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PROJECTIVE MODULES OVER 
HIGHER-DIMENSIONAL NON-COMMUTATIVE TORI 

MARC A. RIEFFEL 

The non-commutative tori provide probably the most accessible 
interesting examples of non-commutative differentiable manifolds. We 
can identify an ordinary «-torus Tn with its algebra, C(Tn), of continuous 
complex-valued functions under pointwise multiplication. But C(Tn) is 
the universal C*-algebra generated by n commuting unitary operators. By 
definition, [15, 16, 50], a non-commutative «-torus is the universal 
C*-algebra generated by n unitary operators which, while they need not 
commute, have as multiplicative commutators various fixed scalar 
multiples of the identity operator. As Connes has shown [8, 10], these 
algebras have a natural differentiable structure, defined by a natural 
ergodic action of Tn as a group of automorphisms. The non-commutative 
tori behave in inany ways like ordinary tori. For instance, it is an almost 
immediate consequence of the work of Pimsner and Voiculescu [37] that 
the J^-groups of a non-commutative torus are the same as those of an 
ordinary torus of the same dimension. (In particular, non-commutative 
tori are AX-equivalent to ordinary tori by Corollary 7.5 of [52].) 
Furthermore, the structure constants of non-commutative tori can be 
continuously deformed into those for ordinary tori. (This is exploited 
in [17].) 

In this paper we study the non-stable behavior of (finitely generated) 
projective modules over non-commutative tori. These are the appropriate 
generalization of complex vector bundles over ordinary tori, according to 
a theorem of Swan [54, 45]. It is well known that for higher-dimensional 
ordinary tori the non-stable behavior of vector bundles is quite com­
plicated. Our main theme is that, in contrast, as soon as there is any 
irrationality present, then the non-stable behavior of projective modules 
over non-commutative tori is quite regular. To make this more precise, let 
us introduce some notation. 

A non-commutative torus is specified by giving the multiplicative 
commutators for its generators. For our purposes this is most conveniently 
done by giving a skew bicharacter on Zn, or better (as first exploited by 
Elliott [17] ) by giving a real skew bilinear form, say #, on Zn. To each 
x G Zn we can associate a product, say ux, of the unitary generators, in 
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such a way that the non-commutat ive torus A0 corresponding to 0 is the 
universal C*-algebra generated by the ux

9s subject to the relation 

uvux = cxp(m0(x, y)) ux+r 

(For details see Section 4.) 
Any non-commutat ive torus Ae has a canonical trace, T (generalizing the 

Lebesgue measure on an ordinary torus), which defines a homomorphism 
(again denoted by r) from K0(Ae) to R (which generalizes the assignment 
to a vector bundle of its dimension). Furthermore, from the work of 
Pimsner and Voiculescu [37] it follows rapidly that 

K0(A$) = Z2"~'. 

We also recall that, by definition, the positive cone of K0(A) for any 
algebra, A, consists of the elements which are represented by actual 
projective A -modules (not just differences thereof). So T will have positive 
values on the positive cone of K0(AQ). 

We will say that 0 is not rational if its values on the integral lattice 
Z" c R" are not all rational. Then our main results are as follows: 

T H E O R E M 6.1. I/O is not rational, then the positive cone ofK0(A0) consists 
exactly of the elements of K0(AQ) on which r is strictly positive, together 
with zero. 

T H E O R E M 7.1 (Cancellation). If 0 is not rational, then any two pro­
jective modules which represent the same element of K0(AQ) are iso­
morphic. Equivalently, if U, V and W are projective Ae-modules such that 
U® W = V 0 W, then U = V. 

C O R O L L A R Y 7.2 and T H E O R E M 7.3. If 6 is not rational, then we have a 

quite explicit construction of every projective A ^-module up to isomorphism. 

C O R O L L A R Y 7.10. If 6 is not rational, then the projections in AQ itself 
generate all of K0(AQ). 

These results also have consequences for Kx(Ae). Let UAe denote 
the group of unitary elements in Ae, and let U Ae denote the connected 
component of the identity element of UAe. 

T H E O R E M 8.3. If 0 is not rational, then the natural map from UAe/U
]A0 

to KX(AQ) is an isomorphism. 

This last result, in turn, has an interesting consequence for the structure 
of the set of projections in Ae, namely, 

T H E O R E M 8.13. If 0 is not rational, then any two projections in AQ which 
represent the same element of K0(AQ) are in the same path component of the 
set of projections in AQ. 
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Of central importance for the proofs of the above results is a quite 
explicit method for constructing a large number of projective Armodules, 
even without any special hypotheses on 0. In Section 1 we describe a 
general approach to this construction, which is also applicable to some 
other situations, as indicated in [50]. For the A0

9s, this approach involves 
the Heisenberg representation of locally compact Abelian groups, and the 
restrictions of the Heisenberg representation to subgroups. This is 
discussed in a general way in Section 2, while the special case in which the 
subgroups are lattices is discussed in Section 3. It is this latter case which 
actually provides projective A ̂ -modules. 

Given the myriad projective modules which can be constructed by the 
method discussed in the first three sections, it is essential to have a way of 
classifying these modules. The crucial tool which we use for this 
classification is the generalized Chern character introduced by Connes [8], 
with its associated apparatus of non-commutative differential geometry 
involving connections and their curvature. Connes' Chern character has 
already been discussed for the A0 by Elliott [17], and we will use heavily 
Elliott's description of the range of Connes' Chern character for the Ae. 
Our construction of connections, and the calculation of their correspond­
ing curvatures and Chern characters, is the subject of Sections 4 and 5. 

Section 6 is the first section in which we must assume that 0 is not 
rational. Under this hypothesis, we show that every element of KO(A0) on 
which T is positive, is represented by a projective module of the kind 
constructed in the earlier sections. The proof is basically a somewhat 
lengthy inductive argument on the exterior forms which constitute the 
range of the Chern character, using in a careful way the non-rationality 
offl. 

In Section 7 we prove the cancellation theorem and obtain some of its 
corollaries. The proof involves, in addition to the results of the earlier sec­
tions, the theory of topological stable rank which was developed in [48] to 
prove cancellation for irrational rotation algebras (non-commutative 2-tori) 
in [49]. Finally, in Section 8 we discuss the consequences for KX(A0). 

The non-commutative tori, in addition to providing an interesting 
setting in which to investigate non-commutative differential geometry and 
algebraic topology, arise naturally in various ways. For example, Poguntke 
[38], building on extensive earlier work, has shown that for any connected 
Lie group G, the unique simple subquotient of C*(G) corresponding to 
any primitive ideal of C*(G) is either the algebra K of compact operators 
(or a finite dimensional full matrix algebra), or is of the form K 0 Ae 

where Ae is a simple non-commutative torus. He also has obtained an 
analogous result when G is a (not necessarily connected) compactly 
generated locally compact two-step nilpotent group. In another direction, 
Olesen, Pedersen, and Takesaki [31] have shown that the non-
commutative (and commutative) tori are exactly the C*-algebras which 
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admit an ergodic action of an ordinary torus group Tn. In yet another 
direction, the non-commutative tori provide a useful setting within which 
to study Schrôdinger operators with quasi-periodic potential. Many 
spectral projections of these Schrôdinger operators will correspond to 
projective modules. For a survey of this matter see [3]. Finally, let us 
mention that Connes has discovered that non-commutative tori provide a 
fruitful setting in which to develop Yang-Mills theory [13]. 

The investigation carried out in this paper can be attempted for other 
classes of C*-algebras associated with groups. A nice start at doing this 
has been made for nilpotent discrete groups by Packer [33, 34], and for 
nilpotent Lie groups by Sheu [53]. 

I wish to record here my thanks to George A. Elliott for having 
provided me with a preprint of [17] at an early stage in my investigation of 
this subject, and to Bruce Blackadar for helpful conversations about 
aspects of cancellation for projective modules over the ^ ' s . 

1. The general framework. We discuss in this section a general 
framework for the construction of projective modules over the twisted 
group C*-algebras of discrete groups. (Throughout this paper, by 
"projective module" we will always mean "finitely generated projective 
module".) Our discussion expands some of the ideas sketched in [50], and 
has potential application to other situations, as indicated there. But for 
the present paper, our discussion serves primarily as motivation for the 
developments in later sections; specific results from this section are not 
needed later. Thus this section can be read rapidly, but we do use it as an 
opportunity to introduce some of the notation which will be used 
throughout the rest of this paper. 

Let D be a discrete group. We wish to consider the group C*-algebra of 
D twisted [60] by a 2-cocycle with values in T (the group of complex 
numbers of modulus one). While we will eventually need to work with 
specific cocycles, we find it convenient to put this off as long as possible 
by using the well-known alternative description [29] in terms of central 
extensions by T. Thus we will assume given a group E containing T as an 
open central subgroup, with El T identified with D. We will let o denote all 
of the data giving this central extension of D by T. We can then form the 
group C*-algebra C*(E), and the reduced algebra C?(E) (see [35] ). Let e 
denote the function on T defined by e(t) = Qxp(2irit) for / e R, where we 
identify T with R/Z in the usual way. (We will use this e throughout the 
paper. Here R = real numbers, while Z = integers.) Since T is open in E, 
we can consider e to be a continuous function on E by letting e have value 
zero off T. We choose Haar measure on E so that T has measure one. Then 
e will be an idempotent in the center of CC(E) (the algebra of continuous 
complex-valued functions of compact support on E, with convolution), 
and so will represent a central idempotent in both C*(E) and C*(E). The 
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algebras we wish to explore are then eC*(E) and eC*(E), which we denote 
by C*(D, o) and C*(D, a) respectively. Our principal objective is to 
describe a method for constructing projective modules over these 
algebras. 

