 2016a)

FDEP,1 =
∫

S
(T E,2 · ez) dS12 =

∫ 2π

0

∫ π

0
(T E,2 · ez)

c2
0 sin η

(cosh ξ12 − cos η)2
dη dΦ, (2.9)

F DEP,2 =
∫

S
(T E,3 · ez) dS23 =

∫ 2π

0

∫ π

0
(T E,3 · ez)

c2
0 sin η

(cosh ξ23 − cos η)2
dη dΦ, (2.10)

The tangential component of the electric traction τξη,i(= T E,i · eη) induces a non-uniform
flow field in the drop vicinity, which exerts the electrohydrodynamic force (FEHD) on the
inner and outer drops. Evaluation of FEHD, thus, necessitates the solution of the flow field,
as described subsequently.

2.2.2. Flow problem
For Stokes flow, the momentum and continuity equations are expressed as

λi3∇2ui = ∇pi, ∇ · ui = 0; i = 1, 2, 3, (2.11)

where u and p stand for velocity and pressure field, respectively. Here, the sole driving
force for the fluid flow, i.e. the external electric field, acts along the z-axis. In the absence
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of any source of asymmetry about the same axis, (2.11) can be transformed into

Ω2(Ω2ψi) = 0; i = 1, 2, 3. (2.12)

Here, ψ(ξ, η) is the streamfunction, and Ω2 is a linear operator of the form

Ω2 = cosh ξ − ζ

c2
0

{
∂

∂ξ

(
(cosh ξ − ζ )

∂

∂ξ

)
+ (1 − ζ 2)

∂

∂ζ

(
(cosh ξ − ζ )

∂

∂ζ

)}
, (2.13)

where ζ = cos(η). Like the electric potential, the velocity field satisfies the boundedness
in the inner drop, i.e. u1 is finite as ξ → ∞. Notably, the velocity fields of all the phases
are redefined with respect to the reference frame adhering to the outer drop. Thus, the
velocity at the far field, i.e. at ξ → 0, η → 0, is uniform and is obtained as −U2ez. In
addition, at the interfaces, the tangential velocities are continuous, i.e. ui · tij = uj · tij at
ξ = ξ ij, and the normal velocity components satisfy the no-penetration boundary condition

u2 · n23 = u3 · n23 = 0 at ξ = ξ23
u1 · n12 = u2 · n12 = (U1 − U2)ez · eξ at ξ = ξ12

}
. (2.14)

The interfacial tangential stress balance concerns the combined electrical and
hydrodynamic stresses, so that

[τE
ξη]ij + [τH

ξη]ij = 0, (2.15)

where τE
ξη = tij · (τE · nij) and τH

ξη = tij · (τH · nij) denote the tangential electric and
hydrodynamic stresses, respectively, and [ ]ij represents the jump in the physical quantities
at the interface ξ = ξij. The expressions of the electric stress tensor (τE) and the
hydrodynamic stress tensor (τH) associated with ith phase, considering the individual
phases to be homogeneous, isotropic and Newtonian are as follows:

τE
i = Si3{EiEi − E2

i I}, τH
i = −piI + λi3{∇ui + (∇ui)

T}. (2.16a,b)

The general solution to the axisymmetric streamfunctions satisfying the biharmonic
equation given in (2.12) is as follows:

ψi = (cosh ξ − cos η)−3/2
∞∑

n=0

Wn,i(ξ)C−(1/2)
n (cos η), i = 1, 2, 3, (2.17)

where Wn,i(ξ) = An,i e−(n−1/2)ξ + Bn,i e(n−1/2)ξ + Cn,i e−(n+3/2)ξ + Dn,i e(n+3/2)ξ and
C−1/2

n+1 is the Gegenbauer polynomial. Details regarding the application of different
flow boundary conditions and the expressions of the tangential stresses are provided
in Appendix B. Applying the useful identities (provided in Appendix D) to the
boundary conditions gives us a set of algebraic equations which can be solved to obtain
the unknown coefficients An,1, Bn,1, Cn,1, Dn,1, . . . , etc. Similar to the electrostatic
problem, we have truncated the series of ψ after 20 terms without compromising
the accuracy of the solutions. It is verified that in the pertinent limiting conditions
(i.e. e → 0), our approximate analytical solutions converge well with the previously
reported closed form analytical solutions of Behjatian & Esmaeeli (2013) (refer to
Appendix E).

One apparently paradoxical observation that appears to be evident from the expression
of the flow field is that it does not include the surface tension. While this might lead
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to an inference that the surface tension is neglected in the balance of forces, it may
be rationalized by noting that the dynamic surface tension force depends on the extent
of deformation of the fluid–fluid interfaces. In the asymptotic theory, the interfacial
deformation is rendered inconsequential at the leading order, bearing no influence on the
mathematical representation of the normal force balance. Further, in the absence of any
Marangoni effect (stemming from possible thermal or concentration gradients that are
absent in the present set-up), there is no contribution of surface tension on the tangential
stress balance either. Therefore, the overall stress balance depends on the hydrodynamic
and the Maxwell stresses alone, with no role for the surface tension mediated interactions
in dictating the dynamical evolution of the drop as per the asymptotic theory.

The essential foundations of the asymptotic theory, elucidated above, bring in obvious
limitations of the same in capturing both qualitative and quantitative features of the
droplet morpho-dynamics beyond a set of restrictive considerations. While these aspects of
simplifications in the hydrodynamic model have previously been discussed in the context
of the asymptotic analysis, we outline here some of the concerned inadequacies of the
coupled electro-mechanical model. For instance, the expression for the outer electric
potential ϕ3, can be written in the form: ϕ3 = ϕ0 + ϕ3,per = z + ϕ3,per, where ϕ0 is the
unperturbed far-field potential and ϕ3,per is the perturbation in the outer electric potential,
generated due to the presence of the drop. Looking at the general solution of ϕ3 (refer
to (B5)), it can be well comprehended that ϕ3,per decays with a decrease in ξ and finally
comes down to zero at ξ = 0. Accordingly, at the horizontal plane z = 0 (where ξ = 0), the
outer electric potential takes the value ϕ3 = z = 0. This theoretical premise mimics the
physical reality quite aptly for small values of the eccentricity because, in these cases, the
plane z = 0 (or the fixed potential line) remains far away from the drop, thereby facilitating
an asymptotic decay of the imposed perturbations. However, with increase in e, the drop’s
initial position gets closer to the fixed potential line. This may impact the accuracy of
the solution adversely, since the perturbations are to be artificially quenched within a
short distance. This results in inevitable inaccuracies in the semi-analytical solution that
may best be circumvented by full-scale numerical simulations. We, therefore, perform
numerical simulations in parallel to figure out a threshold limit of eccentricity up to
which the semi-analytical and the numerical simulations agree, as described in § 3.4.
Notably, the small eccentricity limit for the validity of the semi-analytical solution is
pertinent only for the electrostatic problem and not for the hydrodynamic problem. The
latter becomes the case since z = 0 does not conform to a hydrodynamic confinement,
so that the hydrodynamic aspects remain akin to unbounded flows (Gouz & Sadhal
1989; Mandal, Ghosh & Chakraborty 2016c; Jadhav & Ghosh 2021; Boruah et al.
2022).

2.2.3. Evaluation of drop migration velocities
The unknown drop velocities can be obtained by applying the dynamic force balance∑

F = FDEP + FH = 0 to each drop. Here, FH is the total hydrodynamic force, which
is the summation of the viscous drag force Fdrag (due to the translation of the drop with
respect to a background fluid medium) and the EHD force FEHD. The latter originates
from the EHD circulations that set in to satisfy the tangential force balance at the interface,
which requires the consideration of both the hydrodynamic and the electrical (Maxwell)
stress for its rationalization. While FDEP on the droplets can be calculated using (2.9) and
(2.10), the dimensionless total hydrodynamic force (F H) acting on the droplets can be
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expressed as (Mandal et al. 2016c)

FH,1 = 4
√

2π
c0

N∑
n=0

(Bn,2 + Dn,2), FH,2 = 4
√

2π
c0

N∑
n=0

(Bn,3 + Dn,3). (2.18a,b)

Note that the velocity coefficients (Bn,2, Dn,2, Bn,3, Dn,3) are linear functions of U2 and
U1, obtained as Bn,2 = K(B)n,2 U1 + L(B)n,2U2 + M(B)

n,2 , Dn,1 = K(D)n,2 U1 + L(D)n,2 U2 + M(D)
n,2 and

so on, where K(B)n,2 , L(B)n,2, . . .M
(B)
n,3 are functions of (ξ12, ξ23,R23,R12, S23, S12, λ23, λ12, n).

