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Stratified turbulent mixing in oscillating
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Motivated by the variation of local shear produced by internal waves in the ocean, we use
direct numerical simulations to investigate the effect of a time-dependent shear forcing
on the evolution and mixing of turbulence produced by Kelvin–Helmholtz instability
(KHI) at high Reynolds number. The forcing is implemented using a tilting coordinate
system which causes the background shear to accelerate and decelerate periodically.
We demonstrate that, with suitable timing between development of instability and the
shear oscillation cycle, turbulence produced by KHI with a decelerating shear mixes in a
distinctly different way from the flow with constant background shear, specifically with
the energy for turbulent motions extracted from alternative sources. As a result, the total
amount of mixing as measured by the change in background potential energy can in fact be
significantly larger for flows in which the shear is decelerated, despite the fact that the total
kinetic energy in the flow is significantly smaller. The mixing has characteristics more in
common with convectively driven rather than shear-driven flows, supporting the argument
for an underlying change in the mechanisms triggering the turbulence.
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1. Introduction

Turbulent mixing events in the stratified ocean interior are widely attributed to
the breaking of internal waves maintained by wind and tidal forcing (MacKinnon
et al. 2017; Whalen et al. 2020). The irreversible vertical component of this mixing
is of fundamental importance for determining global distributions of heat, carbon,
nutrients and other important tracers (Wunsch & Ferrari 2004; Talley et al. 2016).
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Direct numerical simulations (DNS) have been widely used for studying and modelling
turbulent wave-breaking events, with a common paradigm for the transition to turbulence
being the classical shear-driven KHI, whose characteristic billow structure has been
observed in a range of oceanic environments (Smyth & Moum 2012). The dependence
of key mixing properties in this flow on a range of parameters has been the subject of
a number of recent studies (e.g. as reviewed in Caulfield 2021) though it is becoming
increasingly apparent that mixing also depends on the precise structure of the environment
in which instabilities develop (Kaminski & Smyth 2019; VanDine, Pham & Sarkar 2021),
as well as transient flow dynamics (Mashayek & Peltier 2013; Mashayek, Caulfield &
Peltier 2017; Lewin & Caulfield 2021).

A common way of modelling turbulent mixing involves parameterising it in terms
of an appropriate mixing efficiency η that measures the ratio of the rate of increase
of background potential energy to the total power expended in producing the mixing
(Gregg et al. 2018). A value of η = 1/6 is often assumed in practice, though for general
transient flows η is by no means constant. The (instantaneous) mixing efficiency of a
KHI mixing event generally follows a pattern of being initially very high as the primary
two-dimensional overturning billow breaks down to turbulence, followed by a period of
energetic, fully turbulent mixing with mixing efficiency η ≈ 0.15–0.2, and then a period
of decay. Higher mixing efficiencies that persist throughout a turbulent mixing event
are typically found in turbulence produced by horizontal convection (Gayen, Griffiths
& Hughes 2014), Rayleigh–Taylor instability (Davies Wykes, Hughes & Dalziel 2014)
and combined Rayleigh–Taylor/Kelvin–Helmholtz instability (Olson et al. 2011), in which
mixing is dominated by vertical motions induced by unstable density gradients.

The transition to and subsequent evolution of fully developed turbulence in a simple
two-layer KHI set-up with constant background vertical shear is ‘fuelled’ by the shear, in
the sense that it provides the dominant source of energy for inherently three-dimensional
turbulent fluctuations to grow (Caulfield & Peltier 2000). In oceanographic flows, regions
of intensified local shear arise due to large-scale forcing by internal gravity waves (Woods
1968) and their interaction with existing background shear (Howland, Taylor & Caulfield
2021). However, it is reasonable to expect that the background shear induced by a gravity
wave might not be constant, and it is therefore natural to ask whether KHI turbulence that
mixes vigorously can develop in the absence of the shear that acted to form the initial
instability. Indeed, as recently discussed by Mashayek, Caulfield & Alford (2021b), the
distinction between shear-driven and convectively driven mixing associated with density
overturns such as those observed in the thermocline by Alford & Pinkel (2000) is not
always clear since large-scale coherent shear instabilities might be more appropriately
deemed ‘convective’ once an overturning billow develops.