This method involves embedding D as a cocompact subgroup of a larger 
(perhaps Lie) group G to which a extends. In view of the description of a 
which we are presently using, this means that we must consider a group H 
containing T as a central subgroup, with quotient identified with G, 
together with a cocompact embedding of E in H, such that the diagram 

^E ^D^ 

1 • T 

^H • G ' 

commutes. We will denote again by o the corresponding extension of G by 
T. If we identify e with the measure on T whose density with respect to the 
normalized Haar measure on T is e, then we can view e as a finite measure 
on H. As such, e can also be viewed as an idempotent in the center of the 
double centralizer algebras of C*(H) and C*(H), so that we can form 
the algebras eC*(H) and eC*(H). We denote these algebras by C*(G, o) 
and C*(G, o) respectively. 

Now the space CC(H), suitably equipped and completed as described in 
[42], forms an imprimitivity (i.e., equivalence) bimodule, X = CC(H), 
between C*(E) and the transformation group C*-algebra C*(H, HIE). I 
have not noticed the corresponding fact for C* mentioned in the literature, 
so record it here: 

1.1 PROPOSITION. Let H be any locally compact group and E any closed 
subgroup. Then a quotient, Xr, of the imprimitivity bimodule X = CC(H) 
between C*(H, H/E) and C*(E), provides an imprimitivity bimodule be­
tween C*(H9 H/E) and C*(E). In fact, Xr = XI(XI) where I is the kernel 
of the homomorphism from C*(E) onto C*(E). 

We omit the proof since it is not needed later; but it consists of 
straight-forward application of the results in Section 3 of [44]. 

We return now to the special H and E considered earlier. It is 
easily verified that e commutes with everything in sight, so that if we set 
Y = eX and Yr = eXn then Y will be an imprimitivity bimodule between 
eC*(H, HIE) and eC*(E) (= C*(D, o) ), while Yr will be an imprimitivity 
bimodule between eC?(H, HIE) and eC*(E) (= C?(D, o) ). The general 
basis for our construction of projective modules is then: 

1.2 PROPOSITION. Let A and B be C*-algebras, with A having an identity 
element, and let Y be a B-A-imprimitivity bimodule. For any projection p in 
B, the right A-module pY is projective. 
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Proof. This follows familiar lines [46]. Essentially from the definitions, 
we can find two finite sequences (JC,) and (yt)9 each containing say m 
elements in Y, such that 

2 (xi9 yt)B = p. 

In fact, it is clear that we can take all xi9 yt e pY. Then for any z e pY 
we have 

z = pz = 2 (xi9 yt)Bz = 2 xt(yi9 z)A9 

so that the xt form a finite set of generators for pY. Furthermore, the 
mapping of Am to pY given by 

(a,) h-> 2 xfli 

has as right inverse the mapping 

This expresses pY as a direct summand of Am
9 so that /?Y is projective. 

Thus we see that one way to construct projective modules over C*(D9 o) 
(or C* (D9 o) ) is to arrange matters so that we can see how to find 
projections in eC\H9 HIE) (or eC*(H9 HIE) ) . Note that eC*(H9 HIE) 
need not have an identity element. 

We now use the assumption that E is cocompact in H. This assumption 
implies that there is a natural homomorphism of C*(H) into C*(H9 HIE), 
and so of eC*(H) into eC*(H, HIE). Thus one way to find projections in 
eC*(H9 HIE) is to find projections in eC*(H). But projections in eC*(H) 
correspond, more or less, to square-integrable a-representations of G. We 
say "more or less" because, on the one hand, not all square-integrable 
representations give projections [19, 56], while on the other hand we do 
not insist that the square-integrable representations be irreducible. Similar 
considerations apply to eC?(H). Note that Y ( = eCc(H)) is closely 
related to the restriction to D of the right regular a-representation of G. 

In order to work effectively with the above generalities, it is very 
desirable to have matters defined at the level of functions. To begin with, 
one can hope that/? e Ll(H). Then for A = eC*(E) (or eC*(E)) one 
would try to set, for / , g e peL (H) and s e E (assuming that H is 
unimodular), 

(f, 8)A(S) = f* * g(s) = j H f(x)g(xs)dx = < / * ds, g)L2(H). 

(Here ds denotes the "delta-function" at s9 and we define the inner-
product on L2(H) to be conjugate linear in the first variable.) For this to 
make sense, it is desirable that the right hand side should, as a function of 
s, be in L (E). It is not clear to me how widely this can be expected to 
hold. It would be interesting to know, for example, how often it holds 
when/? is a minimal projection in the technical sense used in [2, 56]. 
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Anyway, rephrasing matters in terms of a-representations, we see that if 
m is an integrable right a-representation of G on a Hilbert space S, we 
should seek a dense *-subalgebra A of Ll(D, a), and a dense ^-invariant 
subspace V of £ such that 

S H ^ < £ w ( j ) , TJ> 

is in A for all J, ÎJ e F. Taking this expression as the A -valued 
inner-product on V, we can complete to obtain a right C*(D, a)-module 
with C*(Z>, a)-valued inner-product, which may turn out to be a projective 
module. In the next two sections we will see how this can be accomplished 
when D is Abelian by using Schwartz spaces for A and V. 

2. The Heisenberg equivalence bimodule. Suppose now that the discrete 
group D is Abelian. Given a cocycle a on Z), we wish to embed D in a 
larger group to which a extends, and for which there exists a square-
integrable a-representation. One such situation, in which the larger group 
is also Abelian, is quite familiar, and suffices for our present purposes. 
Let M be any locally compact Abelian group, let M be its dual group, 
and let G = M' X M. Then on G we have the canonical bicharacter ft 
defined by 

j8( (m, s), (/i, 0 ) = (m, t), 
A 

where here ( , ) denotes the duality between M and M. (We will also use 
( , > to denote the inner-product on L2(M). The context will make clear 
which meaning is intended.) Furthermore, G has a canonical square-
integrable ^-representation, IT, on L (M), the Heisenberg representation 
[41], defined (using the conventions on page 149 of [58] ) by 

(*(mj)f)(n) = (n> s)f(n + m)-
In view of this, we will refer to ft as the Heisenberg cocycle on G. 

The commutation relation among the operators of m is given by 

for JC, y G G. It is thus natural to define a skew bicharacter, p, on G by 

p(x,y) = P(x,y)P(y9 x), 

so that 

7Tx7Ty = p(x, y)^y7Tx. 

(This p will essentially correspond to the p in [17].) It is not cohomologous 
to /?, but rather to ft2. However, as discussed in [25, 31], p determines the 
cohomology class of /?. 

As suggested in the first section, we will in later sections prefer to work 
with right modules. However, left representations are more familiar, and 
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for this reason we will in this section work primarily with left modules. 
Towards the end of the next section a convenient way of reinterpreting our 
formulas in terms of right modules will emerge. 

We will be concerned with embedding discrete groups in G. But in this 
section discreteness is not important. Thus until further notice we will let 
D be any locally compact Abelian group, usually viewed as a closed 
subgroup of G. To show the generality of our situation, we point out that if 
y is any (continuous) bicharacter on Z), then an embedding of D into an 
appropriate G can always be found such that y is the restriction to D of the 
Heisenberg cocycle on G. To see this, let <f> denote the homomorphism of D 

A 

into D defined by 

(x, <Ky)) = y(x9y). 

Let G = D X D with its Heisenberg cocycle /?, and let \p denote the 
embedding of D into G defined by 

Then 

jBOK*),^)) = <*,*O0> = y(*,y) 
as desired. (Notice also that if D is discrete, then \p(D) is a lattice in G.) 
From now on we will not use y, but rather will use ft to denote both the 
Heisenberg cocycle and its restriction to D. Similarly we will denote 
the restrictions to D of p and ir again by p and 77, and we will denote C*(D, /?) 
by B (or Bp). We recall from [60] that for $, * <= LX(D, p) the operations 
in Bp are defined by 

(<&*)(*) = JD Q(y)*(x - y)P(y, x - y)dy 

$*(*) = /3(x, J C ) Ô ( - X ) . 

It will be important for us to know that the representation IT of Bo on 
L (M) is faithful. In order to show this, and for other purposes, we need to 
consider the dual action of the dual group of D on Bp. Now the dual 
group, G, of G can be identified with M X M i n the evident way. And 
from this it is easily seen that every character of G is of the form 

x K^ p(x,y) 

for some y G G. This establishes a specific isomorphism between G and 
G. Now every character of D extends (not uniquely) to a character of G, so 
that every character of D will be of the form 

w Ĥ> p(w, y) 

for some y G G, where w G D. Here y is not unique, and the indicated 
homomorphism from G to D has as kernel exactly the subgroup 
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D^ = {y <E G: p(w, y) = 1 for all w <= D). 

This subgroup D will play a major role shortly. 
Let a denote the dual action of D on Bp. This action is defined on 

CC(D, P) by 

(at®)(w) = (w, t)$(w) 

for $ G CC(D, (i),t<ED and w G Z) (SO that /? is not explicitly involved). 
This action gives an action of D on the primitive ideal space of Bp, and 
P. Green has shown in Proposition 34 of [18] (see also the last sentence of 
its proof) that: 

2.1 PROPOSITION. The dual action of D on the primitive ideal space of Bp 
is transitive. In particular, there are no proper D-invariant ideals in Bn. 