Therefore, the force balance conditions can be transformed to

U1

N∑
n=0

(K(B)n,2 + K(D)n,2 )+ U2

N∑
n=0

(L(B)n,2 + L(D)n,2 )+
N∑

n=0

(M(B)
n,2 + M(D)

n,2 )+ c0FDEP,1

4π
√

2
= 0,

(2.19)

U1

N∑
n=0

(K(B)n,3 + K(D)n,3 )+ U2

N∑
n=0

(L(B)n,3 + L(D)n,3 )+
N∑

n=0

(M(B)
n,3 + M(D)

n,3 )+ c0FDEP,2

4π
√

2
= 0,

(2.20)

which are solved to obtain the drop velocities.
The temporal evolution of e can be defined as de/dt = U2 − U1 = ΔU (where ΔU is

the relative velocity), which is inherently nonlinear because U1 and U2 are themselves
functions of e. The eccentricity as a function of time is obtained using a numerical
integration technique. For this purpose, we employ the ODE45 solver in MATLAB as
an established means of implementing the Runge–Kutta method (Shampine & Reichelt
1997). This specific solver is robust since it can adaptively vary the time steps to
ensure the required relative tolerance is achieved (10−8 in this case) by employing a
six-stage fifth-order variant of the Runge–Kutta scheme. The initial condition used here is
e(t = 0) = e0.

3. Results and discussion

In this section, we focus on the key aspects of the droplet migration characteristics as
influenced by the eccentricity-induced dielectrophoresis. We demonstrate the variation
in results with a wide range of dimensionless electro-physical parameters (R12, S12, R23
and S23) and configurational variables (e and k). A plausible electro-physical parametric
regime can be identified using the properties of vegetable oil, silicone oil and castor oil
given in § 2, and by choosing their different combinations as the constituents of the inner
drop, outer drop and the carrier phases, respectively. Considering the properties of the
above-mentioned fluids, we calculate that the electrical permittivity ratios S12, S23 ∼ O(1)
and R12, R23 to vary between O(10−2) and O(102). From an experimental perspective,
different ranges of electro-physical parameters, even beyond the ones described above,
can be readily achieved by using the doping technique (Yin & Zhao 2002), rendering
practicable our parametric sweeps over the regimes explored.

Considering that the electric field is the sole driving force for drop motion, we first
illustrate the comparison between the electric field distribution around the concentric
and eccentric compound drops in figures 2(a) and 2(b), respectively, for R23 = 0.01,
S23 = 5, R12 = 0.01 and S12 = 0.5, in an effort to bring out the exclusive role of the
geometric eccentricity. As shown in this figure, the electric field (E) is symmetrically
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e = 0.001
446.0(a) (b) 3.5 2.0

1.5

1.0 |E|
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2.5

2.0

1.5

1.0

0.5
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r
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η = π

η = 0

r
1

Polar

region

e = 0.25

Equatorial

line

Figure 2. Contour plot showing the magnitude of electric field |E| in the region close to the drop for
(a) concentric and (b) eccentric compound drop cases for radius ratio k = 0.333. The electrical properties
considered are R23 = 0.01, S23 = 5, R12 = 0.01 and S12 = 0.5. In (a) z1, z2 
 1 as e � 1 (refer to (2.3)).

distributed about the equator for a concentric case, i.e. when e → 0. In the case of
e = 0.25, the off-centric positioning of the inner drop towards the polar location η=π
causes large perturbations in the local electric field, whereas the perturbations due to the
inner drop’s existence at the other polar point (at the outer surface of the shell) become
less. Consequently, the electric field becomes asymmetric about the equatorial lines of
each drop. This deviation from symmetry significantly impacts the electric as well as the
hydrodynamic tractions manifested through the interfacial stress balance conditions (refer
to (B14)). The intriguing migration characteristics of the drops attributable to the forces,
originating from the respective tractions, are explained in detail in the subsequent sections.

3.1. Role of DEP force on drop migration
Figures 3(a) and 3(b) depict the effect of eccentricity, e, on the axial components of electric
tractions over the interface of the drops. The geometric and electrical parameters are same
as that chosen for figure 2. In figure 3, θ1 and θ2 represent the angular locations on the
inner and outer interfaces, respectively (described in the insets). As shown, for e = 0.001
(nearly concentric case), the axial tractions acting on both the drops are anti-symmetric
about the equator. Therefore, the net DEP force acting on the drops becomes zero. On
the other hand, for e = 0.25, the axial tractions are conspicuously asymmetric. Although
the off-centric positioning leads to a decrease in tractions on both sides of the equator, in
the southern half, i.e. θ =π /2 to π , the alterations are comparatively high. Accordingly, the
total axial forces acting on the southern half of the drops (which is positive) are relatively
lower than their other half (which is negative), encouraging the movement of the drops in
the negative z-direction. Note that the electric field, and hence the nature of the tractions,
largely depends on the electric properties and geometric parameters. Therefore, multiple
migration possibilities can be seen, as discussed next.

The EHD circulations and the concerned forces do not come into play if we disregard
the tangential electric stress that drives the EHD circulations in the system, i.e. τE

ξη,2 =
τE
ξη,1 = 0. This mathematical consideration allows us to analyse the sole effects of the

DEP forces. Physically, the absence of EHD circulations is possible only if the system is
comprised of non-conducting (or perfectly dielectric) fluids. As the perfectly dielectric
fluids do not develop charges on the surface, i.e. qS = 0, the solutions to such fluid
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5(a) (b)
e = 0.001
e = 0.25

0

T E
,1

 · 
e z

0

–0.2

–0.4

0.2

0.4

T E
,2

 · 
e z

–5

θ1

θ1
θ2

0 π/4 π/2 3π/4

Equatorial line Equatorial line

π

θ2

0 π/4 π/2 3π/4 π

Figure 3. Effect of eccentricity (e) on the distribution of axial electric traction at the (a) inner surface, and
(b) outer surface. The parameters considered are R23 = 0.01, S23 = 5, R12 = 0.01 and S12 = 0.5.

systems can be obtained by setting R23 = S23 and R12 = S12 (Melcher & Taylor 1969).
It is to be noted that the present analysis does not entirely stand for the dielectric system
(as R12 and R23 are subjected to variations keeping S12 and S23 constants); however, the
above mathematical consideration helps us to uncover the underlying physics dictating the
translational dynamics of the compound drop system of concern here.

From the definitions of the DEP forces (refer to (2.8)–(2.10)), it can be inferred that in a
functional form FDEP = f (R23,R12, S23, S12, e). Accordingly, in figures 4(a) and 4(b), we
depict the effect of R23 on the velocity of inner (U1) and outer droplet (U2), respectively,
for different R12. The conductivity ratio R23 is varied between 10−2 and 102. It is observed
that both U1 and U2 vary non-monotonically with R23 as well as R12. The transition in
the trend in the velocity variation occurs at R23 = 1 for all cases, and therefore, is named
as the critical point. For R12 = 1, the sign of U1 and U2 remains negative for all R23. On
the other hand, for R12 = 0.01 and 100, U1 changes its sign at R23 = 1, while the sign of
U2 remains unaltered. For the latter two values of R12, as R23 is raised above unity, U1
continuously increases until specific values of R23 are reached, hereinafter named as the
secondary critical values of R23. Beyond these critical points, we observe a decreasing
trend in U1. Notably, for R12 = 100, this secondary critical value of R23 is greater than
that of R12 = 0.01. With a further increase in R23, the U1 versus R23 curves for different
R12 begin to converge, ultimately following the same increasing (in magnitude) trend.
However, R23 = 1 acts as the point of convergence as far as the outer drop velocity U2 is
concerned.