Inoue & Smyth (2009) performed DNS of KHI with a time-dependent forcing producing
a wave-like oscillation of shear, finding that cumulative mixing properties depend largely
on the timing of the shear deceleration phase which acts to suppress the transition to
turbulence and hence suspend the flow in its ‘preturbulent’ billow state associated with
high mixing efficiency. Thus it is appealing to suggest that cumulative mixing properties
are governed by the onset and relative durations of the preturbulent and turbulent mixing
phases of the flow. However, studies at increasingly high Reynolds numbers more relevant
to many oceanographic flows indicate that the transition between preturbulent and fully
turbulent flow is difficult to define, with energetic, anisotropic turbulence that is highly
efficient emerging from a ‘zoo’ of secondary instabilities (Mashayek & Peltier 2012a,b).

Motivated by these previous studies, we aim to investigate the turbulent flow produced
by KHI at high Reynolds number in a flow with time-dependent forcing where a billow
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develops before the shear starts to decelerate, thus removing the usual source of energy
for turbulence. We focus on specific timing issues related to the development of the
primary billow and subsequent breakdown to turbulence, investigating how these events,
in particular the mixing and energetics, are modified by the time-dependent shear. In § 2
we outline a suite of numerical simulations designed specifically to modify the relative
timing of different stages of turbulent flow evolution. Results from the simulations are
presented in § 3, and we conclude in § 4.

2. Theory and simulations

2.1. Modelling internal waves as a buoyancy-driven flow in a tilting tank
Recent observations have demonstrated the existence of long KHI billow trains superposed
on internal gravity waves of lower frequency (van Haren & Gostiaux 2010). Motivated by
this, consider a horizontally propagating gravity wave of frequency ω∗ in a background
stratification with buoyancy frequency N∗

b , which supports KHI billows of wavelength
much smaller than that of the internal wave. As noted by Inoue & Smyth (2009), this is
theoretically equivalent to the condition ω∗/N∗

b � 1. To a good approximation, we may
neglect horizontal variations in the large-scale gravity wave and model the scenario as
a parallel shear flow where the magnitude of the background shear varies in time. As
detailed in the seminal experiments of Thorpe (1968, 1971), such a flow can be produced
in a tilting tank set-up, where the mean flow itself is driven by buoyancy. We consider a
two-layer background density profile given by

ρ∗(z∗) = −�ρ∗ tanh
(

z∗

h∗

)
, (2.1)

where �ρ∗ is half the (dimensional) density difference between the two layers, z∗ is the
vertical coordinate and h∗ is half of the total layer thickness. The associated buoyancy
frequency N∗

b = g∗�ρ∗/(ρ∗
a h∗) is calculated using the centreline vertical stratification,

where g∗ and ρ∗
a are the acceleration due to gravity and a reference density, respectively.

We use a tilting coordinate system where the tilt angle θ(t∗) oscillates sinusoidally in time
with frequency ω∗ and amplitude a such that

θ(t) = a sin(ω∗t∗). (2.2)

The horizontally averaged laminar mean flow u∗ is then driven by buoyancy according to

∂u∗

∂t∗
= −ρ∗ sin(θ). (2.3)

Throughout this work we will consider small tilt angles a � 7◦ so that the vertical
component of gravity g∗ cos θ ≥ 0.99g∗. Thus the tilt functions purely as a geophysically
plausible mechanism for the generation of shear, that is, vertical motions induced by the
slope and their effects on the dynamics are expected to be negligible. As the frame rotates
away from the horizontal, the shear du∗/dz∗ starts to oscillate and it is expected that the
flow may become unstable to KHI when the gradient Richardson number Rig(z∗, t∗) at the
centre of the shear layer

Rig(0, t∗) = N∗2
b cos θ

(du∗/dz∗)2|z∗=0
, (2.4)

is less than the classical value of 1/4. The (first) minimum value in time occurs at
ω∗t∗ = π, and we denote it as the target bulk Richardson number Rib. The corresponding
value of du∗/dz∗|z∗=0 is denoted �u∗

b and is given by �u∗
b = h∗N∗

b/
√

Rib.
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The full non-linear evolution of the velocity u = (u, v, w), density ρ and pressure p is
governed by the non-dimensional rotating Boussinesq Navier–Stokes equations:

Du
Dt

= −∇p + 1
Re

∇2u − Ribρ

⎛
⎝sin θ

0
cos θ

⎞
⎠ + 2

dθ

dt

⎛
⎝ w

0
−u

⎞
⎠ , ∇ · u = 0, (2.5)

Dρ

Dt
= 1

RePr
∇2ρ. (2.6)

Here we have neglected centrifugal terms and terms due to the acceleration of the tilt
angle. Note that the effects of planetary rotation are not considered so that rotational terms
arise purely from the tilt-induced forcing. Since the initial background flow is accelerating,
we choose to define non-dimensional variables using the scale �u∗

b which is determined
at the point of maximal shear in the laminar flow as described above. We have

t = t∗�u∗
b/h∗, xi = x∗

i /h∗, ui = u∗
i /�u∗

b, ρ = ρ∗/�ρ∗, p = p∗/(ρ∗
a�u∗2

b ),

(2.7a–e)

where the xi are coordinate directions and we note p∗ and ρ∗ are departures from
hydrostatic balance. There are four dimensionless parameters: the target bulk Richardson
number Rib, the projected Reynolds number Re, the Prandtl number Pr and the normalised
forcing frequency Ω , given by

Rib = g∗h∗�ρ∗

ρ∗
a�u∗2

b
, Re = h∗�u∗

b
ν∗ , Pr = ν∗

κ∗ , Ω = ω∗

N∗
b
, (2.8a–d)

where g∗ is the acceleration due to gravity, and ν∗ and κ∗ are the momentum and density
diffusivities.

2.2. Simulation set-up
We are interested in investigating timing issues pertaining to the development of the initial
KHI billow relative to the deceleration of the background shear. This is controlled by the
time taken for the initial instability to grow, the forcing frequency Ω and the maximum tilt
angle a. If the billow is not able to grow sufficiently before the shear starts to decelerate
then the emergence of secondary instabilities facilitating the transition to turbulence will
be greatly suppressed and the flow will remain essentially laminar. On the the other hand,
if the billow grows and most of the fully turbulent mixing has already taken place before
the shear decelerates then the behaviour will be similar to the (well-understood) case with
constant-in-time background shear.

The DNS are performed using DIABLO (Taylor 2008), solving (2.5) and (2.6) in a
channel geometry that is periodic in the horizontal directions, with free-slip, no-flux
boundary conditions in the vertical. The domain size is (Lx, Ly, Lz) = (14.28, 4, 25) which
accommodates the wavelength of a single KHI billow in the horizontal, as well as the full
range of small-scale secondary instabilities in the spanwise y direction during turbulent
breakdown. Billow pairing effects are not considered here, but in any case are not expected
to play a major role due to rapid turbulent breakdown at high Re (Mashayek & Peltier
2012b) and the effect of flow deceleration. Vertical grid spacing is finer in the central
region −5 ≤ z ≤ 5; outside of this region cell height is increased by roughly 2 % per cell.
Within the central region, the number of grid points is (Nx, Ny, Nz) = (1024, 284, 768),
fine enough to resolve scales down to 2.5 times the Kolmogorov length scale LK .
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Simulation ω/N∗
b a Initial conditions Deceleration Tt �PB �P t

B �P i
B

WN72D 0.072 7.28◦ White noise Y 4.54 0.0213 0.0179 0.0034
WN72 0.072 7.28◦ White noise N 4.62 0.0227 0.0172 0.0055
NM72D 0.072 7.28◦ Normal mode Y 4.40 0.0311 0.0242 0.0068
WN62D 0.062 6.30◦ White noise Y 4.25 0.0301 0.0252 0.0049
WN52D 0.052 5.27◦ White noise Y 3.95 0.0339 0.0280 0.0059

Table 1. Flow parameters, initial conditions and forcing type for each DNS. Also included are the tilt phase at
which the buoyancy Reynolds number Reb first becomes bigger than the ‘fully turbulent’ value of Ret

b = 200,
and the total mixing taking place over the entire flow cycle, the turbulent and the preturbulent mixing stages.

