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1. Introduction

Let M be a surface immersed in an m-dimensional space form R™(c) of
curvature ¢ = 1,0 or —1. Let k be the second fundamental form of this
immersion; it is a certain symmetric bilinear mapping T, x T,— Ty for xe M,
where T, is the tangent space and T} the normal space of M at x. Let H be
the mean curvature vector of M in R™(c¢) and {, ) the scalar product on R™(c).
If there exists a function 4 on M such that (h(X, Y), H) = A{(X, Y for all
tangent vectors X, Y, then M is called a pseudo-umbilical surface of R™(c).
Let D denote the covariant differentiation of R™(c) and n be a normal vector
field. If we denote by D*y the normal component of Dy, then D* defines a
connection in the normal bundle. A normal vector field # is said to be parallel
in the normal bundle if D*y = 0. The length of mean curvature vector is
called the mean curvature.

Let e be a unit normal vector at x € M in R™(¢). Then the second fundamental
Jorm h(e) at e is defined by <h, e>; it is a certain symmetric bilinear mapping
T xT,»R. Lethj; i,j=1,2; r =3, ..., mbe the coefficients of the second
fundamental form k (for the details, see § 2). Then the Gauss curvature K and
the normal curvature Ky are given respectively by

m

K = 23 (hi1h%2—hizhY12), 1)

r=

m 2 2
KN = , ;;, 3|: 21 (h'ikhsﬂc_ rzkhslk)] . (2)

k=
The mean curvature vector H, the Gauss curvature K and the normal
curvature Ky play the most important roles, in differential geometry, for
surfaces in space forms.

Theorem 1. Let M be a pseudo-umbilical surface with constant Gauss curvature
in a space form R™(c) of curvature c. If the mean curvature is constant and the
normal curvature Ky vanishes, then M is either flat or totally umbilical in R™(c).
In particular, if ¢ = 0, then M is either totally umbilical or contained in a Clifford
torus.
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A minimal surface of a sphere S"~! < E™ is a pseudo-umbilical surface with
constant mean curvature in E™, and the normal curvature of a surface in
S3c E* is zero. Therefore by Theorem 1, we have the following strong result.

Corollary (5). Let M be a minimal surface of a 3-sphere S* with constant
Gauss curvature. Then M is either totally geodesic or contained in a Clifford
torus in S°.

Remark 1. If the assumption that Ky = 0 is omitted, then Theorem 1 is
no longer true. The Veronese surface in a euclidean space and the hyperbolic
Veronese surface in a hyperbolic space are examples of pseudo-umbilical
surfaces in space forms with constant Gauss curvature, constant mean curvature
but with normal curvature K # O (see, for instance (2), (4)).

Let e be a unit normal vector field of M in R™(c). If e is parallel in the
normal bundle and the determinant of h(e) is nowhere zero, then e is called a
non-degenerate normal vector field. For a compact surface with Gauss curvature
K £ 0, we have the following flatness theorem.

Theorem 2. Let M be a compact surface with Gauss curvature K £ 0 in a
space form R™(c). If there exists a non-degenerate normal vector field perpendi-
cular to the mean curvature vector field, then M is flat and the normal curvature
Ky vanishes.

Remark 2. For minimal surfaces with Gauss curvature < 0, see (1). For
surfaces with mean curvature vector parallel in the normal bundle, see (3).

2. Preliminaries

Let M be a surface immersed in an m-dimensional space form R™(c) of
curvature ¢ = 1, 0 or —1. We choose a local field of orthonormal frames
ey, ---, €, in R™(c) such that, restricted to M, the vectors e¢,, e, are tangent to M
(and, consequently, ej, ..., e, are normal to M). With respect to the frame
field of R™(c) chosen above, let w!, ..., @™ be the field of dual frames. Then the
structure equations of R™(¢) are given by

do* =) wirw?, wj+wli=0, 3
dos=Y ot rwl+cotrw®, A4,B,C=1,...,m. 4
We restrict these forms to M. Thenw" =0,r,s,¢ = 3, ..., m. Since
0 =do" = 0} Ao+ 0? Aw?,

by Cartan’s lemma we may write

From these we obtain
do' =) ol (6)
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doj = {c+ Y det (h)}o' Aw® = Koo' Aw?. @)

do=Y ojroi+) wjAwl (8)

The second fundamental form h and the mean curvature vector H are
given respectively by

b= hjo'Awle, )

H=1) hje,. 10
3. Proof of Theorem 1

Let « denote the mean curvature of M. We now consider the cases >0
and o = O separately.