Consider now the representation IT of Bp on L (M). To show that this 
representation is faithful, it suffices to show, according to Proposition 
2.1, that the kernel of IT is Z)-invariant. But the integrated form of the 
relation 

for x G G and w e D, is easily seen to be 

for O G Bp, where by ax we denote the dual automorphism of 
Bp corresponding to the character w i—> p(x, w) of D. It follows that if O 
is in the kernel of IT, then so is ax(<&) for any x G G. Since every character 
of D comes from an x e G, as seen above, the kernel of 77 must be a 
Z)-invariant ideal of Bp. Consequently we obtain, as desired: 

2.2 PROPOSITION. The representation m of Bp on L (M) is faithful. 

Following the method described in the first section, we wish to 
construct from the above situation a left 5^-module V with ^-valued 
inner-product. For this we need suitable spaces of functions. In the 
present context this means that we need a space of functions on M which 
behaves well under both the Fourier transform and restriction to 
subgroups. As suggested by Weil [58], the appropriate space is the space 
S(M) of Schwartz functions on M, as defined by Bruhat [7]. When M is 
"elementary" in the sense of no. 11 of [58], that is, when M is a Lie group 
of the form Rp X Zq X Tm X F where F is a finite group, then S(M) is 
defined as usual as the space of infinitely differentiable functions which, 
together with all their derivatives, vanish at infinity more rapidly than any 
polynomial grows (where "polynomial" only refers to the Rp X Zq part of 
M). Since in later sections we will only need to consider the case in 
which M is elementary, no difficulty will occur if the reader assumes 
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throughout this section also, that all groups considered are elementary. 
The crucial property which we obtain by using Schwartz functions is: 

2.3 LEMMA. Iff g e S(M), then the function on G defined by 

x ""> </, ^g> 

is in S(G). 

Proof In this section the inner-product in L2(M) is taken to be 
conjugate linear in the second variable, since we work with left 
representations. For m e M and s e M, we have 

Now for fixed m this is just the Fourier transform of the function 

But for / , g e S(M) the function f(n)g(n + rn) on M X M is easily 
seen to be in S(M X M), and it is easily seen that the operation of 
taking Fourier transforms in the second variable is an isomorphism 
of S(M X M) onto S(M X M) = S(G), as indicated at the top of page 
159 of [58]. 

It is also easily seen that for a n y / G S (G) the restriction of / to D will 
be in S(D). (A somewhat more general fact is indicated at the top of page 
167 of [58].) In particular, we obtain the following crucial fact: 

2.4 COROLLARY. For f g G S(M) the function on D defined by 

w ^ </, v„g) 

is in S(D). 

2.5 Notation. For / , g G S (M) we let ( / g)fi denote the function in S(D) 
defined by 

</> S)B(W>) = ( / TTwg) 

for w G D. 

We wish to show that this S(Z))-valued inner-product is compatible 
with the action of S(D) on S(M). But first we must make sure that this 
action is well-defined. 

2.6 LEMMA. Let D be a closed subgroup of G, let f G S (M), and let 
<D G S(D). Then ir(<&)f is in S(M). 

Proof We indicate the proof for the case of elementary groups, and 
leave to the reader its extension to the general case. (But see Sections 6, 7 
and 9 of [7].) For M, and so D, elementary, we will see that we do not need 
to assume that O is differentiable, but only that <E> vanishes rapidly at 
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infinity. We must show that if P is any polynomial on M and if A is any 
differential operator with constant coefficients on M, then PA(y(3>)/) is a 
bounded function. (See page 158 of [58].) Now, to begin with, 

W * ) / ) ( m ) = j D *(w)(m9 w")f(m + V)rfw, 

where w = (w', w") G M X M. From this it is fairly evident that ir{9)f 
is infinitely differentiable. 

Next, any differential operator with constant coefficients is a linear 
combination of products of the operators 9/3m-, where for M = R X 
Zp X Tq X F the my are coordinates in R* or Tq (and, for the Tq vari­
ables, functions are viewed as defined on R^ but constant on cosets of 
ZP c Rq). To compute, we must first clarify that our convention 
concerning the identification of R with R is that 

(r, s) = e(rs) = exp(2irirs) for r, s G R. 

Then 

(d(ir(<b)f)/dmj)(m) = J^ *(w)2w/w/(w, w">/(/w + w')rfw 

4- J^ 0(w)<w, w^Xa/yam^Xm + w')rfw. 

But 0(w)2777'wj'is again in »S(D) and df/dnij is again in S(M). It follows 
that any A(TT(0) / ) is a finite sum of terms of the form Tr(^)f for other 
<I>'s and / ' s . Thus it suffices to show that for any <3> G S(D) and any 
/ G S (M ) the function Pir(fb)f is bounded, for any polynomial P on M. 

But any polynomial P is a sum of products of coordinates wi -, where now 
these are coordinates in R^ or Zp. Then 

mj(7r($)f)(m) = J mfb(w)(m9 w")f(m + w')dw 

= J $(w)(/w, w" )(»!,• + Wj)f(m + w')*fiv 

- / wj$(w)(w, w")f(m + w')Av. 

Now « H-> rijfin) is in S(M) for « G M, and w (—> u/<E>(w) is in SCO), so it 
follows that for any polynomial P the function Pir{^)f is a finite sum of 
terms of the form 7r(^>)/for other O's a n d / ' s . Thus it suffices to show that 
any TT(O)/ is a bounded function. But this follows from simple estimates 
using the fact that O G L!(2)). 

2.7 Notation. For / G S(M) and <b G S(Z>) we will denote w(O)/ by 

2.8 PROPOSITION, i w / , g G S (M) and O G £(£>) we /jave 

<*/, g>* = *</ , g>5. 
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Proof. For w G. D we have 

=
 JD $ ( V X * V / > ^ g ) ^ = j p *(v)</, <*wg)dv 

= JD $(v)</, ?rw-vg)P(v, w - v>/v 

= ( $ * < / £>s)(w), 

since v ^ - v - j8(v, w - v>rw. 

We now continue to show that with the operations defined above, S(M) 
is, in effect, an S(D)-vigged space, in the terminology of [42]. For this 
we need: 

2.9 PROPOSITION. With operations defined as above, we have 

0)</,g>£ = (gJ)Bforf,g^ S(M). 
(2) The linear span of the range of ( , )B is dense in Bp = C*(D, ft). 

Proof For (1) we have 

( </, g>S)(H>) = P(W, W)( (f g)B(-w) ) " 

= P(w, w)(<rr_wg,f) = j8(w, w)<g, (TTW)*/> 

= / ?0 , w)<g, j8(w, w ) ^ / ) = <g, f)B(w\ 

as desired. 
For (2), we notice first that from part (1) and from Proposition 2.8, the 

linear span of the range of ( , )B is an ideal in S(D). Let us denote 
the norm closure of this linear span by /, so that / is an ideal in Bp. We will 
show that / is Z)-invariant, so that by Proposition 2.1 it must be all of Bp. 
Now for any x e G and / , g e S(M), we have 

K ( (f g)B) )(w) = P(*> WK£ ^wZ) 
= p(x, w)(7Txf <nx<nwg) = (<nxf 7rw7Txg) 

A 

It follows that / is /^-invariant, as desired. 

The remaining fact which we need in order to know that S(M) is an 
S(7))-rigged space is that (f f)B is a positive element of the C*-algebra Bp 
for any / e S(M). It will be convenient to defer the proof of this fact until 
we have established some facts about the commutant of the action of Bp 
on L2(M). 

Now it is clear from the commutation relation for the 77's that the set of 
x's in G such that ITX commutes with ITW for all w e D is exactly D . It 
follows that all operators in the range of the representation of C*(D , /?) 
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on L (M) will commute with those from Bp. Anticipating our later 
preference for right modules, we here prefer to use, instead of C*(D , /?), 
its opposite algebra, viewed as acting on the right on L (M). It is clear 
from the commutation relation for the irx

9s that this opposite algebra is 
C*(D±, jg) where we define 

?(*, y) = 0(y, x). 

Now $ is cohomologous to /?, since $/? is symmetric and so a coboundary 
(by Lemma 7.2 of [25] ). It turns out that various formulas are simpler if 
we use /? instead of $. We can arrange to do this by replacing rnz by 7r*. 
Accordingly, for fi e S(D^) and / e S(M) we define / Q by 

Then, as in Lemma 2.6, one checks that/S2 e S (M). It is easily seen that 

we obtain thus a right *-representation of 

SiD^ c L\D±^). 

We let A (or ^ ) denote the enveloping C*-algebra of L](D , /?). Then, 
exactly as in Proposition 2.2, the above action extends to a faithful right 
action of A on L (M). We now define an inner-product, ( , )A, on S(M) 
with values in S(D ) c ^ by 

<f9g)A(z) = (<nzgj) 

for/ , g e 5(M), z G Z)^. As in Corollary 2.4, one checks that (/ , g)A G 
S'(Z) ). Moreover, as in Proposition 2.8, one has 

while, as in Proposition 2.9, we find that 

ag% = <g,f)A> 
and that the linear span of the range of ( , )A is dense in A. Thus we have 
verified all of the requirements for S(M) to be a right-rigged S(D )-space 
except the positivity of the inner-product, whose proof we again defer. 

But what we really need is that S(M) provide an equivalence bimodule 
(i.e., imprimitivity bimodule in the terminology of [42] ) between B and A. 
For this we need to verify that for any / , g, h G S (M) we have 

(f,g)Bh=f(g,h)A. 

This is not straightforward, since one side involves an integral over D 
while the other involves an integral over D . In fact, noticing this, we see 
that the equation cannot be true unless we have normalized the Haar 
measures on D and D properly. We set about doing this by first fixing 
arbitrary Haar measures on M and D. We then choose the Plancherel Haar 
measure on M, and the corresponding product Haar measure on G. We 
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remark that this latter is a canonical choice of Haar measure on G (for its 
A 

decomposition as M X M) in the sense that it is independent of the 
choice of Haar measure on M. In fact it is the unique Haar measure on G 
which is "self-Plancher el" for the identification of G with G determined 
by p. Now under this identification, D is the annihilator of D. It follows 
that D can be identified as the dual group of G/D. On G/D we choose as 
usual the Haar measure such that for F £ CC(G) we have 

jGF{x)dx= jG/D[jDF{x + W)dW)dx. 

Then on D we choose the corresponding Plancherel Haar measure, that 
is, the Haar measure such that for/ , g e CC(G/D) we have 

j G / D f(x)g(x)dx = f^ / (z) f (z)&, 

A 

where / is the Fourier transform of / defined via p, that is, 

f ^ = J G/D p ( z ' x)f(x)dx 

for z e D^~. We are now in a situation to which we will be able to apply 
the Poisson summation formula, in the general form found on page 153 of 
[28]. Specifically, if F e S(G), then 

where F is defined by 

^^ = JG p(y> x)F(x)dx-
(It was Paul Chernoff, ardent fan of the Poisson summation formula, who 
suggested its use to simplify my original arguments.) 