For each simulation outlined in table 1, we fix the parameters Re = 6000, Rib = 0.08,
Pr = 1 and vary Ω along with the initial flow conditions to control relative timing in the
flow. Note that choosing Rib and Ω implicitly determines the maximum tilt angle a via
(2.4). Reference initial conditions are white noise of amplitude 0.1 applied to each of the
velocity fields. The onset and growth of KHI can be predicted by performing a linear
stability analysis of the quasi-steady background flow induced by the tilt at minimum
centreline Richardson number Rib, as in the accelerating shear flows studied by Howland,
Taylor & Caulfield (2018). For the value of Rib = 0.08 used here, we found that the initial
growth rate and wavelength of the instability that emerges in the full non-linear flow
are similar to the values predicted by the quasi-steady linear analysis. Thus transition
to turbulence may be accelerated by perturbing the full non-linear flow with the fastest
growing normal-mode solution of the quasi-steady linearised equations of motion at the
time of maximal shear. This serves as a means of controlling the timing of initial billow
growth relative to the deceleration of the background shear independently of the forcing
frequency Ω . It is important to note that this relies on the predicted linear growth rate
σ of KHI being large compared with the forcing frequency ω: here σ ≈ 0.139 whereas
ω ≤ 0.021. We note that, due to the inherently time-dependent nature of the flow, it is
unclear whether the same behaviour will hold for larger values of Rib which are associated
with smaller growth rates (Hazel 1972), even for sufficiently small forcing frequencies.

For the simulations here with Rib = 0.08, a reference value of Ω = 0.072 is chosen at
which the primary KHI billow reaches maximal amplitude at around the same time the
shear starts to decelerate. This was achieved by matching a half-period of oscillation to the
saturation time of a two-dimensional billow growing in a steady background flow at Rib =
0.08. We then investigate the effect on the dynamics of decreasing Ω so that the billow
has more time to develop before deceleration, as well as the effect of using a normal-mode
perturbation discussed above which speeds up relative billow growth independent of Ω .
We compare simulations to a reference where the oscillatory forcing is switched off when
the shear reaches its initial maximum at ω∗t∗ = π, preventing subsequent deceleration. At
this point, the laminar flow closely matches the steady tanh profile commonly studied in
the literature. To save time computationally, simulations are started from the point during
the laminar shear acceleration phase where the centreline gradient Richardson number
Rig(0, t) first reaches 0.25, and are then run for a total of two complete tilt periods until
ω∗t∗ = 4π. We point out that the values of Ω and the chosen initial conditions for the
simulations are not intended to be precise in any mathematical sense, but we find them to
be sufficient for demonstrating generic time-dependent behaviour of the flow.
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Figure 1. Spanwise slices through y = 0 at various indicated times during the flow showing contours of density
for simulations: (a)–(d) WN72D; (e)–(h) NM72D; (i)–(l) WN72 (in which shear does not decelerate). Only
the central region −5 ≤ z ≤ 5 is shown.

3. Results

3.1. Flow evolution and secondary mixing phase
To illustrate the qualitative flow evolution, figure 1 displays slices of the density field
at various time points during the shear oscillation. To compare the relative timing of
events between simulations with different Ω , we use the tilt phase T ≡ ω∗t∗ = √

RibΩt
as the primary time coordinate for our analysis. In this way, maximum and minimum shear
occurs at T equal to odd and even multiples of π, respectively. Animated movies of the
density field evolution alongside horizontally averaged shear profiles ū can be found in the
supplementary movie available at https://doi.org/10.1017/jfm.2022.537.

The KHI billows are well-developed by the time the shear has started to decelerate for
both types of initial condition, with a normal-mode perturbation resulting in a more rapid
billow development than a white-noise perturbation, as is indicated by the presence of
secondary instabilities in figure 1(e) which facilitate the breakdown to turbulence. At this
point, the billow shape is already visibly modified for flows which have a deceleration
phase as can be seen by comparing figures 1(a) and 1(e) with 1(i). This modification
is primarily due to the influence of the shear, which continues to deform the growing
billow in simulation WN72 in which the shear is held constant after acceleration, resulting
in a structure that is flatter in the vertical and longer in the horizontal. As a result, the
vertical extent of turbulent motions that emerge is larger in flows that decelerate compared
with flow WN72. Turbulence is more short-lived in decelerating flows resulting in billow
collapse and partial relaminarisation, as can be seen in figures 1(c) and 1(g). However,
flow WN72D actually supports a secondary phase of weaker turbulence seen in figure 1(d),
which forms above and below the centre of the mostly laminar central region, resulting in
a further (vertical) broadening of the mixed layer. The result is that, despite the preceding
phase of relaminarisation, the final vertical extent of the mixed layer is similar to that
produced by the shear-sustained turbulence of simulation WN72. Similar dynamics is
observed for simulations WN52D and WN62D.
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Figure 2. Time evolving vertical profiles of the quantity 4N2 − S2 for simulations: (a) WN72D; (b) NM72D;
(c) WN72; (d) WN62D; (e) WN52D. Regions for which the gradient Richardson number Rig ≤ 1/4 are shown
in orange.

