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In this paper, a high-level Green–Naghdi (HLGN) model for large-amplitude internal
waves in a two-layer fluid system, where the upper-fluid layer is of finite depth and
the lower-fluid layer is of infinite depth, is developed under the rigid-lid free-surface
approximation. The equations of the present HLGN model follow Euler’s equations under
the sole assumption that the horizontal and vertical velocity distributions along the vertical
column are presented by known shape functions for each layer. The linear dispersion
relations of the HLGN model for different levels are presented and compared with those
obtained by other strongly nonlinear models for deep water, including the fully nonlinear
models that include the dispersion effects O(μ) (where μ is the ratio of the upper-fluid
layer depth to a typical wavelength) derived by Choi & Camassa (Phys. Rev. Lett., vol. 77,
1996, pp. 1759–1762) and O(μ2) derived by Debsarma et al. (J. Fluid Mech., vol. 654,
2010, pp. 281–303). It is shown that the HLGN model has a wider application range than
other models. Solutions of travelling large-amplitude internal solitary waves in the absence
and presence of background shear-current are then investigated by using the HLGN model.
For the no-current cases, results obtained by the HLGN model show better agreement with
Euler’s solution on wave profile, velocity profile at the maximum interface displacement
and wave speed compared with those obtained by other models. For the background
shear-current cases, results obtained by the HLGN model also show good agreement with
those obtained by solving the Dubreil-Jacotin–Long equation.
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1. Introduction

Internal waves occur in the density stratified oceans. Given that the density difference
in the oceans is very small, buoyancy, rather than gravity, provides the restoring force
for internal waves, causing their amplitudes grow to hundreds of metres (Duda et al.
2004; Klymak et al. 2006; Ramp, Yang & Bahr 2010; Alford et al. 2015; Huang et al.
2016). Internal waves impact many ocean processes, which include momentum and energy
transformation (Sutherland 2010; Sarkar & Scotti 2017), underwater navigation (Gong
et al. 2022; Wang et al. 2022) and air–sea interaction (Lu et al. 2022). Hence it is of
great importance to study the properties of large-amplitude internal waves.

In the oceans, if the density changes sharply from one value to another, then the stratified
system can be simplified as a two-layer fluid system that consists of the upper-fluid
layer with density ρ2 and undisturbed depth h2, and the lower-fluid layer with density
ρ1 and undisturbed depth h1 (ρ2 < ρ1). When the density ratio ρ2/ρ1 is close to 1, e.g.
ρ2/ρ1 = 0.977 (fresh water on top of brine) in the laboratory experiments of Grue et al.
(1999), the upper surface of the upper-fluid layer can be approximated as a rigid lid. On
the other hand, when the density ratio ρ2/ρ1 is not as close to 1, e.g. ρ2/ρ1 = 0.78 (petrol
on top of fresh water) in the laboratory experiments of Michalet & Barthelemy (1998),
the free-surface effect becomes stronger, and the rigid-lid approximation can no longer
be applied. For studies on the internal solitary waves with a free surface, we refer the
reader to Choi & Camassa (1996b), Grimshaw, Pelinovski & Poloukhina (2002), Kodaira
et al. (2016), la Forgia & Sciortino (2019), Zhao et al. (2020) and Debsarma, Chakrabortty
& Kirby (2023). In this paper, we focus on the theoretical models on large-amplitude
internal solitary waves under the rigid-lid assumption. Furthermore, the stability analysis
for internal waves in a two-layer fluid system, for which we refer the reader to Grue et al.
(2000), Jo & Choi (2002, 2008), Barros & Choi (2009, 2013), Choi, Barros & Jo (2009)
and Fructus et al. (2009) for details, is not considered in this paper.

For large-amplitude internal waves in a two-layer fluid system for the shallow
configuration (h2/λ

′ � 1 and h1/λ
′ � 1, where λ′ is the characteristic wavelength),

Miyata (1985) and Choi & Camassa (1999) derived the strongly nonlinear
Miyata–Choi–Camassa (MCC) model. In the MCC model, the layer mean velocities are
used for the upper- and lower-fluid layers. Many studies have shown that the internal
solitary-wave solutions provided by the MCC model matched well Euler’s solution and
laboratory observations for the shallow configuration (Choi & Camassa 1999; Camassa
et al. 2006; Camassa & Tiron 2011; Huang et al. 2013; Du et al. 2019; Choi 2022;
Zhao et al. 2023). The MCC model was also developed for the internal waves in a
multi-layer system (Choi 2000; Barros, Choi & Milewski 2020). Recently, Choi (2022)
derived a high-order long-wave model that included the next-order correction of the MCC
model. Results showed that this high-order model could describe the internal solitary
waves more accurately than the original MCC model, especially for the internal solitary
waves with intermediate amplitudes (Choi 2022). Nevertheless, the original MCC model
and the higher-order long-wave model derived by Choi (2022) cannot be applied to the
large-amplitude internal waves for the deep configuration (h2/λ

′ � 1 and h1/λ
′ = O(1))

since they are both developed under the assumption of the shallow configuration.
For large-amplitude internal waves in a two-layer fluid system in deep water, Choi &

Camassa (1999) developed a strongly nonlinear model. In this model, the layer mean
velocity is used for the upper-fluid layer, and the linear theory is used for the lower-fluid
layer. Camassa et al. (2006) tested the performance of this model on describing internal
solitary waves for some deep configurations in detail. For comparison purposes, Camassa
et al. (2006) also obtained Euler’s solution by following the numerical method of
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Grue et al. (1999). Results showed that this strongly nonlinear model can accurately
describe the wave profile, wave speed and velocity profile at the maximum interface
displacement for small-amplitude internal solitary waves. With the wave-amplitude
increased, the agreements between results of the strongly nonlinear model and Euler’s
solution became less favourable. When h2 is finite while h1 is infinite (i.e. h2 = h and
h1 → ∞), the strongly nonlinear model derived by Choi & Camassa (1999) can be reduced
to the model derived by Choi & Camassa (1996a) (CC model, hereafter), which included
the dispersion effect O(μ) (μ = h2/λ

′). Later, Debsarma, Das & Kirby (2010) improved
the dispersion property of the CC model by deriving a high-order internal-wave model
(DDK model, hereafter), which included the dispersion effect O(μ2). Debsarma et al.
(2010) showed that for describing larger-amplitude internal solitary waves, results provided
by the DDK model can still show better agreement with Euler’s solution on wave profile
and wave speed compared with those provided by the CC model. However, when the
wave-amplitude increased further, some differences were observed between the results
provided by the DDK model and Euler’s solution.