We now need the well-known orthogonality relation for the Heisenberg 
representation, and, in particular, the fact that for our specific choice of 
Haar measures the formal dimension is 1. 

2.10 LEMMA. Iff, g, h, k <E S(M\ then 

i G (f, TTxg)(h, TTxk)-dx = (f, h)(g, k)~. 

Proof. For m e M let Lmf be defined by 

(Lj)(n) = f{n + m). 

With this notation, and with x = (m, s) etc., the left hand side becomes 

/ u 
JM J M J M 

f(n)(n, s) g(n 4- m)dn 
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( 
JM 

X I h(p)(p, s)k(p + m)dpdsdm 

= jMJfy(fLmg)A(s)(hLmk)A-(s)dSdm 

where here denotes the ordinary Fourier transform. Applying the 
ordinary Plancherel theorem, we obtain 

fM j M (fLmg){n){hLmk)-(n)dndm 

= I f(n)h(n) fMg(n + m)k(n + m)dmdn 

= (/,h)(g,ky. 

The next result is the key to the relation between the inner-products 
with values in A and B respectively. 

2.11 PROPOSITION. Letf g,h,k^ S(M), let D be a closed subgroup ofG, 
and let the Haar measure on D be normalized in terms of that on D as 
discussed above. Then 

jf (f, nwg)(h, vjcydw = f^ (f, irMXg, vMydz. 

Proof. Define F on G by 

F{X) = (f, *xg)(h, «jcy, 

so that F e S(G) by Lemma 2.3. Let F be the Fourier transform of F 
using p. Then 

^ = L </' *•**><*' ***> ^ x ) j x 

= JG (nyf, ^Xg)(h, TTxkyp(y, x)dx 

= JG <>>/> Vyg)(h> vxkydx 

= {*yf> h)(7Tyg, k) , 

where the last step uses Lemma 2.10. If we now apply to F the generalized 
Poisson summation formula in the form given above, we obtain 

JD (f> **g){K "Je) dw 
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= }D1 (l M.Z, z)TT_zh)(g, (i{z, Z)^zk) dz 

= jD± a «Ms, ^kydz. 

2.12 PROPOSITION. Iff g, h e S(M), then 

{f, s)Bh = Kg, h)A. 

Proof. Since S (M) is dense in L2(M), it suffices to show that the 
inner-products of both sides with any k <E S{M) are equal. But 

< </, g)Bh, k) = ( jf (/, g)B(W)TTwhdw, *) 

= JD </. *w2><^ vji)~dw. 

Applying Proposition 2.11 with h and & interchanged, we obtain 

= j D l (f -rrzk)(g, mFfdz 

= (h Wf)(g, h)AWz, k) 

= (f(g, h)A, k) 

as desired. 

By using the same techniques, we can now show the positivity of the 
inner-products. 

2.13 PROPOSITION. Iff G S (M), then (f f)A and (f f)B are positive 
elements of the C*-algebras A and B respectively. 

Proof. According to Proposition 2.2 the representations of A and B on 
L2(M) are faithful, so it suffices to show that ( / , f)A and (/ , f)B are 
positive as operators on L (M). Since S(M) is dense in L2(M), it suffices 
to verify positivity on S(M). But for h G S(M) we have 

< </, f)Bh, h) = l^jD (f f\{w)-nji, hj 

= JD </> vwf)(h, mji)~dw 

= j£i (l «MA ^ydz â 0, 
where we have used Proposition 2.11 in the last step. The proof of 
positivity for (/ , f)A is similar. 
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We have now verified all of the conditions for S(M) to provide an 
equivalence bimodule (i.e., imprimitivity bimodule as defined in 6.10 of 
[42] ) except for the relation with the operator norms of A and B. For this 
we must show: 

2.14 PROPOSITION. For f <E S(M), 0 e B, and Q, e A, we have 

(Qf,9f)A =i ll*ll2</.A. 
and 

</Û,/i2>B^||S2||2<//V 
Proof. The key fact used in this proof is that the representations of A 

and B on L2(M) are faithful (Proposition 2.2), so that it suffices to verify 
the above relations for the corresponding operators on L2(M). Now for 
any h e S(M) we have 

<*<*/, <t>f)A, h) = < (h, $f)M h) 

= <*/, <*/, Kyi) = <*/, <s>f(h, h)A) 

= (H>(f(h,h)A
m),*(f(h,h)A

V2)) 

^ ||*||2</.M*><> = ll*ll2W,/>«.*>• 
The desired inequality follows from the density of S(M) in L (M). A 
similar calculation works for the other case. 

We can now define a norm on S(M) by letting the norm of h e S(M) 
be || (h, h)A\\l/2, or equivalently, by Proposition 3.1 of [44], || (h, h)B\\vl. 
Then the completion of S(M) will be a B-A -equivalence bimodule, where 
B and A are now the completed C*-algebras. We summarize all of the 
above as follows: 

2.15 THEOREM. Let M be a locally compact Abelian group, let G = 
M X M, and let fi be the cocyclefor the Heisenberg projective representation 
of G on L2(M). Let D be any closed subgroup of G, and let D be the 
annihilator of D with respect to the skew cocycle coming from (5, with Haar 
measure normalized as discussed earlier. Let B be the group algebra of D 
twisted by the restriction of /? to D, and let A be the group algebra of 
D twisted by the restriction of ft to D . Then the Schwartz space S(M), 
suitably completed, and with the operations defined earlier, becomes a 
B-A -equivalence bimodule. 

We now digress briefly to consider the situation for the corresponding 
von Neumann algebras. If, for the moment, we let B and A denote the 
algebras S(D, ft) and S(D±, ft), with their actions on S(M), and if we 
equip S(M) with the ordinary inner-product from L2(M), then it is easily 
seen from the results above that S(M) becomes a Hilbert i?-v4-birigged 
space, as defined in 1.1 of [43]. Then Theorem 1.9 of [43] is immediately 
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applicable, and so we conclude that B and A generate each other's 
commutant, as algebras of operators on L2(M). But it is easily seen that 
these commutants are also generated by the corresponding projective 
representations of D and D . Thus we obtain: 

2.16 THEOREM. Let M, G, fi, D and D be as in Theorem 2.15, and let TT 

be the Heisenberg projective representation of G on L (M). Let B and A be 
the von Neumann algebras generated by ir{D) and TT(D ) respectively. Then 
B and A are each other's commutant. 

This result is essentially contained in Proposition III.4.4 of [14], where it 
is obtained by quite different methods. 

We close this section by reinterpreting some of its main results in a way 
which is quite suggestive of further developments, although we will not 
specifically need this reinterpretation in later sections of this paper. 

Let K denote the algebra of compact operators on L2(M). Conjugation 
by the Heisenberg representation gives an ordinary action of G as a group 
of automorphisms of K, which for the moment we denote by a. We claim 
that a is integrable in a quite strong sense. There are various definitions of 
what is meant by an integrable action (see [35] ). But the following version 
does not seem to have been considered before. 

2.17 Definition. Let G be any locally compact group, let K be any 
C*-algebra, with M(K) its multiplier algebra, and let a be an action of G 
on K. Then we say that a is strongly subgroup integrable if K has a dense 
a-invariant *-subalgebra, KQ, such that for any closed subgroup D of G, 
and any a e K0 there is a b e M(K) such that for all c e K0 the function 
w \-^ oiw(a)c on D is integrable, and 

bc = JD aw(a)cdw-
By taking adjoints one sees immediately that w M> caw(a) also is 

integrable. By considering integrals over the net of compact subsets of D it 
is easily seen that also 

cb = JD aw(a)cdw-
It is natural to write symbolically 

b = JD aw(a)dw-
2.18 THEOREM. Let M be a locally compact Abelian group, let G = 

M X M, and let a be the action oj G on K = K(L (M) ) obtained by 
conjugating by the Heisenberg projective representation of G Then a is 
strongly integrable. 

Proof As the dense subalgebra K0 we take the algebra of finite linear 
combinations of rank one operators (/ , g)K for / , g e S(M) (where by 
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definition (/ , g)^i = (h9 g)f). Then it suffices to consider a = (/ , g)K and 
c = (h, k)K for / , g, h, k e S(M). If D is any closed subgroup of 
G, and w e D, then 

aw(a)c = irw(f, g)KK(h> k)K 

= <*wf> ^g^iK k)K 

which is integrable over D since w I—> (h, irwg) is in S(D) by Corollary 2.4. 
Furthermore, 

JD aw(a)cdw = M <A, m^mjdw, k\ 

= ( (h, g)BL k)K, 

which by Proposition 2.12 

= (h(gj)A,k)K = (gj)A(h,k)K. 

Thus, symbolically, 

JD «w( </. g>*)^ = <g, A -
In analogy with the situation for a free wandering action on a locally 

compact space X, for which the corresponding action on C^X) is strongly 
integrable and the algebra generated by all the jD aw(a)dw is just 
C^X/D), we can, for any strongly integrable action a of a group D 
on a C* -algebra K, suggestively write KID for the C*-subalgebra of 
M(K) generated by all the jD aw(a)dw. Then the proof of Theorem 2.18 
makes clear that, in that setting, KID = A. 

Suppose now that M is the real line, R, so that G = R . We can view the 
action of G on K(L (R) ) to be a "quantized plane". (In fact, for a suitable 
insertion of a "Planck's constant" h parametrizing the infinite-
dimensional irreducible representations of the Heisenberg group, the 
algebra K(L2(R) ) will, as h goes to 0, become QXR2), with the action of G 
becoming translation.) We will see in the next section that if D is chosen to 
be a lattice in R2 (so ^ Z2), then A = C*(D±, /?) will be a non-
commutative 2-torus, and in fact an irrational rotation algebra if D is 
irrationally skewed to the usual decomposition of R . Thus we have 

(quantized plane)/(Z) = Z2) = (non-commutative torus). 