To investigate this secondary mixing behaviour further, figure 2 shows the evolution of
the quantity 4N2 − S2, where N(z, t) and S(z, t) are local measures of buoyancy frequency
and shear defined by horizontally averaged fields (denoted by an overbar):

N2 = −Rib
∂ρ̄

∂z
, S = ∂ ū

∂z
. (3.1a,b)

Positive and negative values of 4N2 − S2 correspond to the gradient Richardson number
Rig = N2/S2 being greater than or less than the value of 1/4 associated with marginal
linear instability. The earlier development of KHI is clear in simulations NM72D, WN62D
and WN52D, though the horizontally averaged structure remains similar across all
simulations until the billow starts to collapse. Values of Rig < 1/4 are maintained in the
centre of the shear layer throughout most of the turbulent mixing event for the reference
flow WN72, in contrast to the decelerating flows. For these flows, there are coherent
wave-like structures corresponding to larger Rig at the top and bottom of the mixing
layer which emerge as the shear decelerates. Similar structures were also observed for
KHI billows forming in a linear background stratification in Lewin & Caulfield (2021),
caused by anisotropic turbulence rotating around the laminar billow core. Once the shear
starts to accelerate again, values of Rig in these regions decrease, in particular leading
to distinct patches of Rig < 1/4 in flows WN72D, WN62D and WN52D which leads to
the development of a secondary turbulence phase. Similar behaviour for forced stratified
shear flows in which Rig becomes negative in regions above and below the centre of the
shear layer has been observed by Smith, Caulfield & Taylor (2021) in simulations that are
continuously relaxed towards prescribed mean profiles.

3.2. More mixing with less shear
Stratified mixing may be characterised as an irreversible, diffusive process by
decomposing the total potential energy P = Rib〈ρz〉 into the sum of an available
potential energy (APE) PA and a background potential energy (BPE) PB defined by
PB ≡ Rib〈ρBz〉, where ρB is obtained by rearranging the density field adiabatically into
a gravitationally stable monotonic configuration. Here, angle brackets denote a volume
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average over the entire domain. As detailed by Caulfield & Peltier (2000), it follows that
the quantity

dPB

dt
= M + Dp, (3.2)

is necessarily monotonically increasing at a rate bounded below by the diffusion of the
background density gradient Dp ≡ 2Rib/(RePrLz). The (strictly non-negative) quantity
M is known as the mixing rate. An (instantaneous) mixing efficiency η may then be
defined as

η ≡ M

M + ε
, (3.3)

where ε = 〈∂jui∂jui〉/Re is the total kinetic energy dissipation.
Figure 3(a) shows the evolution of the total change in BPE due to irreversible turbulent

mixing (which is a measure of the total amount of flow-induced mixing) for each
simulation in table 1, calculated by subtracting the time-integrated contribution Dpt due
merely to background diffusion. We compute PB by assuming a tilt angle of zero,
shown by Inoue & Smyth (2009) to be a reasonable approximation for a � 10◦. The
corresponding values of the change in APE are plotted in figure 3(b). Evolution depends
on the forcing frequency Ω and the initial flow conditions that determine the timing
of the growth of the primary KHI billow. In flows WN62D, WN52D and NM72D, the
primary billow develops earlier during the shear oscillation cycle due to the slower forcing
frequency or a faster growing normal-mode perturbation. These billows do not store more
APE in their initial saturated state than the slower developing billows of flows WN72D
and WN72, but nonetheless have a significantly larger total change of BPE by the end of
the mixing cycle. Additional energy for mixing comes from a sustained increased volume
of APE throughout the mixing cycle; by comparison, flow WN72 reaches a similar initial
peak of APE which then quickly drops off. Hence the background shear has a strong
influence on how energy is stored in the flow. There are, therefore, three key aspects
leading to substantial mixing in decelerating flows. Firstly, the APE stored in these flows
remains large throughout the mixing cycle compared with constant shear flows. Secondly,
those flows in which a billow develops earlier relative to shear deceleration experience a
longer period of sustained large APE. Finally, additional mixing may take place during the
second phase of shear acceleration. In this way, it is possible for decelerating flows to mix
as much as, or even significantly more than, their constant shear counterparts.