Based on the one-layer high-level Green–Naghdi (HLGN) model derived by Webster,
Duan & Zhao (2011) for shallow-water waves, Zhao et al. (2016) developed the HLGN
model for large-amplitude internal waves in a two-layer fluid system where h2 and h1
were both finite. The two-layer HLGN model of Zhao et al. (2016) follows Euler’s
equations under the sole assumption that the shape of the velocity field in the vertical
direction can be described by polynomials for each layer. Based on the orders of the
polynomial used for the upper-fluid layer K2 and for the lower-fluid layer K1, a series of
HLGN-K2-K1 models can be established. Zhao et al. (2016) performed some numerical
test cases to validate the accuracy of the HLGN model. For each case, Zhao et al.
(2016) first conducted the level-convergence tests of the HLGN model. Results showed
that for the shallow-configuration case (e.g. h2/h1 = 1/4.13), the HLGN-3-3 model can
provide the converged results of the HLGN model. For the deep-configuration case (e.g.
h2/h1 = 1/24), the HLGN-5-5 model can provide the converged results of the HLGN
model. The converged results of the HLGN model matched Euler’s solution provided by
Grue et al. (1999) and Camassa et al. (2006), and the laboratory observations of Grue
et al. (1999) and Michalet & Barthelemy (1998) very well, for both the shallow and
deep configurations. However, for a much deeper configuration case (e.g. h2/h1 = 1/99),
one can use polynomials of lower order to accurately describe the velocity field for
the upper-fluid layer, but one must use polynomials of much higher order to accurately
describe the velocity field for the lower-fluid layer. As a result, the HLGN model of Zhao
et al. (2016) is not efficient in such cases.

The motivations of this paper are (i) to develop a HLGN model to accurately describe
large-amplitude internal solitary waves in the absence and presence of background
shear-current for a very deep configuration where h2 is finite while h1 is infinite, and
(ii) to compare the results provided by the HLGN model with the results provided by the
CC model, DDK model, Euler’s equations and the Dubreil-Jacotin–Long (DJL) equation
to assess the capability of the HLGN model.

This paper is organized as follows. In § 2, the equations of the HLGN model are derived.
In § 3, the numerical algorithm for travelling-wave solutions is presented. In § 4, numerical
test cases are presented and discussed. Conclusions are reached in § 5.

2. Two-layer HLGN model in deep water

A two-layer fluid system that consists of two incompressible, immiscible and inviscid
fluids is considered in this paper. The upper-fluid layer is of finite depth, and the lower-fluid
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z = h

z → –∞

z = η(x,t)

Undisturbed interface

Seafloor

Rigid lid

h z
x

O
ρ2

ρ1

Figure 1. Sketch of a two-layer fluid system for the deep configuration.

layer is of infinite depth. In two dimensions, x is the horizontal coordinate (positive to the
right) and z is the vertical coordinate (positive up), and the origin of the coordinate system
is located at the undisturbed interface between the two fluid layers. The upper surface of
the upper-fluid layer is approximated as a rigid lid, expressed as z = h, where h is the
undisturbed and constant depth of the upper-fluid layer. The interface between the two
fluid layers and the lower surface of the lower-fluid layer are expressed as z = η(x, t) and
z → −∞, respectively. A sketch of this physical problem is shown in figure 1. There is no
assumption of irrotationality of the flow in the present model.

2.1. Basic equations
In two dimensions, the mass conservation equations can be written as

∂ui

∂x
+ ∂wi

∂z
= 0 (i = 1, 2), (2.1)

where u and w are the horizontal and vertical velocity components, respectively, i = 1
stands for the lower-fluid layer and i = 2 stands for the upper-fluid layer.

The momentum conservation equations for the upper- and lower-fluid layers can be
written as

∂ui

∂t
+ ui

∂ui

∂x
+ wi

∂ui

∂z
= − 1

ρi

∂pi

∂x
(i = 1, 2), (2.2a)

∂wi

∂t
+ ui

∂wi

∂x
+ wi

∂wi

∂z
= − 1

ρi

∂pi

∂z
− g (i = 1, 2), (2.2b)

where t stands for time, ρi is the mass density, pi is the pressure, and g is the gravitational
acceleration.

988 A32-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.460


HLGN model for internal waves in deep water

The kinematic boundary condition at the upper surface of the upper-fluid layer (rigid
lid) can be written as

w2 = 0 at z = h. (2.3)

The kinematic boundary conditions at the interface between the two fluid layers can be
written as

wi = ∂η

∂t
+ ui

∂η

∂x
(i = 1, 2) at z = η(x, t). (2.4)

The kinematic boundary condition at the bottom of the lower-fluid layer can be written
as

u1 = 0, w1 = 0, when z → −∞. (2.5)

The dynamic boundary condition at the interface between the two fluid layers can be
written as

p̄2 = p̂1 at z = η(x, t), (2.6)

where p̄2 is the pressure at the lower surface of the upper-fluid layer, and p̂1 is the pressure
at the upper surface of the lower-fluid layer.

Equations (2.1)–(2.6) are the basic equations for the two-layer fluid system in the deep
configuration.

2.2. Equations for the deep-water two-layer HLGN model
In the traditional two-layer HLGN model (Zhao et al. 2016, 2020), the undisturbed depths
of the two fluid layers are both assumed to be finite. The velocity fields are expressed
approximately by

ui(x, z, t) =
Ki∑

n=0

un,i(x, t) zn, wi(x, z, t) =
Ki∑

n=0

wn,i(x, t) zn (i = 1, 2), (2.7a,b)

where un,i and wn,i are the unknown horizontal and vertical velocity coefficients, and Ki
is a positive integer that represents the level used for each layer.

In the present HLGN model, the undisturbed depth of the upper-fluid layer is still
assumed to be finite. Hence a polynomial function is still utilized as the shape function
to approximate the velocity field for the upper-fluid layer.

Since the undisturbed depth of the lower-fluid layer is assumed to be infinite, the product
of the exponentials and polynomials is utilized as the shape function to approximate the
velocity field for the lower-fluid layer. This shape function has been utilized to study
one-layer deep-water problems efficiently (Webster & Kim 1991; Zheng et al. 2016).