Given the usual relation between an ordinary plane, a lattice it contains, 
and an ordinary torus, it is reasonable to consider the "quantized plane" K 
to be the "simply-connected covering space" of the non-commutative 
2-torus, and the action of D on K to be the "fundamental group" of the 
non-commutative 2-torus. 

https://doi.org/10.4153/CJM-1988-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-012-9


276 MARC A. RIEFFEL 

It is clear that a similar situation will prevail in higher dimensions, but 
we will not discuss it here, nor will we explicitly use this point of view 
later, although it can be helpful to keep it in mind. 

3. The case of lattices. We suppose now that D is a discrete (Abelian) 
group. Then C*(D, /?) is a C*-algebra with identity element. We suppose 
further that D is a lattice in G ( = M X M), that is, a discrete subgroup 
such that G/D is compact. Then the dual group for G/D will be discrete. 
But we saw in the last section that this dual group can be identified with 
Z)-1. Thus D^ must be a discrete subgroup of G. In the same way, the dual 
of G/D can be identified with D, which is discrete. It follows that G/D 
is compact. We have thus shown: 

3.1 LEMMA. If D is a lattice in G, then so is D±. 

In particular, we see that C*(D , /?) will have an identity element. But it 
is well-known that if A and B are both C*-algebras with identity elements 
and if F is a i?-v4-equivalence bimodule, then F is a projective right 
,4-module, and a projective left i?-module. (The arguments are contained, 
for example, in the proof of Proposition 2.1 of [46].) Furthermore, B will 
be the full endomorphism ring of the A -module V. Thus we have 
shown: 

A 

3.2 PROPOSITION. Let D be a lattice in G ( = M X M), let A = 
C*(D , /?), and let V denote the right A-module obtained by completing 
S(M) as described earlier. Then V is a projective A-module whose full 
endomorphism ring is C*(D, /?), acting as described earlier. 

Thus F represents an element, [V], of K0(A). Since D is discrete, A has 
a canonical finite normalized trace, r (or rA), coming from evaluating 
elements of S(D ) at the identity element of D . Then T defines a group 
homomorphism from K0(A) into R, which we also denote by T. We can 
then ask how to compute T( [ V] ). To answer this, we recall from 
Proposition 2.2 of [46] that corresponding to rA there will be a canonical 
finite (non-normalized) trace T'B on B such that 

rs((f,g)B) = rA{(g,f)A) 

for all / , g e V. In terms of this we have: 

3.3 PROPOSITION. Let A and B be C*-algebras with identity element, and 
let V be a B-A-equivalence bimodule, so that V represents an element of 
K0(A). Let rA be a finite normalized trace on A and let T'B be the 
corresponding (non-normalized) trace on B. Then 

rA(lV}) = T>B(lB). 

Proof As in the proof of Proposition 2.1 of [46], we can find elements 
Vj,. . . , v of V such that 
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2 <v/5 v ^ = lB, 

and thus so that { (vi9 Vj)A) is a projection, P, in Mn(A), the algebra of 
n X n matrices over A. Then it is easily checked, much as in the proof 
of Proposition 1.2, that the mapping 

of V into ^4n is an isomorphism of V onto P(An), with inverse given (on 
P(A») ) by 

By the definition of how TA extends to K0(A ), we have 

TA([V]) = TA(P) = 2TA((vhVl)A) 

= 2 rM <V,, V,)B) = r'Ba <v„ v,)B) = r'B(\B). 

Thus for the specific modules constructed above, we must determine rB 

and then rB(\B). We let rB denote the normalized trace on B. 
To proceed, we must first determine, for the present special case in 

which D is a lattice, how the normalizations of Haar measure made before 
Lemma 2.10 specialize. Since D is discrete, it is natural to begin by 
choosing counting measure on D as its Haar measure. On M we can take 
any Haar measure, as long as we then take the corresponding Plancherel 
measure on M. Then from the formula used to define the Haar measure 
on G/D, it is easily seen that this Haar measure, which now must be finite, 
must give G/D a total volume equal to the volume in G of a fundamental 
domain for D. Let us denote this volume of a fundamental domain by 
\G/D\. Then the corresponding Plancherel Haar measure on D , which 
must be a multiple of counting measure on D , must give each point of 
D a mass of \G/D\~ . Since we will shortly be focusing our attention 
on D rather than Z>, so that we can work with right modules, we wish to 
express \G/D\~ in terms of D . Now the Poisson summation formula, as 
used above, is entirely symmetric in D and D . Examination of its proof 
then shows that the above Haar measure on D must be such that if we 
define the Haar measure on G/D^ to be the Plancherel Haar measure for 
the Haar (counting) measure on D (so that G/D± has total mass 1), then 
for suitable functions F on G 

If we now let F be the characteristic function of a precompact measurable 
fundamental domain for D1^ in G, we obtain 

|G/2)±I = IG/D^ |G/JD|_1 = \G/L>\~1' 
Thus the Plancherel measure on D gives each point the mass \G/D |. 
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Again because we will be emphasizing D , we prefer just to use 
counting measure on D . I t is clear from the Poisson summation formula 
that we can do this if on D we choose the Haar measure assigning 
mass \G/D \~l = \G/D\ to each point. We make this assumption from 
now on. 

With the conventions just made, it is clear that the normalized trace, rA, 
on A comes just from evaluation at 0. Thus for / , g e S (M), 

rA(ag)A) = ag)A(0) = (g,f). 
We must find the corresponding (non-normalized) trace on B. But if we let 
T'B just be evaluation of functions at 0 we obtain 

^ ( < g , / > * ) = <g,/>*(0) = (g,f). 

Thus this is the corresponding trace on B. It is non-normalized because, 
with the choice of Haar measure just made on Z), the identity element of B 
is easily seen to be the function with value \G/D±\ at 0 and value 0 
elsewhere. Thus 

T^(1 S ) = \G/DX\. 

In view of Proposition 3.3, we have obtained: 

3.4 THEOREM. Let D be a lattice in G (= M X M), let A = 
C*(D , /?), and let V be the finitely generated projective right A -module 
obtained by completing S(M) as described earlier. Let rA be the canonical 
normalized trace on A coming from evaluating functions at 0, and view TA as 
defining the corresponding functional on K0(A). Then 

rA([V])= \G/D±\, 

where \G/D | is the volume of a fundamental domain for D . 

We now digress to consider the von Neumann algebra aspects of the 
situation, along the lines begun in Theorem 2.16. Because D and D are 
now lattices, so that A and B have finite faithful traces, the corresponding 
von Neumann algebras, A and B, will be finite von Neumann algebras, 
and we can ask for the coupling function between them, much as was done 
in [47]. We first clarify the situation by noting that, for the same reasons as 
given in the proof of Proposition 2.3 of [47], the von Neumann algebra 
generated by S(D, ft) acting on L (M) is naturally isomorphic to the left 
regular von Neumann algebra generated by S(D, /?) with respect to its 
finite trace. We will thus let B denote each of these algebras 
interchangeably. A similar comment applies to A. We wish to invoke 
Theorem 2.6 of [47], and so we must determine the center-valued traces on 
A and B. Since A and B are each other's commutant by Theorem 2.16, 
their common center is A n B. We claim that this common center is 
generated by S(D0) where D0 = D n D1^. Certainly S(D0) is contained in 
the center, and the center-valued trace will act as the identity operator on 
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S(D0). But suppose w is in D but not in D0, so that there is ay e D with 
p(w, y) =£ 1. For any z <E D let w2 denote the unitary in B corresponding to 
the 5-function at z. Then, if we let HB denote the center-valued trace on 2?, 
we will have 

(uwfB = (uyuwuy-')
HB = p(W,y)(uwpB, 

from which it follows that 

*? = o. 
Since HB is norm continuous, it follows that HB on S(D, /?) consists just of 
restricting functions to D0. In the same way, the center-valued trace ^ on 
A will on S(D±

i /?) consist just of restricting functions to D0. Then for 
/ , g e S(M) we have for y e D0 

((f,g)AtA(y) = <v>/>> 
while 

{(gJ)BV\y) = (s,-nyf). 
These are almost the same, but we must remember that we are using 
different Haar measures on D and D , and so we must compare the above 
as operators on L2(M). But for h e L2(M) we have 

( </, g)BfBh = \G/D\ 2 <g, V>v*) ' 
A 

while 

= 2 *;*<*, 77;/) 

= 2 ^ < g , w>./>-

Thus as operators we have 

((f,g)BfB = \G/D\((g,f)AtA. 

Then from Theorem 2.6 of [47] we immediately obtain: 

3.5 THEOREM. Let D be a lattice in G (= M X M), and let A and B 
be the finite von Neumann algebras on L (M) generated by S(D , /?) and 
S(D, ft) respectively. Then the coupling function for A and B is the scalar 
operator \G/D\~X ( = \G/D±\ ). 

We now return to our discussion of the C*-algebras, and we specialize 
to the case in which D = Zn. Let us first consider the nature of an Abelian 

A 

group M such that D can be embedded as a lattice in M X M = G. Since D 
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is finitely generated, it will be contained in an open compactly generated 
subgroup, H, of G. But since G/D is compact, the same will be true of 
G/H. But G/H is discrete, and so must be finite. It follows that 
G is compactly generated. Then by Theorem 9.8 of [22] G is of the form 
Ra X Z X K where K is compact. But G is clearly self-dual, and so must 
equally be of the form Ra X Tb X K, where K is discrete. Since G is 
compactly generated, so must K be, so that K is of the form Zc X F 
where F is a finite Abelian group. Thus G is of the form Ra X T X Zc X 
F, that is, an "elementary" group as defined in [58]. Since M is a summand 
of G, it too must be of this form, say 

M = Rp X Zq X Tm X F. 