There are notable APE oscillations in the absence of shear whose period is observed
to be 2πΩ . Since Ω = ω∗/N∗

b and T = ω∗t∗, this corresponds to oscillations at the
background buoyancy frequency. To investigate further, figure 3(c) shows the evolution
of turbulent kinetic energy (TKE) (〈u′2〉 + 〈v′2〉 + 〈w′2〉)/2, where u′ = u − ū. Perhaps
surprisingly, the decelerating flows exhibit similar or greater TKE than flow WN72, despite
the additional kinetic energy from the background shear in the latter. This additional TKE
appears to come (at least in part) from the APE, whose oscillations are distinctly out
of phase with the TKE oscillations in decelerating simulations. There are fundamental
differences in the energetics between the oscillating flows and the constant shear flow
WN72, but we also note that earlier billow development in flows NM72D, WN62D and
WN52D leads to a larger total TKE than flow WN72D, indicating timing also plays an
important role in energy transfer.

In order to look at the contributions of different stages of a given mixing event to
the total mixing, we define the start of the energetic ‘fully turbulent’ mixing phase to
be when the buoyancy Reynolds number Reb = Re〈ε〉/〈N2〉 first becomes bigger than a
nominal critical value of Ret

b = 200. A value of Reb ∼ O(100) is commonly associated
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Figure 3. Evolution of (a) change in BPE due to irreversible flow-induced mixing; (b) change in APE; (c)
TKE for each simulation in table 1.

with the most energetic turbulence found in stratified flows (Shih et al. 2005; Salehipour
& Peltier 2015; Portwood et al. 2016), and we find the results in the following discussion
are robust for 100 ≤ Ret

b ≤ 300. The value of the tilt phase T corresponding to the start of
the energetic mixing phase is denoted Tt and is indicated in table 1 for each simulation.
Also given is the total overall change in BPE �PB, as well as the change in BPE over
the turbulent and preturbulent mixing phase �P t

B and �P i
B. It is clear that, at least from

using this definition of the turbulent mixing phase, the larger total mixing in simulations
NMM72, WN62D and WN52D is due to an increase in both the preturbulent and fully
turbulent mixing phases.

Inoue & Smyth (2009) argue that time-dependent forcing governs the mixing by altering
the relative duration of these two phases, with shear deceleration essentially suppressing
less efficient fully turbulent mixing, so that the preturbulent mixing dominates. Although a
reasonable description at low to moderate Re, at higher Re, a description of shear-induced
turbulence as being controlled by the relative duration between efficient preturbulent and
less efficient fully turbulent mixing is insufficient to describe the event in generality
because the fully turbulent mixing stage is relatively much more important.

3.3. Energy pathways
Having established the importance of Ω in determining the timing of the shear
deceleration phase for the mixing of the system, we will henceforth focus on simulations
with Ω = 0.072 to investigate the mechanisms and energetic pathways that lead to the
time-dependent behaviour described in the previous section. As illustrated by figure 4(a),
the volume-averaged dissipation rate ε (vertically averaged over Lz) reaches a similar
order of magnitude for all three simulations, further indicating that the turbulence
reaches a similar intensity regardless of whether or not the shear is decelerated. Despite
this, there are noticeable differences in the behaviour of the mixing rate M shown in
figure 4(b). In particular, decelerating flows WN72D and NM72D exhibit strong initial
peaks followed by rapid decrease in mixing rate at around T = 2π. The constant shear
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Figure 4. Time evolution of (a) volume-averaged dissipation ε; (b) mixing rate M ; (c) mixing efficiency η.
Plots (d–f ) show selected terms from the three-dimensional kinetic energy evolution equation. All simulations
have Ω = 0.072.