The contrasting set of drop characteristics presented in figures 4(a) and 4(b) can be
explained by analysing the DEP force acting on the inner and outer drops, as portrayed
in figure 4(c). It is noteworthy that the DEP force acting on the outer drop, FDEP,2, while
considerably varying with R23, alters negligibly with variation in R12. Some qualitative
insights of the same may be put in perspective by appealing to the previously reported
analytical theory on the electrically modulated dynamics of concentric compound drops
(Behjatian & Esmaeeli 2013, 2015). Their analysis clearly reveals that the outer electric
field has a strong dependence on R23. In contrast, a significantly weak dependence on R12
and the size ratio k was reported. However, the electric field inside the shell (or outer
drop) strongly depends on R23, R12 and k, which is aptly evidenced from the variations
of FDEP,1 as shown in figure 4(c) herein. Depending on the nature of the DEP forces,
three distinct regimes can be identified, i.e. regimes I, II and III. In regime I, which is
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R23
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Figure 4. Variations in (a) inner drop velocity U1, (b) outer drop velocity U2 and (c) DEP forces (FDEP,1,
FDEP,2) with R23 for different R12. The other system properties are S23 = 5, S12 = 0.5, e = 0.15, k = 0.333 and
z2 = 3.04.

typically restricted up to R23 = 1, the forces on the inner and outer drop act on the negative
z-direction. However, over this regime, as |FDEP,1|> |FDEP,2|, faster movement of the
inner drop than the outer one occurs. Contrarily, over regime II, FDEP,1 is positive, but
FDEP,2 is negative.

Despite the overwhelming importance of the DEP forces on the dynamics of the
eccentric compound drops, their motions are further hindered by the viscous drag forces
that are by themselves proportional to U2,DEP, and U1,DEP which are the DEP velocities
of the outer and inner drop, respectively. Over regime I, as FDEP,1, FDEP,2< 0, the
drops move in the negative z-direction irrespective of the magnitude of the viscous
drag. However, in regime II, the viscous drag causes some non-trivial alterations in the
drop migration. Even though the signs of the DEP forces (FDEP,1> 0 and FDEP,2< 0)
intuitively suggest that U1> 0 and U2< 0, respectively, throughout regime II, a sign
reversal of U1 occurs in practice, as delineated earlier. This is because of the fact that,
beyond a critical point, |FDEP,1| 
 |FDEP,2|, causing a much faster movement of the outer
drop as compared with the inner one. For the considered parametric space, as the viscous
drag acting on the inner drop is stronger than FDEP,1, sign reversal in U1 occurs. The
reason behind the rapid weakening of FDEP,1 for R23> 1 is that, at the outer boundary,
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Figure 5. Effect of eccentricity e on the (a) velocities of inner and outer drops, and (b) DEP forces acting
on the inner and outer drop. The other considered parameters are R23 = 1.5, S23 = 5, R12 = 0.01, S12 = 0.5 and
k = 0.333 (which corresponds to the regime II). The lowest vertical height of outer drop centre (z2) considered
here is 1.52.

the electric fields satisfy E2 · n = (E3 · n)/R23 (refer to (2.6)). Thus, an increase in R23
produces a weaker electric field inside the outer drop (or shell) compared with the external
medium, thereby resulting in a relatively weaker DEP force on the inner drop. Over regime
III, where R23 
 1, the electric field inside the outer drop becomes negligibly small, i.e.
FDEP,1 → 0. However, the force on the outer and, therefore, the viscous drag remains
significantly high. This forces the inner drop to migrate along with the outer one in the
negative z-direction.

We further probe regime II in an effort to delve deeper into its non-trivial dynamic
characteristics mentioned above, for various geometric orientations considering R12 = 0.01
and R23 = 1.5, keeping the other electro-physical properties unchanged. Figure 5(a) depicts
the effect of the eccentricity of the compound drop configuration on the velocity variations,
for different size ratios (k). It is observed that, when k is small, e.g. k = 0.2, the migration
velocities of the slightly eccentric drops (i.e. e � 1) are negligibly small (O (10−6)). Under
such conditions, an increase in the eccentricity results in noticeably faster movements of
the inner and outer drops in the negative z-direction, i.e. U1, U2< 0. For higher values
of k, although |U1| and |U2| vary in a similar manner with e, their directions may alter
preferentially. For k = 0.333, for instance, U1> 0, and U2< 0, whereas for k = 0.55, U1,
U2> 0.

To explain the above counterintuitive features, we study the effect of the geometric
parameters on the nature of the DEP forces, which is presented in figure 5(b). As
shown in this figure, irrespective of considered geometric parameters, FDEP,1> 0 and
FDEP,2< 0. An increase in e enhances the non-uniformity in the tractions, causing
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Figure 6. Regime plot in R12–R23 space classifying different types of drop movements for (a) (S23, S12) =
(5, 0.5) and (b) (S23, S12) = (0.5, 5). The geometric parameters considered here are e = 0.15, k = 0.333 and
z2 = 3.04. The nomenclatures of the different regimes presented above are as follows: regime A (U1, U2< 0),
regime B (U1> 0, U2< 0), regime C (U1< 0, U2> 0) and regime D (U1, U2> 0).

increments in FDEP,1 and FDEP,2. Conversely, when k is increased, FDEP,1 increases
significantly, whereas FDEP,2 varies inconsequentially with k. From the expressions of
the total DEP forces given in (2.9) and (2.10), it can be inferred that an increase in k
leads to a large increment in the surface area of the inner drop (∝k2) only. Accordingly,
only the inner drop senses large augmentation in the DEP force. On the other hand, the
surface area of the outer drop remains unaltered, and thus, FDEP,2 remains effectively
unchanged. For k = 0.2, since |FDEP,1| � |FDEP,2|, the flow as triggered by the outer
drop’s motion is strong enough to overcome the drag produced by FDEP,1 on the
inner one. Therefore, the inner and outer drops move in the same (-z) direction. On
the contrary, for k = 0.55, |FDEP,1| 
 |FDEP,2|, resulting in their migrations in opposite
directions. For intermediate values of k, for example, for k = 0.333, as |FDEP,1| ≈ |FDEP,2|
for each e, the drops are driven in the direction of the respective DEP forces acting
on them.

3.2. Combined effect of DEP force and EHD force on the drop migration
Here, we consider both EHD and DEP forces, going beyond the limiting conditions
considered in the preceding section. The translational behaviours of the drops are
summarized as regime plots in R12–R23 space in figures 6(a) and 6(b) for (S23,
S12) = (5, 0.5) and (S23, S12) = (0.5, 5), respectively. Depending on the directions of their
movements, three major regimes have been identified, namely regimes A, B and C. For
the conductivity ratios within regime A, the inner and the outer drops exhibit motion
in the negative z-direction, i.e. U1, U2< 0. On the other hand, regimes B and C are
characterized by opposite movements of the drops, i.e. (U1> 0, U2< 0) and (U1< 0,
U2> 0), respectively. In addition, regime A is discontinuously spanned as a fraction of it is
limited up to R23 ∼ 10, R12 ∼ 1, whereas the other part of the same regime is encountered
when R23 > 25(
1). Regime B is a sandwiched zone between the two halves of regime A.
In contrast, regime C can be located towards the increasing R12 direction of regime A.
Notably, in figure 6(b), for a few combinations of R12 and R23, a new regime is identified,
i.e. regime D, where the condition U1, U2> 0 is met. As the permittivity ratios also play
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a significant role in dictating the EHD flow and electric tractions (Feng 1999; Behjatian &
Esmaeeli 2015), variations in these parameters can significantly alter the drop dynamics,
as reflected in the alterations in the limits of R23 and R12 of the different regimes. In the
regime plots shown in figure 6, the locations of regimes B and C with respect to regime A
remain the same. The above figures also reveal that a decrease in S23 leads to the decline
in the upper limits of R23 for both regimes A and C. On the other hand, a reduction of S12
increases the upper limit of R12 for regime A (or the lower limit of R12 for regime C).