The velocity fields are therefore expressed by

u2(x, z, t) =
K2∑

n=0

un,2(x, t) zn, w2(x, z, t) =
K2∑

n=0

wn,2(x, t) zn, (2.8a)

u1(x, z, t) =
K1∑

n=0

un,1(x, t) ekz zn, w1(x, z, t) =
K1∑

n=0

wn,1(x, t) ekz zn, (2.8b)

where k is the representative wavenumber that should be predetermined for a given case.
We will discuss the selection of k for calculating internal solitary waves later, in § 4.
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We first consider the upper-fluid layer. Substituting (2.8a) into (2.1) with i = 2, we
obtain

uK2,2 = 0, (2.9a)

wn,2 = −1
n

∂un−1,2

∂x
(n = 1, 2, . . . , K2). (2.9b)

Substituting (2.8a) into (2.2a) and (2.2b) with i = 2, multiplying each term by zn

(n = 0, 1, . . . , K2) and integrating from h to η, will result in

Mn,2 + (ηn − hn)

ρ2

∂ p̄2

∂x
= 0 (n = 1, 2, . . . , K2), (2.10)

where

Mn,2 = ∂

∂x

[
Gn,2 + g

(∫ η

h
zn dz

)]
+ nEn−1,2 − hn [G0,2 + g(η − h)

]
, (2.11a)

En,2 =
K2∑

m=0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂um,2

∂t

(∫ η

h
zm+n dz

)
+ ∂um,2

∂x

[ K2∑
r=0

ur,2

(∫ η

h
zm+r+n dz

)]

+ um,2

[ K2∑
r=0

wr,2

(
m
∫ η

h
zm+r+n−1 dz

)]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (2.11b)

Gn,2 =
K2∑

m=0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂wm,2

∂t

(∫ η

h
zm+n dz

)
+ ∂wm,2

∂x

[ K2∑
r=0

ur,2

(∫ η

h
zm+r+n dz

)]

+ wm,2

[ K2∑
r=0

wr,2

(
m
∫ η

h
zm+r+n−1 dz

)]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (2.11c)

We can eliminate p̄2 by use of (2.10) with two different values of n, e.g. n = 1 and n = 2,
n = 1 and n = 3, to obtain

(η − h)Mn,2 − (ηn − hn)M1,2 = 0 (n = 2, 3, . . . , K2). (2.12)

Substituting (2.8a) into (2.3), we obtain

w0,2 = −
K2∑

n=1

hnwn,2. (2.13)

Substituting (2.8a) into (2.4) with i = 2, we obtain

∂η

∂t
=

K2∑
n=0

ηn
(

wn,2 − ∂η

∂x
un,2

)
. (2.14)

Next, we consider the lower-fluid layer. Substituting (2.8b) into (2.1) with i = 1, we
obtain

uK1,1 = wK1,1 = 0, (2.15a)

wn,1 = −1
k

[
∂un,1

∂x
+ (n + 1)wn+1,1

]
(n = K1 − 1, K1 − 2, . . . , 0). (2.15b)
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Substituting (2.8b) into (2.2a) and (2.2b) with i = 1, multiplying each term by ekz zn

(n = 0, 1, . . . , K1 − 1) and integrating from −∞ to η, will result in

Mn,1 + ekη ηn

ρ1

∂ p̂1

∂x
= 0 (n = 0, 1, . . . , K1 − 1), (2.16)

where

Mn,1 = ∂

∂x

[
Gn,1 + g

(∫ η

−∞
ekz zn dz

)]
+ kEn,1 + nEn−1,1, (2.17a)

En,1 =
K1−1∑
m=0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂um,1

∂t

(∫ η

−∞
e2kz zm+n dz

)
+ ∂um,1

∂x

⎡
⎣K1−1∑

r=0

ur,1

(∫ η

−∞
e3kz zm+r+n dz

)⎤⎦

+ um,1

⎡
⎣K1−1∑

r=0

wr,1

(∫ η

−∞
e3kz

(
kzm+r+n + mzm+r+n−1

)
dz
)⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(2.17b)

Gn,1 =
K1−1∑
m=0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂wm,1

∂t

(∫ η

−∞
e2kz zm+n dz

)
+ ∂wm,1

∂x

⎡
⎣K1−1∑

r=0

ur,1

(∫ η

−∞
e3kz zm+r+n dz

)⎤⎦

+ wm,1

⎡
⎣K1−1∑

r=0

wr,1

(∫ η

−∞
e3kz

(
kzm+r+n + mzm+r+n−1

)
dz
)⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.17c)

We can eliminate p̂1 by use of (2.16) with two different values of n, e.g. n = 0 and n = 1,
n = 0 and n = 2, to obtain

Mn,1 − ηnM0,1 = 0 (n = 1, 2, . . . , K1 − 1). (2.18)

Substituting (2.8b) into (2.4) with i = 1, we obtain

∂η

∂t
=

K1∑
n=0

ekη ηn
(

wn,1 − ∂η

∂x
un,1

)
. (2.19)

We note that (2.5) always holds under the velocity field approximations in (2.8b).
Next, we couple the upper- and lower-fluid layers. Based on (2.6), we set n = 1 in (2.10)

and set n = 0 in (2.16) to obtain

ρ2 ekη M1,2 − ρ1(η − h)M0,1 = 0. (2.20)

Finally, (2.12), (2.14) and (2.18)–(2.20) are the equations of the HLGN model. We can
use (2.9b) and (2.13) to eliminate wn,2 (n = 0, 1, . . . , K2), and use (2.15b) to eliminate
wn,1 (n = 0, 1, . . . , K1 − 1). As a result, the unknowns are un,2 (n = 0, 1, . . . , K2 − 1),
un,1 (n = 0, 1, . . . , K1 − 1) and η. The numbers of the equations and the unknowns are
both K2 + K1 + 1. Therefore, this system of equations is closed.

It should be noted that different values of K2 and K1 in (2.8a) and (2.8b) correspond to
different levels of the present HLGN model. For example, if we select K2 = 3 and K1 = 5,
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then we will establish the HLGN-P3E5 model, where ‘P’ is short for ‘polynomial’, and
‘E’ is short for ‘exponential’. When K1 or K2 increases, the dispersion performance of the
present HLGN model becomes better, and this will be presented in the next subsection.

In this paper, a polynomial is utilized as the shape function for the upper-fluid layer of
finite depth, and the product of polynomial and exponential is utilized as the shape function
for the lower-fluid layer of infinite depth. If we rewrite the velocity approximations for the
upper- and lower-fluid layers in a general form as

ui(x, z, t) =
Ki∑

n=0

un,i(x, t) σn,i(z), wi(x, z, t) =
Ki∑

n=0

wn,i(x, t) σn,i(z) (i = 1, 2),

(2.21a,b)

where σn,i(z) is the general shape function utilized for each fluid layer, then one can
establish the corresponding HLGN model following the derivation process presented
in this paper. For example, the orthogonal polynomials (e.g. the Legendre function
used for the upper-fluid layer of finite depth, and the Laguerre function used for the
lower-fluid layer of infinite depth) can be utilized to further simplify the formulation due
to their orthogonality and recursive properties, i.e. the terms related to the integrals of
two shape function multiplications,

∫
σm,i(z) σn,i(z) dz, can be simplified, but the much

larger number of terms related to the integrals of three shape function multiplications,∫
σm,i(z) σr,i(z) σn,i(z) dz, cannot be simplified significantly.