flow WN72 instead exhibits a similarly strong initial peak, but then starts to decrease
much more gradually than the decelerating flows, with moderate mixing being sustained
for a relatively long period of time. These differences are reflected in the behaviour of
the mixing efficiency η seen in figure 4(c). Once again, the peak values reached during
the preturbulent ‘roll-up’ phase are similar across all simulations. However, once the
transition to turbulence is initiated by the proliferation of secondary instabilities, mixing
efficiency remains considerably higher in simulations WN72D and NM72D, settling at a
value of η around 0.4, as opposed to the value η ≈ 0.2 in simulation WN72 which matches
efficiencies found in constant shear studies of KHI turbulence (Mashayek & Peltier 2013;
Salehipour & Peltier 2015; Mashayek et al. 2017). Olson et al. (2011) obtain similar values
of η ≈ 0.4 in their study of combined Rayleigh–Taylor/Kelvin–Helmholtz instability for
strong background shear, finding in general that higher shear results in a significant
reduction in mixing efficiency of a gravitationally unstable flow. Indeed, at high Reynolds
number, a coherent KHI billow supports both shear instability due to the background flow
and the rotation of the vortex, and convective instability due to overturning of the density
field. We note that the mixing properties of flows WN62D and WN52D evolve in a similar
manner to flow NM72D due to the earlier relative development of the billow and so are
not shown here. There is a clear indication that, despite initially similar mixing properties
associated with the coherent saturated billow state, ensuing turbulence is characteristically
different in the absence of a sustaining background shear.

The argument that turbulence is characteristically different in flows where the shear
undergoes deceleration once a primary overturning has developed can be extended further
by performing a three-dimensional Reynolds decomposition of the velocity and density
fields. Specifically, we write

u(x, y, z, t) = (u, v, w) = (ū(z, t) + u2d + u3d, v3d, w2d + w3d), (3.4)

u2d(x, z, t) = (u2d, 0, w2d) = 〈(u − ū, v, w)〉y, (3.5)

u3d(x, y, z, t) = (u3d, v3d, w3d) = (u − u2d − ū, v, w − w2d), (3.6)

where 〈·〉p denotes spatial averaging in the coordinate direction(s) p. A similar
decomposition ρ(x, y, z, t) = ρ̄(z, t) + ρ2d(x, z, t) + ρ3d(x, y, z, t) can be obtained in the
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same manner. This decomposition represents the mean background flow, along with
two-dimensional components associated primarily with the initial KHI billow, and
an inherently three-dimensional component that grows in magnitude as small-scale
turbulence develops. The evolution equation for the inherently three-dimensional kinetic
energy K3d = 〈|u2

3d|〉/2 is found to have the form (see e.g. Mashayek, Caulfield & Peltier
2013)

dK3d

dt
= R3d + S h3d + A3d − H3d − D3d, (3.7)

where R3d represents the production of K3d by the background shear, S h3d represents
energy sourced from the inherently two-dimensional component of the flow, A3d is a
measure of anisotropy representing energy sourced from stretching deformations, and
H3d and D3d are buoyancy flux and dissipation terms associated with three-dimensional
perturbations. These terms are explicitly defined as

R3d = −
〈
u3dw3d

∂ ū
∂z

〉
, H3d = Rib〈ρ3dw3d〉, D3d = 〈∂ju3di∂ju3di〉, (3.8a–c)

A3d = −1
2

〈
(u2

3d − w2
3d)

(
∂u2d

∂x
− ∂w2d

∂z

)〉
, (3.9)

S h3d = −
〈
u3dw3d

(
∂w2d

∂x
+ ∂u2d

∂z

)〉
. (3.10)

Figures 4(d)–4( f ) show the evolution of the first three terms on the right-hand side of (3.7)
for the three simulations with Ω = 0.072. Figure 4(d) shows that flow WN72 which does
not have a deceleration phase sources the majority of its energy for three-dimensional
velocity perturbations from the background shear, as discussed by Caulfield & Peltier
(2000). This is in noticeable contrast to the decelerating flows WN72D and NM72D,
for which R3d is essentially negligible throughout the primary turbulent mixing event.
Figures 4(e) and 4( f ) show that the energy for three-dimensional velocity fluctuations
associated with fully developed turbulence instead comes from a mixture of S h3d and
A3d, both of which do not generally contribute positively to K3d in the constant shear
case. These terms are inherently associated with the motion of the primary KHI billow that
develops, suggesting that the deceleration of the background shear provides a direct route
to turbulence from the static instability of the billow structure itself. This is consistent both
with the qualitative picture of the background shear continuing to deform the billow and
subsequent turbulent structures as they develop, and the mixing being more convectively
driven with a larger associated mixing efficiency. Importantly, there is no evidence of an
intermediate or transitional regime despite shear still being present at the time of turbulent
breakdown. Therefore, we conclude that the energy pathways leading to three-dimensional
turbulent velocity fluctuations and hence energetic mixing are profoundly modified for
these flows.