To explain the physics behind the existence of different regimes leading to distinctive
drop translation characteristics, we plot the surface velocities (uS,2 and uS,1) with the
respective polar angles in figure 7. Figures 7(a) and 7(b) depict the variation in uS,2 and
uS,1, respectively for the system (R12, R23, S12, S23) = (0.1, 0.2, 0.5, 5), conforming to
regime A. For the concentric case (e → 0), as the EHD flows are anti-symmetric about
the equator (θ =π /2), the drags produced by EHD flow (FEHD) on both the drops are
zero, similar to FDEP, thereby not resulting in any drop movements. For the eccentric
case (e = 0.15), the flow at the outer surface is slightly asymmetric; however, at the inner
surface, the flow is highly asymmetric about the equator. Notably, for e → 0, the flow
at the inner surface is directed from the pole to equator (quadrupolar). For e = 0.15,
however, a pole-to-pole (bipolar) flow is observed. The reason is that, for the considered
properties, the tangential electric stress is much stronger, dominating the flow field inside
the shell. The off-centred positioning of the inner drop exposes a larger part of it to the
circulations created in the southern half of the shell, forcing the flow at the inner surface
to run from north pole to south pole. Such bipolar flows, in practice, generate drag in the
downward direction. As the asymmetry in the outer surface flow distribution is negligible,
the viscous drag on the outer drop is also dictated by the inner drop motion. Moreover,
for the considered electrical properties, FDEP,2, FDEP,1< 0 as presented in figure 4(c).
Consequently, we observe U2, U1< 0. From figure 7(a,c,e,g), it can further be seen that
the eccentricity-induced perturbations in uS,2 are negligible. Thus, outer drop motions in
all these cases are dictated by the FDEP,2 and the viscous drag created by the motions of
inner drops.

Next, we analyse the flow behaviours of the second system (R12, R23, S12, S23) = (0.1,
10, 0.5, 5), demonstrated in figures 7(c) and 7(d). For this parameter set corresponding to
regime B, the uS,1 versus θ1 curves are similar to that obtained for the previous system,
whereas the uS,2 versus θ2 curves are opposite in nature, reflecting equator-to-pole flow
at the outer surface. Accordingly, here the off-centred placement of the inner drop leads
to a reduction (enhancement) of the flow strength in the northern (southern) half of the
inner drop (refer to the schematic provided in the insets). Moreover, the stagnation point
(θ s) shifts from π /2 to a lower angular position. For such asymmetric flow distribution,
the EHD drag acting in the region θ = 0<θ <θ s i.e. FEHD,1 (0<θ <θ s)< 0, whereas
FEHD,1 (θ s<θ <π)> 0. However, as |FEHD,1 (θ s<θ <π)|> |FEHD,1 (0<θ <θ s)|, as
evidenced from figure 7(d), the net EHD drag acting on the inner drop, FEHD,1> 0. As
for the present system, FDEP,1 ≈ 0 (refer to figure 4c), FDEP,1 + FEHD,1 ≈ FEHD,1 > 0,
resulting in U1> 0. Conversely, for the outer drop, FDEP,2< 0 and FEHD,2 ≈ 0, giving rise
to U2< 0.

For the third system (R12, R23, S12, S23) = (10, 0.1, 0.5, 5), belonging to regime C, the
surface flow patterns are opposite to that observed for the second system (refer to figures 7e
and 7f ), leading to reverse migration characteristics (U1< 0 and U2> 0). For the fourth
system (R12, R23, S12, S23) = (0.1, 2.5, 5, 0.5) (corresponding to regime D), the surface
velocity variations are similar to the second system, leading to an upward motion of the
inner drop. However, a deviation is found in the outer drop’s behaviour. For this system,
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Figure 7. Effect of eccentricity on the surface velocity variation at the outer surface of system (a) (R12, R23,
S12, S23) = (0.1, 0.2, 0.5, 5), (c) (R12, R23, S12, S23) = (0.1, 10, 0.5, 5), (e) (R12, R23, S12, S23) = (10, 0.1, 0.5,
5) and (g) (R12, R23, S12, S23) = (0.1, 2.5, 5, 0.5). The corresponding surface velocity variations at the inner
surface are shown in (b), (d), ( f ) and (h), respectively. The schematics (not to scale) of the flow structures
are provided in the insets for better understanding of the flow physics leading to different nature of drag. The
geometric parameters considered for eccentric drop are e = 0.15, k = 0.333 and z2 = 3.04.

however, FDEP,2< 0, |FDEP,2| is very small compared with the viscous drag induced by
the inner drop’s motion. Therefore, the outer drop moves in the direction of the inner drop.

For building a comprehensive understanding of the significance of FDEP, variations
in the drop velocities with the eccentricity are shown in figure 8, for (R12, R23, S12,
S23) = (0.1, 10, 0.5, 5) (same as that considered to construct figures 7c and 7d). It is
observed that |U2| increases monotonically with an increase in e, whereas U1 has a
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Figure 8. Effect of eccentricity on the velocities of inner and outer drop for the system (R12, R23, S12,
S23) = (0.1, 10, 0.5, 5), and k = 0.333. The lowest vertical height of outer drop centre (z2) considered here
is 1.63.

non-monotonic relation with e. There exists a critical eccentricity (ec), at which transition
from U1> 0 to U1< 0 occurs, suggesting that depending on e, a physical system can
exhibit features of multiple regimes. The inset of figure 8 shows that, beyond e = ec,
the magnitudes of the DEP forces increase exponentially. However, due to the fact that
FDEP,2/FDEP,1 ∼ O(102), alteration in FDEP,2 in the limit of e> ec induces a massive
upsurge in U2, forcing the inner drop to move downwards, against the action of viscous
drag acting on it (which is positive, as described earlier).

3.3. Evolution of the eccentricity
Figure 9 demonstrates the variation of e with time for different system properties,
simultaneously portraying the effect of the radius ratio, k. The results provided in
figure 9(a) show exponential decay in eccentricity for all k for the system (R23, S23, R12,
S12) = (2.5, 0.5, 0.1, 5). For this system, which corresponds to the regime D (U1, U2> 0),
we observe that |U2| � |U1| (which implies �U ≈ −U1) irrespective of the value of k.
In this case, the faster motion of the inner drop towards the outer drop’s centre results
in decrease in the eccentricity value. Conversely, for a different system, i.e. R23 = 0.1,
R12 = 10, S23 = 5 and S12 = 0.5, we obtain temporal rise in eccentricity as shown in
figure 9(b). This system corresponds to the regime C (U1< 0, U2> 0) for which we get
de/dt =�U> 0, with U1 and U2 having comparable magnitudes.

For the above-mentioned systems, a decrease in de/dt can be observed with an increase
in k. For the first case, since �U ≈ −U1, the reduction in the velocity of the inner
drop substantiates a corresponding fall in de/dt. Similarly, a closer look into the insets
of figure 9(b) reveals that, for the second case, the displacement of the outer drop for
k = 0.55 within the considered time range is higher than the same for k = 0.2. Thus, here
also, the fall in de/dt (=�U) with the increase in k can be attributed to a decrease in U1.
The explanations for the above effect of k on U1 are as follows. For the first set of (R23,
R12), FDEP,1 is much smaller than FEHD,1. Consequently, the increase in FDEP,1(> 0)
with k (refer to the discussion on figure 5b) is overpowered by a corresponding reduction
in FEHD,1. Thus, the fall in U1 is attributable to decrease in FEHD,1. As previously found,
a larger inner drop produces stronger surface flow at the inner surface, uS,1 (Behjatian &
Esmaeeli 2013). In light of the flow analysis presented in figure 8, it can be inferred that
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Figure 9. Temporal variation of the eccentricity e for the systems (a) (R23, S23, R12, S12) = (2.5, 0.5, 0.1, 5)
and (b) (R23, S23, R12, S12) = (0.1, 5, 10, 0.5) with different inner drop sizes. The insets show the positions of
the drops at different times. The lowest vertical height of outer drop centre (z2) attained is 1.69.

the asymmetry in the inner surface velocity for a given eccentricity is comparatively less
for stronger uS,1, explaining the fall in U1 observed as above.

The third case presented in figure 10(a) is the most interesting one, where changing k
from 0.333 to 0.55 switches the trend of transient eccentricity variation. The considered
system (R23, S23, R12, S12) = (2, 3, 0.5, 100), shows migration characteristics of regime C
for k = 0.2 and 0.333 and regime D for k = 0.55 (according to figure 6). Consequently, the
temporal variation in e for the former two values of k resembles figure 9(b), whereas, for
the latter case, the variations are similar to figure 9(a). To explain this dual nature of the
compound drop, we examine the surface flow (uS,1) for k = 0333 and 0.5 in figure 10(b).
It is found that an upsurge in k significantly augments the flow strength in the upper half
and reduces the same in the lower half. For k = 0.333, the surface flow in the upper half is
weaker than that of the lower half, whereas an opposite scenario can be seen for k = 0.55.
These contrasting types of flow asymmetry prompt U1< 0 and U1> 0 for k = (0.2, 0.333)
and k = 0.55, respectively. In addition, for the current system, FDEP,1> 0 irrespective of
k, thus, further contributing to the augmented upward movement of the inner drop for
k = 0.55. Since U2<U1, the off-centric nature of the system gets suppressed, leading to
an attenuating eccentricity with time.