2.3. Linear dispersion relations of the deep-water HLGN models for different levels
To validate the application range, the linear dispersion relations of the present HLGN
models for different levels are studied in this subsection. Substituting the linear solutions of
the horizontal-velocity coefficients un,i (n = 0, 1, . . . , Ki − 1, i = 1, 2) and internal-wave
profile η to (2.12), (2.14) and (2.18)–(2.20), we can obtain the linear dispersion relations
of the present HLGN models for different levels. We refer the reader to Webster et al.
(2011) for the derivation of the linear dispersion relations of the one-layer HLGN model for
different levels in detail. Here, we fix K2 = 3 since we find that it is enough to accurately
describe the velocity fields for the upper-fluid layer of the internal solitary waves in the
absence of shear-current considered in this paper (i.e. K2 = 3 is the converged level for the
upper-fluid layer).

Expressions for the linear dispersion relations of the first five levels of the HLGN models
are given below.

HLGN-P3E1 model:

c̄2 = (1 − ρ̄)

1
15

ρ̄

(
k̄′6 + 135k̄′4 + 2880k̄′2 + 6300

k̄′4 + 52k̄′2 + 420

)
+ 1

2

(
k̄2 + k̄′2

k̄

) . (2.22)

HLGN-P3E2 model:

c̄2 = (1 − ρ̄)

1
15

ρ̄

(
k̄′6 + 135k̄′4 + 2880k̄′2 + 6300

k̄′4 + 52k̄′2 + 420

)
+ 1

4

⎡
⎢⎣ k̄4 + 6k̄2k̄′2 + k̄′4

k̄
(

k̄2 + k̄′2
)

⎤
⎥⎦

. (2.23)
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HLGN-P3E3 model:

c̄2 = (1 − ρ̄)

1
15

ρ̄

(
k̄′6 + 135k̄′4 + 2880k̄′2 + 6300

k̄′4 + 52k̄′2 + 420

)
+ 1

2

⎡
⎢⎣ k̄6 + 15k̄4k̄′2 + 15k̄2k̄′4 + k̄′6

k̄
(

3k̄2 + k̄′2
) (

k̄2 + 3k̄′2
)
⎤
⎥⎦

.

(2.24)

HLGN-P3E4 model:

c̄2 = (1 − ρ̄)

1
15

ρ̄

(
k̄′6 + 135k̄′4 + 2880k̄′2 + 6300

k̄′4 + 52k̄′2 + 420

)
+ 1

8

⎡
⎢⎣ k̄8 + 28k̄6k̄′2 + 70k̄4k̄′4 + 28k̄2k̄′6 + k̄′8

k̄
(

k̄2 + k̄′2
) (

k̄4 + 6k̄2k̄′2 + k̄′4
)

⎤
⎥⎦

.

(2.25)

HLGN-P3E5 model:

c̄2 = (1 − ρ̄)

1
15

ρ̄

(
k̄′6 + 135k̄′4 + 2880k̄′2 + 6300

k̄′4 + 52k̄′2 + 420

)
+ 1

2

⎡
⎢⎣
(

k̄2 + k̄′2
) (

k̄8 + 44k̄6k̄′2 + 166k̄4k̄′4 + 44k̄2k̄′6 + k̄′8
)

k̄
(

5k̄4 + 10k̄2k̄′2+k̄′4
) (

k̄4 + 10k̄2k̄′2+5k̄′4
)

⎤
⎥⎦,

(2.26)

where the dimensionless linear-wave speed c̄, wavenumber k̄′, representative wavenumber
k̄ and mass density ρ̄ are

c̄ = c√
gh

, k̄′ = k′h, k̄ = kh, ρ̄ = ρ2

ρ1
. (2.27)

Similar principles apply in obtaining the linear dispersion relations of the present HLGN
models for higher levels (not shown here due to the complexity of the final relations).

The exact linear dispersion relation for internal gravity waves in this two-layer deep
configuration is (Lamb 1932)

c̄2
exact = 1 − ρ̄

k̄′
(

1 + ρ̄ coth k̄′
) . (2.28)

Figure 2 shows the relationship between the normalized wave speed squared c̄2/c̄2
exact

and the wavenumber k̄′ for the linear dispersion relations of the present HLGN models for
different levels for the case ρ̄ = 0.952 (Debsarma et al. 2010). We observe that when k̄ is
not as close to k̄′, such as when it is small (e.g. k̄/k̄′ = 0.25 shown in figure 2a) or large
(e.g. k̄/k̄′ = 4 shown in figure 2e), the present HLGN models for lower levels have quite
small application ranges. Under this condition, the present HLGN models for higher levels
are required. When k̄ is closer to k̄′ (e.g. k̄/k̄′ = 0.5 shown in figure 2(b) and k̄/k̄′ = 2
shown in figure 2d), the application ranges of the present HLGN models for lower levels
become significantly wider. Meanwhile, we observe that the HLGN-P3E3 model almost
has the same application range compared with those of the HLGN-P3E4 and HLGN-P3E5
models. In particular, when k̄ = k̄′, shown in figure 2(c), the HLGN models for different
levels have the same and optimal application range. Meanwhile, from (2.22)–(2.26), we
see that c̄2 > 0 since ρ̄ < 1, and when k̄′ → +∞, c̄2 → 0.
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Figure 2. Relationship between the normalized wave speed squared c̄2/c̄2
exact and the wavenumber k̄′ for

the linear dispersion relations of the present HLGN models for different levels, ρ̄ = 0.952: (a) k/k′ = 0.25,
(b) k/k′ = 0.5, (c) k/k′ = 1, (d) k/k′ = 2, (e) k/k′ = 4.

Furthermore, we compare the relationship between the normalized wave speed squared
c̄2/c̄2

exact and the wavenumber k̄′ for the linear dispersion relations of the HLGN-P3E5
model and other strongly nonlinear models, including the CC model (Choi & Camassa
1996a) and the DDK model (Debsarma et al. 2010), for the case ρ̄ = 0.952. The linear
dispersion relations of the two strongly nonlinear models are as follows (see e.g. Debsarma
et al. 2010).

CC model:

c̄2 = 1 − ρ̄

ρ̄ + k̄′ . (2.29)
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DDK (Debsarma et al. 2010)

CC (Choi & Camassa 1996a)
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Figure 3. Relationship between the normalized wave speed squared c̄2/c̄2
exact and the wavenumber k̄′ for the

linear dispersion relations of the HLGN-P3E5 model and other strongly nonlinear models, ρ̄ = 0.952.