Then, of course, 

G = R2p X Z^ + m X TqJrm X F X F. 

But for Zn to be a lattice in G, it is easily seen from Theorem 9.12 of [22] 
that one must have n = 2p + q + ra. We have thus shown: 

3.6 PROPOSITION. If M is an Abelian locally compact group such that Zn 

embeds as a lattice in M X M, then M is of the form 

M = Rp X Zq X Tm X F9 

where 2p + q -\- m = n, and F is a finite Abelian group. 

We now begin to shift attention to D and right modules. It is clear that 
the above considerations apply equally well if we are instead insisting 
that D1- = Zn. Of course, D ( = D±±) will be a lattice in G, and so, in 
view of the form which G must have, D must be of the form Zn X F0 for 
some finite group F0. The module V of Proposition 3.2 will be a right 
module over A = C*(Zn, ft), whose full endomorphism ring will be 
B = C*(A £) acting on the left. 

We recall that the dual group, Tn, of Zn has the natural dual action a on 
A given, for / G Ll(Zn, p), x e Zn and / e 7", by 

( < * , ( / ) ) ( * ) = < * , / > / ( * ) • 

As in the first lemma of Section 13 of [10], the space of C°°-vectors for this 
action will be exactly S(Zn). In the same way, the dual action of D on 
C*(D, ft) will have S(D) as its space of C°°-vectors (much as in the proof 
of Theorem 4.1 of [6] ). We recall that these Schwartz spaces, as algebras, 
are closed under the holomorphic functional calculus, for the reasons 
given in the section on smoothing in the appendix to [9]. In particular, any 
element of S(D, (i) which is invertible in C*(D, ft) will be invertible in 
S(D, ft). (That is, the inverse of an invertible C°°-element is C°°.) 

We need now to place the module S(M) in the framework described 
by Connes in Lemma 1 of [8]. What we need, both here and especially 
later is: 
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3.7 PROPOSITION. Let A be a C*-algebra with identity element, let V 
be a projective right A-module with A-valued inner-product, and let 
B = End^(F). So B is a C*-algebra, and V has a corresponding B-valued 
inner-product. Let A0 and B0 be dense *-subalgebras of A and B respectively 
containing the identity elements, and let V0 be a dense subspace of V which 
is closed under the actions of A^ and B0, and such that the restrictions to V0 

of the inner-products have values in A0 and B0 respectively. If B0 has 
the property that any element of B0 which is invertible in B has its inverse 
in B0, then V0 is a projective right A0-module. In addition, the mapping 
from VQ ®A A to V defined by v ® a i—> va is an isomorphism of right 
A -modules. 

Proof. Since V is finitely generated and projective, there is a finite 
collection, vl9 . . . , vn, yx, . . . ,yn of elements of V such that 

Since V0 is dense, we can approximate the v/s and j>/s closely enough that 
the corresponding sum of inner-products, which is an element of B0, will 
be invertible in B. By hypotheses its inverse is in B0, and so, multiplying 
the sum by the inverse, we find that 1^ is expressed as the sum of 
inner-products of elements of V0. It follows easily, much as in the proof 
of Proposition 1.2 (or the proposition in [45]) that V0 is a projective 
A -module. 

Let now the v/s and y/s be as above except in V0. The indicated map 
from V0 ®A A is surjective because for any v e V 

v = \Bv = 2 (vz, yt)Bv = 2 Vi(yi9 v)A. 

But this map is also injective, for if 2 z-a- = 0 for certain z e VQ and 
cij: e A, then 

2 zj ® a, = 2 2 <W , )Bzy ® a, 

= 2 2 ViO,, Zj)A ® aj = 2 2 v,. ® (y„ Zj)Aaj 

= 2 v,. ® (y„ 2 zjuj) = 0. 

3.8 COROLLARY. With D, M and V as before, S(M) is a projective right 
A0-module, where A0 = S(Zn, ft). Furthermore 

V = S(M) ®AQ A where A = C*(Zn, /?). 

For the cancellation theorem in Section 7 we need to have an upper 
bound on the topological stable rank (as defined in [48] ) of the 
endomorphism ring of V. We obtain this from: 

3.9 PROPOSITION. Let D be any group of the form Zn X F for some finite 
Abelian group F, and let /? be any bicharacter on D. Then the topological 
stable rank of C*(D, fi) is no larger than n -¥ \. 
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Proof. We shall show that C*(D, /?) can be built up from C*(F, 0) by 
successive crossed products by Z. (This is mentioned at the end of 1.7 of 
[17], at least for D torsion-free.) Once this is shown, the proposition 
follows immediately by induction on n, using Theorem 7.1 of [48]. Note 
that D is finite if n = 0, so that C*(D, /?) is finite dimensional, and its 
topological stable rank is 1 by Section 3 of [48]. Thus to complete the 
proof (as well as for later use) we only need: 

3.10 PROPOSITION. Let D be any group of form Zn X F for some finite 
group F, and let fi be any bicharacter on D. Let D' denote the subgroup of D 
generated by the first n — \ generators of Zn together with F, and denote the 
restriction of ji to Df still by ft. Let a denote the automorphism of C*(D', /?) 
obtained from conjugation by the last generator of Z", and let a also denote 
the corresponding action of Z on C*{D\ f3). Then 

C*(D, j8) = C*(D', j8) Xa Z. 

Proof Let D be embedded, as discussed early in Section 2, as a closed 
subgroup of a G = M X M such that the restriction to D of the 
Heisenberg cocycle on G coincides with ft. Then D' is also so embedded. It 
follows from Proposition 2.2 that both C*(D, j8) and C*(D', fi) are 
faithfully represented on L2(M), so that C*(D', ft) can be viewed as a 
subalgebra of C*(D, /?). Let u be the unitary in C*(D, ft) corresponding to 
the last generator of Zn. Then from the commutation relations it is clear 
that u normalizes C*(D', ft), so that a is well-defined. It is also clear that u 
and C*(D', /?) generate C*(D, /3). Thus there is an evident homomorphism, 
7), of the crossed product onto C*(D, ft). We must showr that TJ is injective. 
From the discussion above it is clear that 7] is injective on the subalgebra 
C*(Z)r, /?). Let / denote the kernel of 17. Now we have seen earlier that we 
have the dual action of D on C*(D, j8). But D = Tn X F, and in partic­
ular we can single out the subgroup T of D which sees only the last copy 
of Z in Z" X F = D. But then it is evident that 7] is equivariant for this 
action of T on C*(D, ft) and for the dual action of T on the 
crossed-product. It follows that the kernel / must be invariant under this 
dual action of T. But then by averaging a positive element of / over T 
using the dual action, it follows that if / is not trivial, it must contain 
non-zero elements which are invariant under the dual action. But it is 
well-known (see Proposition 7.8.9 of [35] ) that such elements must belong 
to C*(D', /?), on which we have seen that 17 is faithful. Thus / is trivial and 
7] is an isomorphism. 

Actually one can often do much better than Proposition 3.9. For 
example, by using in part ideas of Bruce Blackadar, I have been able to 
show that when j3 is not rational (that is, its range is not entirely contained 
in the roots of unity), the topological stable range of C*(D, /?) is no bigger 
than 2, and is equal to 2 if C*(D, 13) is not simple. But a remarkable 
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argument of Riedel [40, 1] shows that when C*(D, ft) is simple, its 
topological stable rank can sometimes be 1, although exactly how often 
this happens remains mysterious. In another direction, if ft is trivial, then 
C*(Z>, ft) is isomorphic to the tensor product of C(Tn) with a 
finite-dimensional commutative algebra. It follows from Theorem 2.8 of 
[48] that in this case the topological stable rank is [n/2] + 1, where [ ] 
denotes "integer part of". Presumably the other cases where ft is rational 
fall somewhere in-between, especially in view of Theorem 6.1 of [48], but I 
have not investigated this matter. At any rate, Proposition 3.9 is quite 
adequate for our present purposes. 

In much of this section we have been working in a setting where 
cocycles need not be cohomologous to skew bicharacters; whereas in the 
next section we will restrict attention to a setting where skew bicharacters 
are sufficient, and in which formulas will be considerably simpler if one 
uses skew bicharacters rather than general cocycles or bicharacters. We 
conclude this section by reviewing briefly how to pass between 
cohomologous cocycles [60]. Since for this D need not be commutative, we 
use multiplicative notation. 

Let ft and o be cocycles on D which are cohomologous, so that there is a 
function, 77, from D to T such that 

o(x, y) = ïj(xyrj(yyn(xy)p(x, y) 

for x, y e D. For any x G D let ux as before denote the unitary 
corresponding to the delta-function at x, and let Ap9 = C*(D9 ft), be 
the enveloping C*-algebra of the algebra CC(D) for which the product is 
given by 

uxuy = ft(x,y)uxy, 

and similarly for Aa. (The involution is given by 

K)* = P(x> x)ux~l> 
and similarly for a.) Then we can define an isomorphism, <j>, from Ap to Aa 

by setting 

<K/)(*) = V(x)f(x) 

for / e CC(D) and x G D, and extending to the completions. The inverse 
of <£ is then determined as above by rj. 

Suppose now that F is a right A ̂ -module with inner-product ( , )^ with 
values in Ap, which is the completion of a right L1(D)-module V0 

for which 

(V0, V^ c L\D). 

Then we can make V into a right ^4a-module with inner-product ( , >a by 
setting 
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V ' / = V( î j / ) 

for v, w G F0 ,x G D , / G Ll(D). This process will preserve the property 
of being projective. 