3.4. Comparison with numerical predictions
To establish our theoretical findings from the asymptotic analysis and the pertinence of
the key assumptions considered therein, we compare the present series solutions with the
predictions made by a multiphase fluid flow solver that couples numerical solutions of the
Navier–Stokes equation with the volume of fluid based approach for interface capturing,
by employing the finite volume method, incorporating both EHD and DEP effects. The
resulting system of discretized equations is numerically solved by using the open-source
solver, Gerris, which is a well-benchmarked computing platform and extensively used for
simulating a variety of EHD problems (López-Herrera, Popinet & Herrada 2011). The
detailed numerical methodology is provided in Appendix F.

To mimic the experimentally replicating physical conditions mentioned as earlier, we
consider Ca12 = Ca23 = 0.01 and Re = 0.01 for all the simulations, instead of dropping
the inertial terms altogether from the Navier–Stokes equation. This consideration is in
spirit with the previous works on low Reynolds number EHD of drops (Tomar et al. 2007;
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Figure 10. (a) Temporal variation of the eccentricity, e, for the system (R23, S23, R12, S12) = (2, 3, 0.5, 100)
with different inner drop sizes. The insets show the positions of the drops at the different times. (b) Effect of
size ratio on surface velocity variation at the inner surface for e = 0.12. The lowest vertical height of outer drop
centre (z2) attained is 1.9.

Lin, Skjetne & Carlson 2012; Mandal, Bandopadhyay & Chakraborty 2016b; Das et al.
2021). Furthermore, it is verified that Ca12 = Ca23 = 0.01 preserves the drop sphericity
very well. The above parametric considerations enable a rationalization of the similitude
between the analytical and the computational platforms, except for certain artefacts that
may originate from the far-field boundary condition invoked to solve the electrical problem
in the theoretical procedure as discussed before in § 2.2.1. Considering different sets of
(e, k), it is verified that the truncation limit N = 20 ensures the series convergence for
ξ23> 0.65 or equivalently for z2 = 1.22 (refer to Appendix C). However, this does not
necessarily indicate an acceptable level of quantitative accuracy. In fact, by comparing the
semi-analytical and numerical results, it is found that the numerical and the semi-analytical
results agree excellently in a quantitative sense for ξ23> 0.911, or equivalently, z2> 1.45
(to be discussed in the upcoming paragraphs). Accordingly, for the above results presented
from the semi-analytical viewpoint, the distances between the outer drop centre and the
horizontal axis have been kept beyond z2 = 1.5, so that the accuracy of the semi-analytical
results is not compromised.

Figure 11(a) describes the effect of eccentricity on the relative velocity �U between
the drops, for the system R23 = 0.5, S23 = 5, R12 = 2 and S12 = 0.2. Since a positive �U
is associated with an increase in eccentricity with time, the variation of �U with time
follows the trend of variation of �U with eccentricity (e), and hence the time variation of
�U is not presented here as a separate result. It is observed that the relative velocity
variations, both for the asymptotic and the numerical solutions, show steady increase
up to e ≈ 0.3 and decreases thereafter, indicating its non-monotonic variation with e.
Furthermore, the present asymptotic results agree well with the numerical results, up to
e ≈ 0.35. Beyond this limit, the asymptotic theory starts to over predict �U (as we have
predicted before), although it aptly captures the non-monotonic trend of e versus �U. The
comparative analysis provided in figure 11(b) confirms the fall in �U with increase in k,
as observed earlier in the figure 9(b) for a similar parameter set corresponding to regime
C. The same figure also indicates that the asymptotic theory is in accordance with the
numerical simulations up to a fairly large size ratio i.e. k ≈ 0.6, whereas beyond this limit
of k, slight discrepancies can be found. To eliminate any possible source of error due to
variations in the electro-physical properties, we further present the effects of e and k on
�U in figure 12 for the system: R23 = 10, S23 = 1, R12 = 0.1 and S12 = 1. As opposed to
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Figure 11. Variation of relative velocity with (a) eccentricity for k = 0.333 and (b) radius ratio for e = 0.15.
The parameters considered are R23 = 0.5, S23 = 5, R12 = 2 and S12 = 0.2. Panel (a) shows that our theory agrees
well with the numerical results for e< 0.35 or z2 > 1.45.
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Figure 12. Variation of relative velocity with (a) eccentricity for k = 0.333 and (b) radius ratio for e = 0.15.
The parameters considered are R23 = 10, S23 = 1, R12 = 0.1 and S12 = 1. Panel (a) shows that our theory agrees
well with the numerical results for e< 0.35 or z2 > 1.45.

the previous case, here,�U monotonically varies with e, whereas increase in k leads to an
increase in �U. Similar to the previous case, here also, the discrepancy starts to feature
when the eccentricity exceeds e = 0.35, which corresponds to ξ23 ≈ 0.911 or equivalently
z2 = 1.45.

Figure 11 and 12 evidently substantiate that the asymptotic theory is capable of
predicting the distinctive physical aspects of compound drop electro-migration (i.e.
�U< 0 or �U> 0) for different systems that are featured by contrasting attributes of
coupling between the electro-mechanics and fluid flow. Furthermore, the qualitative trend
of �U versus e and �U versus k is aptly captured for a wide variety of parametric
conditions. This obviates the need for resorting to computationally intensive simulations
for deciphering the essential physics of interest, and the series solutions appear adequate
to serve the said purpose without compromising the qualitative as well as quantitative
accuracy over the experimentally relevant physical regimes. Moreover, the semi-analytical
results derived from the asymptotic theory enable us to arrive at approximate solutions
that depict a precise functional dependence of the relevant critical parameters leading to
different regime transitions in a normalized parametric space, which cannot be derived
from the numerical simulations without extensive trialling via hit-and-miss numerical
experiments.

963 A17-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.339


N. Behera, A. Poddar and S. Chakraborty

4. Conclusions

To summarize, we presented an approximate analytical model for compound drop
electro-mechanics under a uniform external electrical field, taking eccentricity of the
annular configuration aptly into consideration. Our asymptotic solutions based on an
adaptation of the governing equations in the bispherical coordinate space are observed to
agree well with the full-scale numerical predictions over experimentally relevant physical
regimes. The key to our findings has been the unravelling of the role of the DEP
forces, otherwise not commonly contextualized in the reported theoretical calculations
on drop EHD under a uniform electric field. This could be attributed to a dynamic
alteration in the electric field distribution as a consequence of the inherent variations in
the eccentricity of the drop configuration, often characterized by non-monotonic trends,
even for situations in which initial deviations from concentricity are only infinitesimal. Our
analytical depictions, thus, could rationalize the physics of DEP-driven electro-migration
of compound drops hallmarked by the following unique features:

(i) Even slight off-centre positioning of the inner drop breaks the anti-symmetry in the
electric traction and flow distribution in the vicinity, leading to the generation of both
non-zero DEP drag and EHD drag, as a combined consequence of the symmetry
breaking in both the hydrodynamic and the electric stresses.

(ii) The nature of the DEP force (positive or negative) primarily depends on the electrical
conductivities of the respective fluid phases. The DEP force on the outer drop is
always negative except at R23 = 1. However, for the inner drop, the DEP force can
be positive or negative depending on the values of R23 and R12. Importantly, as
R23 → ∞ (i.e. when shell fluid is highly conducting), FDEP,1 → 0. The permittivity
ratio S23, on the other hand, despite not influencing the direction of FDEP, can greatly
alter the magnitude of the same that acts on the inner drop.