4. Discussion and conclusions

We have investigated the turbulent mixing produced by KHI in a stratified flow with
time-dependent forcing designed to induce a periodically accelerating and decelerating
background shear. At sufficiently high Re, the density and velocity fields are organised
such that multiple turbulent transitions and hence additional mixing phases are possible as
the local gradient Richardson number Rig(z, t) becomes smaller than the classical value
of 1/4 associated with instability. By varying the forcing frequency Ω and the structure
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of the initial conditions, we found that both the mixing efficiency and total amount of
mixing can in fact be significantly higher for turbulence produced by KHI billows in the
absence of background shear that would otherwise act to sustain energetic turbulence.
This is essentially due to two main effects. Firstly, and as originally noted by Inoue &
Smyth (2009), billows that develop earlier relative to the shear deceleration spend longer
in a coherent, preturbulent state associated with highly efficient mixing. Secondly, the
energetic pathways leading to mixing are profoundly modified in the absence of shear such
that turbulent fluctuations have a characteristically different structure whilst remaining just
as energetic as flows with a constant background shear. This latter effect becomes more
important as Re increases, and it reinforces the idea that a purely two-phase description
of turbulence produced by shear instability consisting of a coherent preturbulent phase of
highly efficient mixing followed by an energetic phase of constant mixing efficiency of
η ≈ 0.2 does not appropriately characterise the mixing (Mashayek & Peltier 2013), even
when the final decaying phase of flow evolution does not play a significant role (Lewin
& Caulfield 2021). Mashayek et al. (2021b) point out that mixing by KHI might be more
appropriately characterised as primarily convective once the primary billow has rolled
up. The analysis of the simulations with decelerating shear in this work highlights the
competing nature between shear instabilities and convective gravitational instabilities of
the KHI billow, with the latter potentially giving rise to much more efficient mixing.
We anticipate that this reasoning will apply to more general overturning structures in
the ocean. Indeed, Howland et al. (2021) find a similar competition between shear and
convective instabilities in the interaction between a large-scale breaking gravity wave and
a background sinusoidal shear flow.

Although we have not focused on specific parameterisation issues in this work, here
it is worth pointing out some of the implications for models of mixing efficiency used
to predict diapycnal diffusivity from measurable quantities in the ocean (Gregg et al.
2018). Clearly, transient effects are important for determining mixing efficiency in the
sense that the mechanisms driving turbulence have a strong influence on the resulting
mixing behaviour. Our results support the argument that at least some estimate of the APE
stored in the flow is necessary for a reasonable understanding of inherently time-dependent
turbulent mixing behaviour, as has been recently argued by Mashayek et al. (2021a) by
considering the relative size of the Ozmidov and Thorpe scales LO and LT in the flow.
Here LO = (ε/N3)1/2 quantifies the size of the largest turbulent eddies unaffected by
stratification, whilst LT is an overturning scale obtained from the displacements required
to reorder a vertical profile of density into a monotonically decreasing profile. This work
indicates that the relative importance of the shear also plays a role that is more complex
than a simple dependence on the classical criterion of the gradient Richardson number
Rig being less than 1/4. A natural length scale associated with the shear is the Corrsin
scale LS = (ε/S3)1/2, where S is the vertical shear of the mean horizontal velocity. As
argued by Ivey, Bluteau & Jones (2018), consideration of the relationship between all
three of these length scales might be useful for better constraining parameterisations of
mixing efficiency. Finally, it is important to note that, whilst this study focused on the
specific effects of timing, varying other key parameters such as Rib and Pr may also play
an important role in determining the evolution of the structure and mixing of the flow.
The role of transient flow dynamics such as those described here in adding uncertainty
to parametrizations of mixing, and attempting to characterise these uncertainties, is an
important consideration for future studies.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.537.
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