DDK model:

c̄2 = 1 − ρ̄

ρ̄

(
6k̄′2 + 15

k̄′2 + 15

)
+ k̄′

. (2.30)

The comparison is shown in figure 3, where we observe that the application range of
the CC model is k̄′ < 0.74 if the tolerable absolute error is 1 − |c̄2/c̄2

exact| ≤ 10 %. The
DDK model expands the application range to k̄′ < 5.15. The application range of the
HLGN-P3E5 model with k̄ = k̄′ reaches k̄′ < 12.58, and it has the widest application range
among these models.

3. Travelling solitary-wave solutions

We consider an internal solitary wave propagating from left to right with constant speed c
and permanent wave profile in the presence of background shear-current shown in figure 4.
We use the wave coordinates XOZ located on the undisturbed interface between the two
fluid layers and moving with the same speed c, where X = x − ct and Z = z. Thus, we
have the following relations:

η(x, t) = η(X), un,i(x, t) = un,i(X) (n = 0, 1, . . . , Ki − 1, i = 1, 2), (3.1a)

∂

∂x
= d

dX
,

∂

∂t
= −c

d
dX

. (3.1b)

Substituting (3.1a) and (3.1b) into (2.12), (2.14) and (2.18)–(2.20) derived in the last
section, the present two-layer HLGN equations for the travelling-wave solutions can be
obtained.

The focus of this paper is on internal solitary waves, requiring consideration of some
geometric boundary conditions. Due to the symmetry, we need to consider only the front
half of an internal solitary wave.

988 A32-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.460


B. Zhao and others

z = h

z → –∞

z = η(X)

a

Z
X

O

uc(Z)

ρ1

ρ2

Figure 4. Sketch of an internal solitary wave propagating in a two-layer fluid system in the deep
configuration.

At the maximum displacement X = 0 (see figure 4), we have

dη

dX
= 0,

dun,i

dX
= 0 (n = 0, 1, . . . , Ki − 1, i = 1, 2). (3.2)

At the far field X → +∞ for the no-current cases, we have

η = 0, un,i = 0 (n = 0, 1, . . . , Ki − 1, i = 1, 2). (3.3)

In the presence of the background shear-current, the current velocity profile uc(Z) can
be fitted by a polynomial function for the upper-fluid layer, and fitted by a product of
polynomial and exponential functions for the lower-fluid layer, both using the least squares
method, expressed as

uc(Z) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K̃2−1∑
n=0

ũn,2Zn, for 0 ≤ Z ≤ h,

K̃1−1∑
n=0

ũn,1 ekZ Zn, for −∞ < Z ≤ 0,

(3.4)

where ũn,2 (n = 0, 1, . . . , K̃2 − 1) and ũn,1 (n = 0, 1, . . . , K̃1 − 1) are the known fitted
coefficients for the upper-fluid layer and lower-fluid layer, respectively. It should be noted
that K̃2 ≤ K2 and K̃1 ≤ K1. Hence at the far field X → +∞ for the shear-current cases,
we have

η = 0, un,i =
{

ũn,i (n = 0, 1, . . . , K̃i − 1, i = 1, 2),

0 (n = K̃i, K̃i + 1, . . . , Ki − 1, i = 1, 2).
(3.5)

The central finite-difference method is used to obtain the first, second and third spatial
derivatives. The Newton–Raphson method is used to obtain the travelling-wave solutions.
The initial values are obtained from the MCC model (Miyata 1985; Choi & Camassa
1999) for a very deep configuration where the depth ratio of the upper-fluid layer to
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the lower-fluid layer is 1/99. For the shear-current cases, we first obtain the solutions of
internal solitary waves without any background shear-current. We then gradually increase
the current strength to the desired value. Calculations are performed using Mathematica.

In order to assess whether the internal solitary wave obtained by the steady-solution
algorithm can propagate over a flat bottom steadily, we have also established a
time-domain algorithm for the present HLGN model. A five-point central-difference
method of a uniform mesh is used to calculate the spatial derivations, and a fourth-order
predictor–corrector Adams–Bashforth–Moulton scheme is used for time marching.
A five-point smoothing filter is applied to effectively reduce the influence of the short
waves and ensure stable propagation of large-amplitude internal waves over a long time.
A similar but detailed numerical algorithm can be found in Zhao et al. (2020, 2023).

The case parameters are ρ2/ρ1 = 0.78 and a/h = 0.2, 1.7955 and 5, where a is the
amplitude of the internal solitary wave. The no-current cases are considered only. Initially,
the maximum interface displacement of the internal solitary wave is located at x/h = 0.
Snapshots of the internal solitary waves propagating at different moments obtained by
the HLGN-P3E5 model are shown in figure 5. Meanwhile, we translate the internal-wave
profiles at different moments to the place where the maximum displacement is at x/h = 0
in figure 6. From t(g/h)0.5 = 0 to 1000, we observe that the internal-wave profiles show
very good agreement, which indicates that the internal solitary waves can propagate
steadily.

4. Numerical test cases

In this section, we will conduct some numerical tests to assess the accuracy of the
HLGN model for deep configurations. First, we study the selection of the representative
wavenumber k introduced in the present model, aiming to find a suitable value under which
even the HLGN model for the lower level can obtain the converged results for a given case.
Next, comparison is made between the HLGN model, the CC model, the DDK model and
Euler’s solution for internal solitary waves in the absence of background shear-current.
Finally, comparison is made between the HLGN model and the DJL equation for internal
solitary waves in the presence of background shear-current.

4.1. The effect of the representative wavenumber k
In this subsection, we focus on the selection of the representative wavenumber k
of the present HLGN model for calculating internal solitary waves. Here, we define
the representative wavelength λ = 2π/k. Koop & Butler (1981) introduced an integral
measure of the effective wavelength, λe, which was defined as

λe =
∣∣∣∣1a
∫ ∞

0
η(X) dX

∣∣∣∣ . (4.1)

Many studies utilized (4.1) to obtain the relationship between the wave amplitude and
effective wavelength (see e.g. Choi & Camassa 1999; Camassa et al. 2006; Choi, Zhi
& Barros 2020; Choi 2022). Since, for a given case, the internal solitary wave profile
ηMCC obtained by the MCC model can be calculated by solving (3.51) in Choi & Camassa
(1999), we can instantly obtain the effective wavelength λe-MCC by use of (4.1), and set
it as a reference value. According to this reference value, we can choose λ of the present
HLGN model.