(iii) The velocities of the drops evolve dynamically due to an interplay of the EHD and
the DEP stresses. For concentric compound drops, the surface flows, intrinsically
anti-symmetric, occur either from the pole to the equator or in the opposite direction,
depending on the relative electro-physical properties. On the other hand, for the
eccentric drops, the flows are inherently asymmetric. The extent of deviation from
anti-symmetry, including possible bifurcations to different nonlinear regimes, is
found to be largely dictated by the instantaneous eccentricity and the size ratio
of the inner and the outer drops, for a given combination of their electro-physical
properties. This leads to a paradigm of harnessing the DEP force to orchestrate the
internal movements of the encapsulated phase along the same or opposite direction
of the combined motion.

(iv) Thus, four possible combinations of compound drop migrations are shown
to be feasible, which may be uniquely mapped with the relevant normalized
electro-physical parameters.

(v) The evolution of the eccentricity is dictated by the relative velocity of the drops.
Accordingly, the eccentricity may monotonically grow or decay with time. However,
the nature of transients may non-monotonically vary with radius ratio depending on
the nonlinear coupling between the electrical and flow fields of the inner and the
outer drops.

While being capable of offering several new physical insights that remained unravelled
thus far, some central limitations of the asymptotic theory by virtue of its mathematical
genesis may be noteworthy. First, the semi-analytical framework is based on the
consideration of Stokes flow, no deformation and axisymmetric dynamics about the
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axis of the drop migration. Thus, under a very strong electric field, where the
electric-field-induced flow may cross low Reynolds number limits and the drop may start to
show noticeable deformations, the asymptotic model may not perform well. Nevertheless,
the drop velocity predicted by the present semi-analytical theory agrees qualitatively well
with the numerical simulations up to a large value of eccentricity, as attributed to an
unaltered trend in the dominant physical forcing mechanisms. However, the quantitative
match is attained only up to e< 0.35, which is attributable to the inherent incapability
of the bispherical coordinates in representing the far-field condition for highly eccentric
drops.

Despite of the above limitations, the implications of the results from the asymptotic
theory may be far reaching. With its analytical form, the theory depicts a direct quantitative
interplay of the EHD and the DEP forces that may be harnessed to act as a design
basis towards arriving at precise control strategies of the programmable manipulation
of compound drops that has thus far remained elusive. This, in turn, may bear critical
implications in applications where electric field effects are to be exploited to control the
movement of a wide variety of encapsulated fluidic phases such as droplets, vesicles and
even living biological cells.
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Appendix A. Field expressions in the bispherical coordinate system

Here, we provide a set of general information about the bispherical coordinates used in
different derivation steps:

(i) For un-deformed interfaces, the normal and tangential unit vectors for any surface
ξ = ξij are given as nij = −eξ (acting inwards) and tij = eη, respectively.

(ii) The divergence-free electric field E is related to the electric potential as (Eξ ,Eη) =
−∇ϕ = −(cosh ξ − cos η)/c0(∂ϕ/∂ξ)eξ − (cosh ξ − cos η)/c0(∂ϕ/∂η)eη.

(iii) The components of the velocity field in the bispherical coordinates are related to the
streamfunctions as

(uξ,i, uη,i) = {(cosh ξ − cos η)2/c2
0 sin η}(∂ψi/∂η,−∂ψi/∂ξ) (i = 1, 2, 3).

(A1)

(iv) To evaluate the expressions for T E,2 · ez and T E,3 · ez given in (2.9) and (2.10), the
following vector relations are considered (Wacholder & Weihs 1972):

eξ · ez = −cosh ξ − cos η
c0

∂r
∂η
, eη · ez = cosh ξ − cos η

c0

∂r
∂ξ
. (A2a,b)
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Appendix B. Derivation of the electrostatic potential and the streamfunction

The steps for the derivation of the electrostatic problem are discussed below.
The continuity in the tangential velocities at the interfaces and the no-penetration

boundary conditions can be expressed in terms of the respective streamfunctions as

∂ψ2

∂ξ
= ∂ψ3

∂ξ
, ψ2 = ψ3 = 0 at ξ = ξ23, (B1)

∂ψ1

∂ξ
= ∂ψ2

∂ξ
, ψ1 = ψ3 = 1

2
(U1 − U2)c2

0
sin2η

(cosh ξ12 − cos η)2
at ξ = ξ12. (B2)

Imposing the boundedness condition inside the inner drop and uniformity condition at the
far field, we recast the potential functions as (Goyette & Navon 1976)

ϕ1 = c0
√

cosh ξ − cos η
∞∑

n=0

αn,1 e−(n+1/2)ξPn(cos η), (B3)

ϕ2 = c0
√

cosh ξ − cos η
∞∑

n=0

{αn,2 e−(n+1/2)ξ + βn,2 e(n+1/2)ξ }Pn(cos η), (B4)

ϕ3 = c0 sinh ξ
cosh ξ − cos η

+ c0
√

cosh ξ − cos η
∞∑

n=0

βn,3 sinh(n + 1/2)ξPn(cos η). (B5)

Imposing the continuity of electric potentials at the interfaces, we derive the following
relations:

∞∑
n=0

αn,1Pn =
∞∑

n=0
{αn,2 + βn,2 e(2n+1)ξ12}Pn

∞∑
n=0

βn,3Pn =
∞∑

n=0
({αn,2 − √

2(2n + 1)} e−(2n+1)ξ23 + βn,2)Pn

⎫⎪⎪⎬
⎪⎪⎭ . (B6)

Further, charge conservation considerations result in

R23
δϕ2

δξ

∣∣∣∣
ξ=ξ23

= δϕ3

δξ

∣∣∣∣
ξ=ξ23

and R12
δϕ1

δξ

∣∣∣∣
ξ=ξ12

= δϕ2

δξ

∣∣∣∣
ξ=ξ12

. (B7a,b)

Substituting the expressions of ϕ1, ϕ2 and ϕ3 in (B7) and rearranging the terms, a system
of equations of the following form is obtained:

∞∑
n=0

(ΛAαn,2 +ΛBβn,2 +ΛCβn,3)Pn = 0,
∞∑

n=0

(ΛDαn,2 +ΛEβn,2 +ΛFβn,1)Pn = 0,

(B8a,b)

where ΛA, ΛB and ΛC are functions of (ξ23, η,R23), and ΛD, ΛE and ΛF are functions
of (ξ12, η,R12). Note that, to derive (B6) and (B8), a few useful identities are used, which
are provided in Appendix D.

Similarly, the steps for the derivation of the flow problem are as follows.
Imposing the boundedness and far-field uniformity condition for velocity and

subsequently using the suitable identities provided in Appendix A, the expressions for
Wn,i can be reduced to:=

Wn,1 = An,1 e−(n−1/2)ξ + Cn,1 e−(n+3/2)ξ , (B9)
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Eccentricity-induced dielectrophoretic migration

Wn,2(ξ) = An,2 e−(n−1/2)ξ + Bn,2 e(n−1/2)ξ + Cn,2 e−(n+3/2)ξ + Dn,2 e(n+3/2)ξ , (B10)

Wn,3 = U2c2
0

n(n + 1)√
2

{
e−(n−1/2)ξ

2n − 1
− e−(n+3/2)ξ

2n + 3

}
+ Bn,3 e(n−1/2)ξ + Dn,3 e(n+3/2)ξ .

(B11)

By substituting the above into the kinematic conditions ((2.14)), the following equations
can be deduced in terms of Wn (Mandal et al. 2016c):

dWn,1

dξ
= dWn,2

dξ

Wn,1 = Wn,2 = −(U1 − U2)c2
0

n(n + 1)√
2

{
e−(n−1/2)ξ12

2n − 1
− e−(n+3/2)ξ12

2n + 3

}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at ξ = ξ12,

(B12)
and

dWn,2

dξ
= dWn,3

dξ
, Wn,2 = Wn,3 = 0 at ξ = ξ23. (B13)

Finally, one may express the tangential stress balance conditions as:=

(τE
ξη,2 − τE

ξη,1)+ (τH
ξη,2 − τH

ξη,1) = 0 at ξ = ξ12,

(τE
ξη,3 − τE

ξη,2)+ (τH
ξη,3 − τH

ξη,2) = 0 at ξ = ξ23,

}
(B14)

where the tangential electric stresses are calculated as τE
ξη,i = Si3Eξ,iEη,i. The tangential

hydrodynamic stresses at ξ = ξ ij are calculated by considering (Rushton & Davies 1973;
Mandal et al. 2016c):=

τH
ξη,i = λi3

(cosh ξ − cos η)3/2

c3
0 sin η

(
d2Wn,i

dξ2 + (2n + 1)(2n + 3)Wn,i

4

−n(n + 1)(2n + 3)