Case (i) «>0. In this case, we may choose our frame field in such a way

that
H = ge,, (11)
12=0,forr=3,.., m (12)
Since M is pseudo-umbilical, we have

w? = aw', 13)
o) = hjjo!, o)=—hj0? r=4,..,m (14
By taking exterior differentiations of (13) and applying (6), (8) and (14), we

obtain
Y hwired'=0,fori=1,2. (15)

r=4

On the other hand, by taking exterior differentiations of (14) and applying (6),
(8) and (13), we obtain
dhA o'+ 20 do' tawi Aw' = Y Bof Ao, (16)
s=4
forr =4, .., mandi=1,2. Multiplying (16) by A}, and summing up on r
from 4 to m, we obtain

Y hpdhiado'+2 Y (h)’do'+a Y RioyAof
r=4 r=4 r=4

Mz

ol Ae’, i=1,2. (17)
4

]

rs

By using w}+ w} = 0 and (15), we obtain
Y hidhado'+2 Y (h)*de'=0, i=1,2. (18)
r=4 r=4

On the other hand, since the Gauss curvature X is constant, we have

Y (W;)* = c+a®+K = constant. (19)
r=4
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Therefore, by (18) and (19) we obtain
(c+a’+K)do'=0, i=1,2. (20)
If c+2*+K =0, then hf; =0 for all »r>3. This implies that M is totally
umbilical in R™(c). If c+a®+ K # 0, then we obtain dw' = dw® = 0identically
on M. Therefore, by (6), we obtain w} = 0 identically. This implies that M
is flat.
Case (ii)) « = 0. In this case, by the fact that K, = 0, we may choose our
frame field in such a way that
12=0,forr=3,...,m. 21
Hence, we have
o] = 0!, oy=—hw’, r=3,..,m (22)
Taking exterior differentiations of (22), we have

m

dhi A0’ +2hdo' = Y hj,0' Aol (23)
s=3
forr =3,...,mand i =1, 2. Multiplying (23) by h}, and summing up on r,
we obtain
Y (hdhi)A@'+2 Y (b)) do'=0, i=1,2. (24)
r=3 r=3

On the other hand, the constancy of the Gauss curvature implies that the first
term of (24) vanishes. Thus we obtain

Y (hi)do'=0, i=1,2. (25)
r=3
This implies that M is either totally geodesic or flat. Consequently, we see
that, in both cases, M is either flat or totally umbilical in R™(¢). This proves
the first part of the theorem. The second part follows immediately from the

first part and the last paragraph of § 1 of (2).

4. Proof of Theorem 2

Let M be a compact surface with Gauss curvature K < 0 in a space form
R™(c). If there exists a non-degenerate normal vector field e over M, which is
perpendicular to the mean curvature vector H, then we may choose our frame
field in such a way that e; = e and ¢, e, are in the principal direction of e.
Since e is perpendicular to the mean curvature vector field H, we have

o} =go!, o}=-—-gw* g¢>0. (26)
The parallelism of e in the normal bundle implies
=0, forr=4,..,m 7
By taking exterior differentiations of (26) and applying (27) we obtain
2gdw'+dgnew' =0, i=1,2. (28)
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From (28) we can consider local coordinates (v, v) in an open neighbourhood
U of a point p € M such that

ds? = Edu®+ Gdv?, o' =./Edu, w®=Gdy, (29)

where ds? is the first fundamental form and E and G are local positive functions
on U. From (28), equation (29) becomes

d(gEyAdu =0, d(gG)adv=20, (30)

which shows that (gE) is a function of » and (gG) is a function of v. By making
the following coordinate transformation:

u' = f(gE)*du, v = j(gG)*dv, @31

we see that there exists a neighbourhood V of each point p € M such that there
exist isothermal coordinates (u, v) in V such that

ds?® = fldu? +dv?}, o'=.fdu, o®=.fdv,

(32)
9/ =1

where f = f(u, v) is a positive function defined on V. It is well-known that the

Gauss curvature K is given by

1
K=- 2—fA log (f), (33)

with respect to the isothermal coordinates (u, v). Hence the condition KX £ 0
with gf = 1 implies Alog(g) = —Alog(f) £ 0. By Hopf’s lemma, we see
that log (g) is a constant on M. Hence the Gauss curvature

= _ 1 ) -
K= 2fAlog(f) 2Alog(g) 0.

This implies that M is flat. By taking exterior differentiation of (29) we obtain
W} A0, +w3 A0 =0, for r>3. (34)

Substituting (26) into (34) we obtain gh}, = 0, for r>3. This implies Ky = 0.
This completes the proof of the theorem.
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