Here, we consider some numerical cases whose parameters are given by Choi &
Camassa (1999) and Debsarma et al. (2010) as follows: the density ratio between the two
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t(g/h)0.5 = 0 t(g/h)0.5 = 250 t(g/h)0.5 = 1000

t(g/h)0.5 = 0 t(g/h)0.5 = 250 t(g/h)0.5 = 1000

t(g/h)0.5 = 0 t(g/h)0.5 = 250 t(g/h)0.5 = 1000

η/h

–0.3

0

–2

–4
η/h

–6

0

–1.0

–1.5

–0.5

–2.0

η/h

–2.5

0 200 400 600

0 200 400 800600

0 200 600

x/h
400 12001000800

Figure 5. Snapshots of the internal solitary waves propagating at different moments (the maximum moment
is t(g/h)0.5 = 1000), with ρ2/ρ1 = 0.78: (a) a/h = 0.2, (b) a/h = 1.7955, (c) a/h = 5.

fluid layers is ρ2/ρ1 = 0.78, and the internal solitary-wave amplitude is a/h = 1.7955. We
note that only no-current cases are considered in this subsection. Under these parameters,
we obtain λe-MCC/h ≈ 24 for a very deep configuration where the depth ratio of the
upper-fluid layer to the lower-fluid layer is 1/99.

We first select λ/λe-MCC = 2. Figure 7 shows the wave profile and velocity profile at
the maximum interface displacement for different levels of the present HLGN model. In
figure 7(b), c0 is the linear long-wave speed in a two-layer fluid system (ρ2 < ρ1) for the
deep configuration under the rigid-lid approximation, which is defined as

c0 =
√

gh
(

ρ1

ρ2
− 1
)

. (4.2)

It is noted that through our calculations, we find that K2 = 3 (given in (2.8a)) can provide
sufficiently accurate velocity fields for the upper-fluid layer of finite depth in the absence
of background shear-current. As a result, we change the value of K1 (given in (2.8b)) only
to perform the convergence test for the no-current cases.

As shown in figure 7, we observe that the results of the wave profile and velocity profile
at the maximum interface displacement obtained by the HLGN-P3E3 and HLGN-P3E1
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Figure 6. Translated internal solitary wave profiles at different moments, with ρ2/ρ1 = 0.78: (a) a/h = 0.2,
(b) a/h = 1.7955, (c) a/h = 5.

0
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HLGN-P3E5
HLGN-P3E3
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Figure 7. Convergence test of the present HLGN models for different levels, λ = 2λe-MCC, ρ2/ρ1 = 0.78 and
a/h = 1.7955: (a) wave profile; (b) velocity profile at the maximum interface displacement.

models show some differences with those obtained by the HLGN-P3E5 and HLGN-P3E7
models, while the results obtained by the HLGN-P3E5 model and the results of the
HLGN-P3E7 model show very good agreement. Thus it is concluded that when we select
λ/λe-MCC = 2, the HLGN-P3E5 model can provide the converged results for this case.

We also select λ/λe-MCC = 1 and 4 to perform the convergence tests of the present
HLGN models for different levels. It is demonstrated that the HLGN-P3E9 model can
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Figure 8. Comparisons between the converged results of the present HLGN models with different
representative wavelength λ, ρ2/ρ1 = 0.78 and a/h = 1.7955: (a) wave profile; (b) velocity profile at the
maximum interface displacement.
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Figure 9. Convergence test of the present HLGN models for different levels, λ = 2λe-MCC, ρ2/ρ1 = 0.78 and
a/h = 5: (a) wave profile; (b) velocity profile at the maximum interface displacement.

provide converged results under the two different values of λ for this case. Comparisons
between the converged results of the present HLGN models for different λ on wave profile
and velocity profile at the maximum interface displacement are shown in figures 8(a) and
8(b), respectively.

From figure 8, we observe that the converged results of present HLGN model show very
good agreement for different values of λ. On the other hand, if we select the suitable one,
λ/λe-MCC = 2, then we can obtain the converged results of the present HLGN model for
the lower level (i.e. the HLGN-P3E5 model).

To further verify the suitable selection of λ/λe-MCC = 2, we calculate an internal solitary
wave with a larger amplitude a/h = 5 (maximum amplitude considered in the present
study) when the density ratio is still ρ2/ρ1 = 0.78. Under these parameters, we obtain
λe-MCC/h ≈ 30 for the deep configuration where the depth ratio of the upper-fluid layer
to the lower-fluid layer is 1/99. The convergence test of the present HLGN models for
different levels on wave profile and velocity profile at the maximum interface displacement
when λ/λe-MCC = 2 is shown in figure 9, where we again observe that the HLGN-P3E5
model can provide the convergence results.
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Figure 10. Relationship between the wave speed and wave amplitude, ρ2/ρ1 = 0.952.

In general, we find that the HLGN-P3E5 model with λ/λe-MCC = 2 (i.e.
kh = πh/λe-MCC) can provide the converged results for the no-current cases considered
in this paper. In the next subsection, we will use the present HLGN-P3E5 model for the
calculations.

4.2. Comparison between the present HLGN model and other models for internal
solitary waves in the absence of background shear-current

In this subsection, we apply the present HLGN model to large-amplitude internal solitary
waves in the absence of background shear-current in the deep configuration with two
density ratios. The first case is ρ2/ρ1 = 0.952, which is used by Debsarma et al. (2010),
and the other case is ρ2/ρ1 = 0.78, which is used by Choi & Camassa (1999) and
Debsarma et al. (2010). The wave profile, velocity profile at the maximum interface
displacement and wave speed are studied. For comparison purposes, results of the HLGN
model are compared with those obtained by the DDK model and the CC model. We
also use the numerical code developed by Rusas (2000) to obtain Euler’s solution. The
algorithm of this numerical code is given in Grue et al. (1999). The ratio of the upper-fluid
layer depth to the lower-fluid layer depth is 1/99 in all Euler’s solutions shown in the
following cases.

4.2.1. Case I: ρ2/ρ1 = 0.952
We first consider the case ρ2/ρ1 = 0.952. The relationships between the wave speed and
wave amplitude obtained by the HLGN model, the DDK model, the CC model and Euler’s
solution are shown in figure 10.

From figure 10, we observe that the CC model underestimates the wave speed for a given
amplitude compared with Euler’s solution. When the amplitude increases, the calculation
error of the CC model becomes larger. The DDK model can describe the wave speed
accurately when the wave amplitude is small. When the wave amplitude becomes larger,
the DDK model overestimates the wave speed. In general, the wave speed calculated by
the present HLGN model match Euler’s solution very well even when the wave amplitude
is large.