4. Elementary projective modules and their Chern characters. Let 
D = Zw, which we will let play the role of the D of earlier sections. Let y 
be any bicharacter on D, and consider all the various embeddings of D as 
a lattice in M X M for various AT s such that y = fi where /? is the 
corresponding Heisenberg cocycle, together with the various finite direct 
sums of the corresponding projective right modules over C*(D, y). We 
obtain in this way a rather bewildering variety of projective modules. 
We thus need some method for classifying the modules so obtained. The 
trace on K0 is usually not adequate. However the Chern character intro­
duced by Connes [8], and already discussed by Elliott [17] for the algebras 
C*(D, y), turns out to be the ideal classification tool. We begin to develop 
its use in this section. But we will consider here only AT s of the special 
form Rp X Zq with 2p + q = n. (We will call the corresponding pro­
jective modules elementary projective modules.) Since in this case 
M = Rp X Tq

9 it turns out to be unnecessary to consider the more 
general form R^ X Zk X Tm. We will defer until Section 5 treatment of 
the case in which M contains a finite subgroup. 

We will not need the more general version of the Chern character which 
Connes has developed in [11, 12]. The version in [8], based on actions of 
Lie groups, suffices. The action which we will employ is the dual action 
a of Tn on C*(D, y). Following [8], the corresponding Chern character 
will then have its values in the cohomology group H^(Tn). But since 
Tn is commutative, H%(Tn) can be identified with the exterior algebra 
AL*, where L denotes the Lie algebra of Tn and L* denotes its dual 
vector-space. 

We identify L with R" in the evident way, and denote its standard basis 
by El9 . . . , En. We then denote the dual basis for L* by El9 . . . , En. The 
standard basis and its dual determine the orientations and volume 
elements on L and L* which we will use. 

We will identify D with the lattice in L* generated by the dual basis 
{Et} of L*. This is very convenient, because ifx G D and if ux denotes the 
corresponding unitary in C*(D, y), then the derivation on C*(D, y) defined 
by any X e L by means of a is given on ux by 

X(ux) = 2iri(X, x)ux, 

where here ( , ) denotes the pairing between L and L*. To see this, recall 
that the one-parameter group ax in Tn defined by X acts on ux by 
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a?(ux) = e( (tX, x) )ux 

for / e R, where, as before, e is the function from R to T defined by 

e(t) = exp(2mt). 

One then just differentiates this formula. (Notice that y does not appear in 
the formula for the derivation corresponding to X.) 

Actually, we will never explicitly need the dual action of Tn in our 
formulas for the Chern character. Rather, in making calculations it will 
suffice to view the Chern character as measuring the interaction between 
a Lie algebra of derivations of an algebra and the projective modules 
over the algebra. See [32] for the case of commutative algebras. But, of 
course, the dual action of Tn is needed to ensure that everything works 
well once one completes to obtain the corresponding C*-algebra. 

Since D ( = Zn) is free, any bicharacter y on D can be lifted (not 
uniquely) to a bicharacter into the covering group of T, that is, into R. 
This can then be extended to a bilinear form on L* D Z>, which we denote 
for the moment by / . Thus for x, y e D we have 

y(x,y) = e(J(x9y)). 

Let 0 be twice the negative of the antisymmetric part of / , that is, for 
x,y G D, 

0(x,y) = -(J(x,y) -J(y,x)). 

If / and — 0/2 are viewed as R-valued cocycles on D, then they are 
cohomologous, because / + 0/2 will be the symmetric part of / , which is 
easily seen to be the coboundary of the R-valued function 

x H» J(x, x)/2 

on D. This implies that if we let o denote the skew 2-cocycle on D defined 
by 

o(x, y) = ê(0(x, y)/2), 

then y and a are cohomologous. Since various formulas will be simpler if 
we use skew bicharacters, we will work primarily with a and 0. 

Our notation is chosen so that our 0 is the negative of the 0 used by 
Elliott. This choice is necessary in order for Elliott's other formulas to be 
correct. We will discuss this matter further at the end of this section. We 
note that aside from this, our earlier p becomes the same as Elliott's, while 
our y is Elliott's a. In particular, 

p(x,y) = e(0(x,y)) 

and 

uxu = p(x9y)uux 
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for x, y e D. Note that a2 = p. 
Elliott [17] shows that the Chern character is very conveniently 

expressed in terms of 0. For this reason we will find it notationally simpler 
to denote C*(D, a) by Ae instead of the Ap which Elliott uses, even though 
many different 0's give the same p and so isomorphic algebras. In the same 
way we will write Se for S(D, a). Since 0 is a skew bilinear form on L*, we 
can view it as an element of A L. It will be very useful to do this. 

As indicated earlier, in this section we will take M to be of the form 
Rp X Zq, so that G will be of the form R2p X Zq X Tq. Since D is free, 
any homomorphism from D into G lifts to a homomorphism into the 
covering group R2p X Zq X Rq of G, and so into R2p X R2q, where we take 
Zq c R^. But such a homomorphism will then extend to a linear map from 
L* into R2/? X R2^. It will be most convenient to view matters at this level. 
To help in understanding various formulas, it will be useful to distinguish 
between R and its dual vector space, which we denote by R*. Then R*m 

will denote the dual of Rm. For any m we will let el9. . . , em denote the 
standard basis for Rm, and then ? l 5 . . . , ~ëm will denote the dual basis for 
R*m. In view of the fact that R2p X R2q comes from M X M, and that 
we are considering mappings from L*, it will be useful to view R ^ + q 

more specifically as R^"^ X R*^+^ an(^ t o denote it by H*. However, we 
will order the basis for H* by el9 ~ëx, e2, ë2, . . . , with corresponding 
orientation and volume element. We will frequently view H* as 

H* =RP X Rq X R*p X R*q, 

and denote its dual vector space by / / , writing 

H = R*p X R*q X Rp X Rq. 

The dual basis for H will be denoted ? l5 ex, ë2>
 e2> • • • m t n a t o rder. This 

coincidence of notation should not cause difficulties, and has certain 
advantages. (We could, in fact, identify H with //*.) 

It should be clear that the Heisenberg cocycle fi on M X M comes 
from the usual pairing of W+q with R*P+". Specifically, if x = (m, s) and 
y = («, i), where m, n G R P X 2? and where s and î are the images in 
R*p x Tg oîs and t in R*p X R*^ then 

P(x, y) = e( (m, t) ). 

Just as we prefer to work with a and 0, we prefer here to work with the 
skew bicharacter /?/?*, which is given by 

0j8*(x, y) = e( (m, t) - (n, s) ). 

The alternating bilinear form inside parentheses on the right, defined on 
H*, is easily seen to be the one given by the standard 2-form 

co = ^ A ex + ?2 A e2 + . . . + ? + A e + 
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in A H. If the Heisenberg cocycle /? on G is to pull back to y on D, it is 
clear that co should pull back to — 0. 

We have seen that the embedding of D into G is determined by a linear 
mapping of L* into //*, and we now see that this linear mapping must 
pull co back into — 0. But it must also result in embedding D as a lat­
tice in H*. 

4.1 Definition. By an embedding map we mean a linear map Tfrom L* to 
//* such that: 

(1) T(D) c Rp X Zq X R*^ X R*4. 
(2) T(D) is a lattice in Rp X Rq X R*^ X (R**/Z*). 
(3) The form co on //* is pulled back by T to the form — 0 on L*, that is, 

if r * denotes the adjoint of T, viewed as a map from H to L, then 

(A2r*x<o) = - o . 
The integer /? will be called the height of T. 

Let //* denote Rp X R*7 X R*^, and let f denote T composed with the 
evident projection of H* onto H* (along ?„+ 1 , . . . , ~ëp + X Since R*^/Z^ is 
compact, and H* has the same dimension as L*, it is evident that 
condition (2) above is equivalent to 

(2r) T is invertible (from L* to H*). 

We remark that if 6 is sufficiently degenerate (e.g. 0 = 0) then, because 
of condition (3), there may be few embedding maps. But we will see in the 
next section that this does not matter (because 8 is not unique, and can be 
chosen to be non-degenerate). 

Let S(M) be, as before, the Schwartz space on M = Rp X Zq. Given an 
embedding map T, we wish to equip S(M), as before, with the structure of 
a right Sprigged module. To do this we must take account of our change 
to skew bicharacters, and of the change from /? to /? which occurs when 
using right modules. So, let Tbe an embedding map, and let T = (T\ T") 
be the decomposition of Tinto its components going into RpJrq and R*^+^ 
respectively. Then we will actually embed D into M X M by composing 

xv-»(T'(x\ -T\x)) 
A 

with the mapping to M X M. The corresponding linear map from L* to 
H* then pulls co back to 4- 0. If we let y be the bicharacter on D such that y 
is the corresponding pull-back of the Heisenberg bicharacter ft, so that 

y(x,y) = e((T'(x),r'(y))) 

for x , j G D , it follows that yy* = p as desired. Thus the right action on 
S(M) as defined in Section 2 will be an action of S(D, y). According to the 
formula found somewhat after the proof of Proposition 2.9, this action is 
given, f o r / e S(M), x e D, and m G M, by 
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(fux)(m) = ( < / ) ( m ) = y(x, x){m_J){m) 

= e((m- T{x), T"(x) > ) / (m - T'(x) ). 

This action extends to S(D, y) in the evident way. We wish to change this 
to an action of S(D, a), using the method described at the end of Section 3. 
To do this, define the function -q on D by 

r,(x) = ?( (T'(x), T"{x) >/2). 

Then a straight-forward calculation shows that 

ï(x)ï(yyn(x + y)y(x, y) = o(x, y). 

This is exactly the coboundary formula found near the end of Section 3, 
except that /? has been replaced by y. We can thus use the discussion there 
to find the formulas for the corresponding right action of S(D, a). 
Specifically, the new action is defined, for / e S(M) and i e D, by 

(f°ux)(m) = (f(jj(x)ux))(m) 

= rj(x)e( (m - T\x\ V\x) > )f(m - T\x) ) 

= e((m- T'(x)/2, T"(x) > )f(m - T\x) ). 

This action extends to S(D, o) in the evident way. We will not need y from 
now on, so we will denote this new action just by fux. 