2
√

2
Urelc2

0{e−(n−1/2)ξ − e−(n+3/2)ξ }
)

C−1/2
n+1 (cos η), (B15)

where Urel = U1 − U2 at ξ = ξ12, and Urel = 0 at ξ = ξ23. After substituting the
expressions of the different variables into the (B14), we rearrange the terms and use
the appropriate identities to obtain a set of equations containing the spherical harmonics
C−1/2

n+1 (η). The simplified form of tangential electric stresses at the outer and inner surfaces
are obtained as

τE
ξη,3 − τE

ξη,2 = −(cosh(ξ23)− cos η){Ξ1 +Ξ2 − S23Ξ3}Ξ4, (B16)

and

τE
ξη,2 − τE

ξη,1 = −(cosh(ξ12)− cos η){S23Ξ5 − S12S23Ξ6}Ξ7, (B17)
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respectively, where the expressions of the functions Ξ1, Ξ2, . . . Ξ7 are as follows:

Ξ1 =

√
2(1 − cosh(ξ23) cos(η))

N∑
n=0

(2n + 1) exp
(
−
(

n + 1
2

)
ξ23

)
Pn(cos η)

sinh(ξ23)
, (B18)

Ξ2 =
N∑

n=0

B3,n

(
1
2
(2n + 1)(cosh(ξ23)− cos(η)) cosh

((
n + 1

2

)
ξ23

)

+1
2

sinh(ξ23) sinh
((

n + 1
2

)
ξ23

))
Pn(cos η), (B19)

Ξ3 =
N∑

n=0

(
1
2

sinh(ξ23)− 1
2
(2n + 1)(cosh(ξ23)− cos(η))

)

× A2,n exp
(

−
(

n + 1
2

)
ξ23

)
Pn(cos η)

+
N∑

n=0

(
1
2

sinh(ξ23)+ 1
2
(2n + 1)(cosh(ξ23)− cos(η))

)

× B2,n exp
((

n + 1
2

)
ξ23

)
Pn(cos η), (B20)

Ξ4 =
N∑

n=0

(
A2,n exp

(
−
(

n + 1
2

)
ξ23

)
+ B2,n exp

((
n + 1

2

)
ξ23

))

×
(
(cosh(ξ23)− cos(η)) dPn + 1

2
sin(η)Pn(cos η)

)
, (B21)

Ξ5 =
N∑

n=0

(
1
2

sinh(ξ12)− 1
2
(2n + 1)(cosh(ξ12)− cos(η))

)

× A2,n exp
(

−
(

n + 1
2

)
ξ12

)
Pn(cos η)

+
N∑

n=0

(
1
2

sinh(ξ12)+ 1
2
(2n + 1)(cosh(ξ12)− cos(η))

)

× B2,n exp
((

n + 1
2

)
ξ12

)
Pn(cos η), (B22)

Ξ6 =
N∑

n=0

A1,n

(
1
2

sinh(ξ23)− 1
2
(2n + 1)(cosh(ξ23)− cos(η))

)

× exp
(

−
(

n + 1
2

)
ξ

)
Pn(cos η), (B23)

Ξ7 =
N∑

n=0

A1,n exp
(

−
(

n + 1
2

)
ξ12

)(
(cosh(ξ12)− cos(η)) dPn + 1

2
sin(η)Pn(cos η)

)
.
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Finally, we can write the tangential stress balance at the outer surface as

1
c3

0 sin η

(
d2Wn,3

dξ2 − λ23
d2Wn,2

dξ2

)
C−1/2

n+1 (cos η)+
τE
ξη,3 − τE

ξη,2

(cosh ξ23 − cos η)3/2
= 0, (B25)

and similarly, the tangential stress balance at the inner surface is written as

τE
ξη,2 − τE

ξη,1

(cosh ξ23 − cos η)3/2
+ 1

c3
0 sin η

(
λ23

d2Wn,2

dξ2 − λ13
d2Wn,1

dξ2 − (λ23 − λ13)

×n(n + 1)(2n + 3)

2
√

2
(U1 − U2)c2

0{e−(n−1/2)ξ12 − e−(n+3/2)ξ12}
)

C−1/2
n+1 (cos η) = 0.

(B26)

Applying suitable orthogonality conditions for Legendre polynomials and Gegenbauer
polynomials, which are provided in Appendix D, a set of algebraic equations are obtained
from the various boundary conditions discussed in the present section, which is solved to
obtain the unknown electric field and flow field coefficients.

Appendix C. Convergence of analytical solution: effect of truncation limit (N)

The degree of eccentricity, although it should be described by the eccentricity (e), also
requires the knowledge of the drop radius ratio (k) in order to construct a feasible
compound drop in a bispherical coordinate system (as described by figure 1). As
the information of the compound drop geometry (e, k) is provided to the theoretical
model through the coordinate ξ23 and ξ12, the applicability of theoretical results for
the considered truncation limit can be better tested by identifying the extreme limits
of ξ23 or ξ12. For convenience, we have demonstrated the convergence by comparing
the variation of velocities with ξ23 for N = 10, 20 and 30. Note that the increase in
degree of eccentricity is reflected in decrease in ξ23. The artefacts generated from the
theoretical model are shown to grow significantly for ξ23< 0.911, due to difficulties in
implementing far-field condition in bispherical coordinates below this limit (refer to the
discussion provided in § 3.4). However, for running convergence tests, the limit of ξ23 is
slightly stretched up to ξ23 ≈ 0.65. Figures 13(a) and 13(b) show the effect of ξ23 on the
inner and outer velocities, respectively for k = 0.1. The electrical parameters considered
are R23 = 10, S23 = 1, R12 = 0.1 and S12 = 1 (same is used for figure 12). The maximum
value of eccentricity considered in this case is 0.5 (the respective value of ξ23 is 0.679).
Similarly, figures 13(c) and 13(d) show the effect of ξ23 on inner and outer velocity,
respectively for k = 0.5. The maximum value of eccentricity considered in this case is
0.36 (the respective value of ξ23 is 0.653). From these figures it can be understood that the
increasing the truncation limit N from 10 to 30 does not affect the solutions appreciably
proving the attainment of convergence. In an earlier study of Mandal et al. (2016c), it was
also mentioned that N = 15 is sufficient for convergence. However, in the present study,
the truncation limit is set to N = 20 for convenience.

It is worth mentioning that semi-analytical theory solves a 6N × 6N banded matrix
system for the electrostatic problem and a 8N × 8N banded matrix system for the
hydrodynamic problem. For solving the matrix system, the default matrix solver in
MATLAB has been used, which can automatically select the appropriate solver depending
on the symmetries in the coefficient matrices. This needs a computational time of less than
30 s for N ≤ 20, in the same computing platform that was used full the full-scale numerical
solutions as well (see Appendix F.1) as a common basis for comparison.
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Figure 13. Effect of truncation limit on drop velocities: (a) and (b) show the effect of degree of eccentricity,
described through outer drop coordinate ξ23, on inner drop velocity and outer drop velocity, respectively, for
radius ratio k = 0.1; (c) and (d) show the effect of degree of eccentricity, on inner drop velocity and outer
drop velocity, respectively, for radius ratio k = 0.5. The electrical parameters considered are R23 = 10, S23 = 1,
R12 = 0.1 and S12 = 1.

Appendix D. Some useful identities

The orthogonality properties of the Legendre polynomial Pn(cos η) and Gegenbauer
polynomial C−1/2

n+1 (cos η) are given as follows:∫ π

0

Pn(cos η)Pm(cos η)
1 − cos2η

sin η dη = 2δnm

2n + 1
, (D1)

∫ π

0

C−1/2
n+1 (cos η)C−1/2

m+1 (cos η)

1 − cos2η
sin η dη = 2δnm

n(n + 1)(2n + 1)
. (D2)

The following identities are used to simplify various constitutive equations given in
Appendix B:

sinh ξ

(cosh ξ − cos η)3/2
=

∞∑
n=0

√
2(2n + 1) e−(n+1/2)ξPn(cos η), (D3)

1 − (cos η)2

(cosh ξ − cos η)1/2
=

∞∑
n=0

√
2n(n + 1)

{
e−(n−1/2)ξ

2n − 1
− e−(n+3/2)ξ

2n + 3

}
C−1/2

n+1 (cos η), (D4)
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Present theoretical results

Theory: Behjatian & Esmaeeli (2013)

(a) (b)

(c) (d )

Figure 14. Tangential electric tractions at the (a) inner and (b) outer drop for the concentric compound drop.
Surface flow velocity at the (c) inner and (d) outer drop. The system properties and geometric variables
considered here are R23 = 10, S23 = 1, R12 = 0.1, S12 = 1, e = 0.001 and k = 0.333. Through these figure we
compare the present results with the earlier results of Behjatian & Esmaeeli (2013).