Next, we focus on the wave profile. Following Debsarma et al. (2010), we consider the
internal solitary waves with amplitudes a/h = 0.875 and 1.884. Results of the present
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Figure 11. Wave profile, ρ2/ρ1 = 0.952: (a) a/h = 0.875, (b) a/h = 1.884.
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Figure 12. Velocity profile at the maximum interface displacement, ρ2/ρ1 = 0.952: (a) a/h = 0.875,
(b) a/h = 1.884.

HLGN model, the DDK model, the CC model and Euler’s solution on wave profile are
shown in figure 11.

From figure 11, we observe that the wave profile obtained by the present HLGN model
show very good agreement with Euler’s solution. On the other hand, the CC model obtains
the narrower wave profile, and the DDK model obtains the wider profile compared with
Euler’s solution.

The velocity profiles at the maximum interface displacement obtained by the HLGN
model and Euler’s solution are shown in figure 12. From figure 12, we observe that the
HLGN results match Euler’s solution very well, for both the upper-fluid layer and the
lower-fluid layer.

4.2.2. Case II: ρ2/ρ1 = 0.78
Now we consider the case ρ2/ρ1 = 0.78. The relationships between the wave speed and
wave amplitude obtained by different models are shown in figure 13.

From figure 13, we observe again that the DDK model overestimates the wave speed
and the CC model underestimates the wave speed when the amplitude is relatively large.
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Figure 13. Relationship between the wave speed and wave amplitude, ρ2/ρ1 = 0.78.
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Figure 14. Comparison between the present numerical results of the CC model and the DDK model and the
results given by Debsarma et al. (2010), a/h = 1.7955 and ρ2/ρ1 = 0.78.

The wave speed obtained by the HLGN model matches Euler’s solution well even when
the wave amplitude reaches a/h = 4.5.

Then we consider the profiles of internal solitary waves with amplitudes a/h = 1.7955
and 5. Due to the absence of the CC and DDK results in the existing literature for amplitude
a/h = 5, to be used for comparisons, we have written the code to obtain the numerical
results of the CC and DDK models. We first validate the accuracy of the code that we
developed for this purpose for the CC and DDK models. Figure 14 shows the comparison
between the present numerical results of the CC and DDK models, and the results that we
capture from Debsarma et al. (2010) for the case a/h = 1.7955 and ρ2/ρ1 = 0.78, where
perfect agreement is observed. This is an indication that our code for the CC and DDK
models is accurate.

Results of the HLGN model, the DDK model, the CC model and Euler’s solution on
wave profile are shown in figure 15, where we observe that the present HLGN model
shows better agreement with Euler’s solution compared with the results of the DDK and
CC models.
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Figure 15. Wave profile, ρ2/ρ1 = 0.78: (a) a/h = 1.7955, (b) a/h = 5.
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Figure 16. Relationship between the effective wavelength and wave amplitude, ρ2/ρ1 = 0.78.

Figure 16 shows the relationship between the effective wavelength and the wave
amplitude, which can be obtained by using (4.1). The results of the HLGN model again
match Euler’s solution very well even when the amplitude reaches a/h = 5. For further
discussion on the relationship between the effective wavelength and the amplitude when
the amplitude approaches the maximum value, we refer the reader to Camassa et al. (2006).

Comparisons between the results of the HLGN model and Euler’s solution for the
velocity profile at the maximum interface displacement of two amplitudes of internal
solitary waves are shown in figures 17(a) and 17(b), respectively. We again observe that
the HLGN results match Euler’s solution remarkably well.

To demonstrate the cost of running different models, we apply the HLGN-P3E5
model, the CC model, the DDK model and the numerical method for solving Euler’s
equations to calculate the internal solitary wave with a/h = 1.7955 when ρ2/ρ1 = 0.78.
All calculations are performed on a computer equipped with a Xeon(R) W-11855M CPU
@ 3.20 GHz and 32 GB of memory. The Newton–Raphson method, as mentioned in § 3, is
applied to solve the nonlinear equations. The number of discrete nodes for describing the
half-profile of the internal solitary wave is 300. The HLGN-P3E5 model, the CC model
and the DDK model are implemented by Mathematica using our own code, while Euler’s
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Figure 17. Velocity profile at the maximum interface displacement, ρ2/ρ1 = 0.78: (a) a/h = 1.7955,
(b) a/h = 5.

Model CPU time Software

CC 0.10 min Mathematica (present code)
DDK 0.21 min Mathematica (present code)
HLGN-P3E5 4.40 min Mathematica (present code)
Euler’s solution 0.44 min Matlab (code of Rusas 2000)

Table 1. CPU times for the different models for calculating internal solitary waves, a/h = 1.7955 and
ρ2/ρ1 = 0.78.

solution is obtained by Matlab in Rusas (2000). It should be noted that the results provided
by the CC model should be obtained in advance for the DDK model (Debsarma et al.
2010). Table 1 shows the CPU times for these models.

From table 1, it is demonstrated that the CPU time of the CC model and the DDK model
is relatively short, while the HLGN model requires longer computational time. The HLGN
model, however, can be used to study the wave–current interaction, wave–wave interaction
and wave–topography interaction, which go beyond the capabilities of Euler’s solution
(Rusas 2000) used in this comparison.

4.3. Comparison between the present HLGN model and the DJL equation for internal
solitary waves in the presence of background shear-current

In this subsection, we will conduct some numerical tests to assess the accuracy
of the HLGN model for the internal solitary waves in the presence of background
shear-current for the deep configuration. The density ratio between the two fluid layers
is selected as ρ2/ρ1 = 0.952. The amplitude of the internal solitary wave is fixed at
a/h = 0.5. Under these parameters, we determine the representative wavenumber as
kh = πh/λe-MCC ≈ 0.133. We select the velocity profile of the background shear-current
as the exponential form

uc(Z) = U ekcZ, (4.3)

where U is the current speed at the undisturbed interface between the two fluid layers, and
kc is a real number.
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Figure 18. Comparisons of the velocity profile between the fitted background shear-current and the desired
background shear-current in the two-layer fluid system, U/c0 = 1 and kch = 0.133: (a) upper-fluid layer;
(b) lower-fluid layer.

We first consider the case where U/c0 = 1 and kc/k = 1 (i.e. kch = 0.133). We apply
(3.4) with K̃2 = 3 and K̃1 = 1 to fit this velocity profile of the current, which can be written
as

uc(Z) = c0 e0.133(Z/h) ≈

⎧⎪⎨
⎪⎩

c0

(
1 + 0.133

Z
h

+ 0.00885
Z2

h2

)
, for 0 ≤ Z ≤ h,

c0 e0.133(Z/h), for −∞ < Z ≤ 0.

(4.4)

Comparisons of the velocity profile between the fitted background shear-current and
the desired background shear-current for the upper- and lower-fluid layers are shown in
figures 18(a) and 18(b), respectively, where good agreement is observed.

We apply the HLGN-P5E7 model to obtain the converged results of the HLGN model
for all the cases in this section. For comparison purposes, we also obtain the results of
the DJL equation by using the open-source solver given by Dunphy, Subich & Stastna
(2011). It should be noted that in the DJL open-source solver, the velocity profile of the
background shear-current is not necessarily fitted. Meanwhile, since the DJL equation
considers the continuous density-stratified condition, we set the depth of the pycnocline
as very small (i.e. 0.1 % of the total depth), and the depth ratio between the upper-fluid
layer and lower-fluid layer as approximately 1/99.

The wave profile and the velocity profile at the maximum interface displacement
obtained by the HLGN model and the DJL equation are shown in figures 19(a) and
19(b), respectively. We observe that the results obtained by the HLGN model show good
agreement with those obtained by the DJL equation.

Figures 20(a) and 20(b) show the wave profile and the velocity profile at the maximum
interface displacement obtained by the HLGN model and the DJL equation for the case
U/c0 = −1, where good agreement is also found. It is also shown that the wave profile is
much narrower for the case U/c0 = −1 than that for the case U/c0 = 1.

Then we apply the same approach to study the case kc = 2k (i.e. kch = 0.266). Taking
the case U/c0 = 1 as an example, we use (3.4) with K̃2 = 3 and K̃1 = 3 to fit this velocity
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Figure 19. Comparison between the results obtained by the HLGN model and the DJL equation, ρ2/ρ1 =
0.952, a/h = 0.5, U/c0 = 1 and kch = kh = 0.133: (a) wave profile; (b) velocity profile at the maximum
interface displacement.

0

–0.1

–0.2

–0.3

–0.4

–0.5

η/h

(a)

0

–5

–10

–15

–20

–25

–30

Z/h

(b)

0 20 40 60 80 –1.2 –0.8 –0.4 0 0.4

X/h u/c0

HLGN-P5E7 (present)
DJL

Figure 20. Comparison between the results obtained by the HLGN model and the DJL equation, ρ2/ρ1 =
0.952, a/h = 0.5, U/c0 = −1 and kch = kh = 0.133: (a) wave profile; (b) velocity profile at the maximum
interface displacement.

profile of the current, which can be written as

uc(Z) = c0 e0.266(Z/h) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c0

(
1 + 0.266

Z
h

+ 0.03538
Z2

h2

)
, for 0 ≤ Z ≤ h,

c0 e0.133(Z/h)

(
0.96442+0.09891

Z
h

+ 0.00264
Z2

h2

)
, for −∞ < Z ≤ 0.

(4.5)

Comparisons of the velocity profile between the fitted background shear-current and
the desired background shear-current for the upper- and lower-fluid layers are shown in
figures 21(a) and 21(b), respectively, where we observe that the fitted results still match
the desired results well.

Figures 22 and 23 show the results obtained by the HLGN model and the DJL equation
for the cases U/c0 = 1 and U/c0 = −1, respectively. Good agreement is found between
the HLGN results and the DJL results in general.
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Figure 21. Comparisons of the velocity profile between the fitted background shear-current and the desired
background shear-current in the two-layer fluid system, U/c0 = 1 and kch = 0.266: (a) upper-fluid layer;
(b) lower-fluid layer.
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Figure 22. Comparison between the results obtained by the HLGN model and the DJL equation, ρ2/ρ1 =
0.952, a/h = 0.5, U/c0 = 1 and kch = 2kh = 0.266: (a) wave profile; (b) velocity profile at the maximum
interface displacement.
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Figure 23. Comparison between the results obtained by the HLGN model and the DJL equation, ρ2/ρ1 =
0.952, a/h = 0.5, U/c0 = −1 and kch = 2kh = 0.266: (a) wave profile; (b) velocity profile at the maximum
interface displacement.
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5. Conclusions

To improve the efficiency of the traditional two-layer HLGN model for describing
large-amplitude internal waves in deep water, a new two-layer HLGN model is established
for a two-layer fluid system where the depth of the upper-fluid layer is finite while
the depth of lower-fluid layer is infinite. In the present HLGN model, polynomials are
utilized to approximate the velocity distribution in the vertical direction of the upper-fluid
layer, while products of the exponentials and polynomials are utilized to approximate the
velocity distribution in the vertical direction of the lower-fluid layer. Large-amplitude
internal solitary waves in the absence and presence of background shear-current in the
deep configuration are studied numerically. Comparison of the results between the HLGN
model and other strongly nonlinear models is carried out to validate the accuracy of the
present HLGN model. The conclusions are outlined below.

(i) By analysing the linear dispersion relations of the present HLGN models for
different levels, we find that the selection of the representative wavenumber k leads
to different application ranges of the HLGN model. If one selects a suitable k, then
the HLGN model with the lower level can also offer an acceptable application range.
Compared with the CC model derived by Choi & Camassa (1996a) and the DDK
model derived by Debsarma et al. (2010), it is shown that the application range
of the HLGN-P3E5 model with k = k′ (where k′ is the wavenumber) can reach
k′h < 12.58, which is wider than k′h < 5.15 of the DDK model and k′h < 0.74 of
the CC model.

(ii) For calculating internal waves in the absence of background shear-current, we have
studied the selection of the representative wavenumber k. Through the calculations,
we find that kh = πh/λe-MCC, where λe-MCC is the effective wavelength obtained
by the MCC model for the depth ratio of the upper-fluid layer to the lower-fluid
layer as 1/99 for a given case, may be a good choice. Under this parameter, the
HLGN-P3E5 model can provide the converged results of the present HLGN model
for the no-current cases considered in this paper.

(iii) We utilize the present HLGN model to obtain the wave profile, velocity profile at
the maximum interface displacement and wave speed for large-amplitude internal
solitary waves in the absence of background shear-current in the deep configuration.
By comparing with the results provided by the CC model and the DDK model, the
results obtained by the HLGN model show better agreement with Euler’s solution.

(iv) We also utilize the present HLGN model to obtain the wave profile and velocity
profile at the maximum interface displacement for internal solitary waves in the
presence of background shear-current in the deep configuration. The results obtained
by the HLGN model show good agreement with those obtained by solving the DJL
equation.

We note that due to the assumption of inviscid fluid and immiscibility between the upper
and lower fluids and the velocity field approximations, the present HLGN model is unable
to account for some phenomena such as the breaking of internal waves; see e.g. Carr et al.
(2017) for capturing the viscous effects and boundary layer mechanics. The development
of the present HLGN model for dealing with these problems is left for future work.
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