1 − (cos η)2

(cosh ξ − cos η)3/2
=

∞∑
n=0

2
√

2n(n + 1) e−(n+1/2)ξC−1/2
n+1 (cos η). (D5)

Appendix E. Comparison with the theoretical solutions for a concentric compound
drop

Comparing with the present numerical simulations, we have already shown that our theory
can provide satisfactory results up to fairly high limits of e and k. For the proof of efficacy
for the other limiting scenario of a concentric compound drop (e → 0), we have compared
our results with the same obtained from the reported model of Behjatian & Esmaeeli
(2013). Figures 14(a) and 14(b) show the variation of tangential electric tractions with
angular locations (θ1 = θ2 = θ ) at the inner and outer interfaces for R23 = 10, S23 = 1,
R12 = 0.1 and S23 = 1. To check the correctness of the flow field solution, we compare
the surface velocities at the surfaces obtained by our theory with that obtained by the
Behjatian & Esmaeeli (2013) in figures 14(c) and 14(d). These figures evidently show the
accuracy of the present theory and proper implementations of various interfacial boundary
conditions.

Appendix F. Numerical method

We capture the interfacial evolution in a compound drop multiphase system by invoking a
volume fraction function, c, which is a spatio-temporal variable that satisfies the advection
equation ∂c/∂t + u · ∇c = 0. The volume fraction c takes the value of 1 for the shell fluid
and 0 for the inner bulk and continuous medium; c varies between 0 and 1 across the
interfaces. At the two diffused interfaces shared by the shell, any of the physical properties,
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e.g. viscosity, is smoothened using the weighted average mean method, given as μ(c) =
cλ23 + (1 − c).

The dimensionless form of continuity and Navier–Stokes equations, under the
assumption of incompressible flow and isothermal conditions, are as follows:

∇ · u = 0, (F1)

Re(∂u/∂t + u · ∇u) = −∇p + ∇ · [μ(c)(∇u + (∇u)T)] + F γ /CaE + F E. (F2)

In (F2), F γ = γ κnδs denotes the capillary force per unit volume, modelled using
continuum-surface-force model put forth by Brackbill, Kothe & Zemach (1992). The
symbolsδs, n and κ denote the Dirac delta function, unit normal vector and curvature,
respectively. The volumetric electric force F E is calculated using the relation F E = qvE −
(1/2)E2∇ε(c), where qv = ∇ · (ε(c)E) is the volumetric charge density that satisfies the
following form of the charge conservation equation:

∂q/∂t + ∇ · (qvu) = −∇ · (σ (c)E). (F3)

The above governing equations are solved using the axisymmetric electrohydrodynamics
solver integrated with Gerris (López-Herrera et al. 2011). A square-shaped computational
domain of size H = 12 is used for the simulations. The domain size is kept sufficiently
large to ensure negligible boundary effects. The outer drop (or shell) is placed at the
centre of the domain, whereas the inner drop’s position is varied as per the eccentric
conditions. The computational space is discretized using a quadtree structured mesh. Since
the drop undergoes negligible deformation in this study, the considered mesh refinement is
sufficient to capture the interfacial phenomena with the highest degree of accuracy (refer
to the study of López-Herrera et al. 2011). Further details regarding the numerical model
are provided in the following sub-sections.

F.1. Computational domain and boundary conditions
A computational domain, square in shape of size H (=12), is considered in the present
study (constructed using single gfs box in Gerris). The left side of the domain boundary
is subjected to symmetric boundary conditions for the velocity and the electric potential.
Neumann boundary condition for the velocity is imposed on the other sides of the domain.
For electric potential, ϕ = z is applied at all the boundaries except for the symmetry axis to
create electric field (E = −∇ϕ) in −ve z-direction. The outer drop is placed in the domain
with its centre at the middle of the left-side boundary i.e. (r, z) = (0, 0). The present mesh
structure is a dynamic adaptive mesh as shown in figure 15. The mesh is refined up to
level 10 at the interfaces (level m corresponds to mesh size of �r = �z = H × 2−m) and
level 6 in the far field. The purpose of keeping a fine mesh at the interface is to accurately
implement the jump in electrophysical properties and the consequent jump in electric field
created at the interface. On the other hand, a relatively larger mesh is used at far from the
interface due to insignificant spatial variation in the field variables.

The present computations have been performed on an Intel i7-8700k (clock speed 3.7
GHz), 6-core and 32GB RAM processor. Each of the simulations are assigned to single
core (no parallelization scheme is used), which typically has taken a time between 10 and
72 CPU hours to run, depending on rate of eccentricity evolution and the required total
change in eccentricity.
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Figure 15. Computational domain and mesh structure.
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Figure 16. Comparison between present numerical results and theoretical results of Behjatian & Esmaeeli
(2013). Panels (a) and (b) show the electric field and velocity variation along the axis of symmetry. The centre
of the outer drop is located at (r, z) = (0,0). The parameters considered are k = 0.333, e = 0, R23 = 0.5, S23 = 5,
R12 = 2 and S12 = 0.2.

F.2. Validation of the numerical model
Prior to employing the numerical model for simulating the eccentric compound drop
migration in an electric field, the numerical schemes implemented in the above grid
structure are benchmarked by comparing the numerical results with the earlier theoretical
results of Behjatian & Esmaeeli (2013) obtained for a concentric compound drop. In
figures 16(a) and 16(b), we show the variation in electric field and velocity field,
respectively, along the axis passing through the drop centres for the parameters k = 0.333,
R23 = 0.5, S23 = 5, R12 = 2 and S12 = 0.2 (same is used for figure 11). From these figures,
it is evident that the present numerical model can precisely calculate the electric field and
velocity field in the bulks as well as their jump at the interfaces caused due to jump in
electrophysical properties at the interface. Moreover, the agreement between the theory
and numerical proves that the numerical results generated at the different grid levels are
converged well (grid structure is presented in figure 15).

F.3. Grid independence study
To conduct grid independent tests, we perform simulations considering refinement
levels 9, 10 and 11 at the interfaces. The parameters considered for this study are
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Figure 17. Grid independence study. The parameters considered are k = 0.333, e = 0.1, R23 = 0.5, S23 = 5,
R12 = 2 and S12 = 0.2.
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Figure 18. Comparison between present theoretical and numerical results for eccentric drop case. Panels (a)
and (b) show the electric field and velocity variation along the axis of symmetry. The centre of the outer drop
is located at (r, z) = (0,0). The parameters considered are k = 0.333, e = 0.1, R23 = 0.5, S23 = 5, R12 = 2 and
S12 = 0.2.

k = 0.333, e = 0.1, R23 = 0.5, S23 = 5, R12 = 2 and S12 = 0.2. From the transient variation
in eccentricity presented in figure 17 for different refinement levels, it can be observed
that increasing the refinement level from level 9 to level 10 leads to slight deviations in
the numerical results. However, further refinements have negligible impact on the results.
Accordingly, level 10 is used at the interface for simulations. It is note worthy that the
maximum deviation in eccentricity variation obtained using levels 10 and 11 is less than
0.1 %.

F.4. Additional comparison between the theoretical and numerical results
While the theoretical results are already compared with the numerical results considering
different system properties (refer to § 3.4), for the sake of thorough benchmarking, the
theoretically calculated field variables obtained for the eccentric drops are compared with
the numerical calculated ones in figure 18. The parameters considered for this study are
k = 0.333, e = 0.1, R23 = 0.5, S23 = 5, R12 = 2 and S12 = 0.2. The present comparative
study shows that the present theory predicts the eccentricity-induced asymmetry in the
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electric field and velocity field very well, reflecting the accurate implementation of various
boundary conditions and theoretical modelling of various stresses.
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