We have arrived at the formula for this action by a fairly long path, so it 
is worth commenting here that for the next part of our development we do 
not explicitly need the earlier steps, as it is easy to verify directly that 
under the above action S(M) becomes a right S(D, a)-module. We could 
derive the formula for the corresponding inner-product with values in 
S(D, a), but we will not have explicit need for it either. But we do need 
later to keep in mind the earlier steps, as they ensure that S(M) will be a 
projective module that relates well to the C*-completions (via the 
inner-product), and they describe its endomorphism algebra. We summar­
ize much of the development in this section so far by: 

4.2 Definition. Let 0 G A2L. Define a skew cocycle, a, on the standard 
lattice, D, in L* by 

o(x,y) = e(P(x,y)/2). 

Denote by Se the *-algebra S(D, o). For any embedding map T of L* into 
H*9 define a right action of S0 on S(M\ where M = Rp X Zq, by 

(fux)(m) = e((m- 7"(x)/2, T"(x) > )f(m - V(x) ), 

where T = (T\ T") for H* = Rp + q X R*/>+?. Then S(M) becomes a 
projective right ^-module, which we denote by VT. We will also let VT 
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denote the completion of S(M) as a projective right A ̂ -module, where 
Ae = C*(D, a). The modules of the form VT, over either Se or Ae, will be 
called elementary modules. 

We remark that among the elementary modules are the free modules. 
These will correspond to embedding maps of height zero, that is, where 
p = 0 and q = n. This can be checked directly, and should be clear by the 
end of the proof of Theorem 4.5. 

Let us now determine the image under the canonical normalized trace, 
T, on Ae of the element of K0(A0) which is represented by VT. We recall 
from Sections 2 and 3 that we must normalize Haar measures 

A 

appropriately. Specifically, on G = M X M we must take Plancherel 
Haar measures. For the present situation we can do this by taking 
counting measure on Zq, the Haar measure of mass 1 on (R/Z)^, and 
Lebesgue measure on R p . (This is a product of Plancherel measures 
because our pairing of Rp with R*p is in terms of e(t) = exp(27nï), which 
has the factor 2m built in.) We notice that the corresponding measure on 
H* is just Lebesgue measure, which is just the measure coming from the 
volume element associated with the standard basis. If we let det(T) denote 
the determinant of T, defined to be the factor by which T changes the 
volume element for the standard basis of L* to that for H*9 then it is clear 
that for the above normalizations the covolume of D in G is just |det(T) |. 
In view of Theorem 3.4, we obtain: 

4.3 PROPOSITION. Let T be an embedding map, with V the corresponding 
projective module. Let r denote the canonical normalized trace on A#, viewed 
as a functional on K0(Ag). Then 

T([VT]) = |det(f) | . 

For future purposes, we recall that this means that if / denotes the 
identity operator on VT, and if T' denotes the non-normalized trace 
on End^(F r ) corresponding to T, as described just after Proposition 
3.2, then 

T ' ( / ) = |det(f) |. 

While the trace is a complete isomorphism invariant for projective 
modules over the irrational rotation C*-algebras [49], in general (and 
already for the rational rotation C*-algebras), it is not even faithful on K0. 
However, as pointed out by Elliott [17], the Chern character of Connes is 
always a complete invariant for the elements of KO(A0). Thus it is crucial 
for us to calculate the Chern character of the V 's. To do this, we must 
define on VT a connection, V, with respect to the action of the Lie algebra 
L on Ae. As domain for this connection we take 

S(M) = S(RP X Zq). 
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Thus we are looking for a mapping, V, of L into the linear maps on S(M) 
such that for any X e L, / e S(M) and x <= A 

Vx(fux) = ( V X ( / ) K + / ( * K ) ) -

(We use here the density in S^ of the span of the uxs, and the continuity of 
all our operations.) It is natural to seek V as a linear combination of three 
types of operators on S(M), defined for (r, a) (E Rp X Zq, s G R * P , 
t G R*q, u G Rp, and / G S(M) by 

(Qlf)(r, a) = 2m(r, s)f(r, a), 

(QJfXr, a) = 2m(a, t)f(r, a\ 

(Qlf)(r, a) = 2 UjQf/drjXr, a). 

Straight-forward calculations show that the commutation relations among 
these types of operators are: 

[Ql, Q\\ = 2m(u, s)I 

IQl Q)\ = 0 = [Ql Ql], 

where I denotes the identity operator on S(M). Notice also that for any 
fixed j , the various QJ all commute among themselves for different 
parameter values. We also need the commutation relations of the QJ with 
the operators corresponding to elements of D. Specifically, for x e D and 
for ux the corresponding element of Sg9 let Wx denote the operator on 
S(M) consisting of right multiplication by ux. That is, 

(Wxf)(r, a) = (fux)(r9 a) 

= e( < (r, a) - T(x)/2, T\x) > ) / ( (r, a) - T\x) ). 

To conveniently express the commutation relations, we must let 
T = (7], T2, T3, T4) denote the decomposition of T into its four compo­
nents in 

H* = Rp X Rq X R*p X R*q. 

Then straight-forward calculations show that 

[Ql Wx] = 2*i(Tx(x), s)Wx, 

[Ql Wx] = 2m(T2(x), t)Wx, 

[Ql Wx] = 2-ni(u,T,(x))Wx. 

Now for z G H = R*'' X R*9 X R^, with z = (s, t, u), let us define an 
operator Q, on S(M) by 

Qz = Ql + Q] + Ql 

From the commutation relations above we immediately see that for x e D 
we have 

https://doi.org/10.4153/CJM-1988-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-012-9


PROJECTIVE MODULES 291 

[Qz, Wx] = 2m(z, T{x))Wx, 

where now ( , ) denotes the evident pairing between H and H*. 
If we rewrite the defining equation for a connection in terms of the 

commutator with Wx, we obtain 

[V*, Wx)f = fX(ux). 

But the right hand side, as seen earlier, is 

2m(X, x)Wj = 2m( ( f - ' ) * ( * ) , f(x) )Wxf. 

Comparing this with the commutator of Qz with Wx, we see that we must 
define V by 

^X = Q(T~])*(X)-

To calculate the Chern character of V , we must find the curvature, 
£2, of V. To ease the notation, we let S = (T - 1 )* , which goes from L to 
H = R*p X R*q X Rp, and we let S = (S,, S2, S3) be the correspond­
ing decomposition of S. Then, since L is commutative, Œ is defined for 
I J e L b y 

tt(Z, Y) = [V* Vy] = [QS(X)9 QS(Y)] 

= IQs^x)' Qs3(Y)] + [Qs3(xy Qs^Y)] 

= 2m( (S3(X\ 5,(7) > - (S3(Y)9 S,(X) > ) / 

= 2m 2 ((S(X),êj)(S(Y)9ej) 
7 = 1 

- (S(Y),ëjXS(X),ej))I 

= 2m 2 ( ( ^ f ' ^ o x y , f"1^.)) 

- {Y,T-xÇëj))(X,T-\ej)))L 

This suggests that we define Y e L* by 

_ _ f " 1 ^ . ) f o r l g y s p 

' ~ f~\ej_p) îorp + \^j^n(=2p + q), 

so that {Y} is a basis for L*. In terms of this notation we see that 

Ï2(AT, Y) = 2T7//X A 7 , 2 f A J/+J7-

That is, 

Q = 2 ^ 2 YjA YJ+pY 
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(In case p = 0, sums such as this, here and later, are to be taken to have 
value 0. Here this corresponds to the fact that on free modules nice 
connections should have zero curvature.) Shortly we will transform this 
formula for the curvature so as to make explicit the role of 0. But recall 
that the Chern character is defined in terms of the various exterior powers, 
Œ , of Q. The above formula is convenient for computing these exterior 
powers, so we carry out this computation first. Note that for différentes 
the terms ^ A l - + 1 commute among themselves (for the exterior product), 
and that the square of any such term is 0. Then if we let P(k) denote the 
collection of subsets of {1, . . . , / ? } of cardinality k, we easily see that 

Q* = (2*i)**!(2{ n ?j A YJ+p:M e P(*)})/ . 

Let { Yj} denote the basis for L which is dual to the basis { Y-} for L*. Then 
for arbitrary elements Xx, . . . , Xlk of L and any M e P(k) we have 

(*, A . . . A X2k, I l Yj A YJ+p 

= ( I , A . . . A 4 A ( I I ^ A YJA HYJA Yj+p) 
P 

n 
We now set 

p 

/ = d I I Yj A Yj+ 
y = l 

for d = |det(T) | (where Up = 0 we set JJL1 = d). We will find that /xy and 6 
together determine the Chern character. Notice that \iT is a 2/?-form, where 
p is the height of T. Anyway, in terms of this new notation the above 
expression becomes 

d-'txt A . . . A Z 2 , A ( ] I ^ A YjAp 

Thus 

y*M 

Qk(X{ A . . . A X2k) = (2m)kk\d~l{Xl A . . . A X2k 

A 2 ( I l Yj A Y^p.M G P(k)V Ai. 

We now transform this to make explicit the role of 0. Recall that {Y} 
was defined to be the image under T~l of the basis 

el9...9ep, ex,...,ep+q 
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for H*. Then the dual basis {Yj} will be the image under T* of the 
dual basis 

ex, ...9ep9ël9... 9~ep+q 

for H. By condition 3 in the definition of an embedding map, T* carries 
co to —0. In terms of the basis {Y-}9 this says that 

p + q 

0 = -(A2r*)(co) = - 2 T*(ê:) A T*(e.) 

where Z- = T*(e +) for 7 = 1,. . . , w. That is, 

y = i y = 1 

Let C^ denote anything with terms which involve at least one Y for 
2p + 1 ^ 7 = n. Then 

0 ' - * = (/> - k)\ S f l l ^ A Y+ j:N e PQ> - k)\ + C 
V G V / 

= Q> - * ) ! d l l ^ A Yp+j:M e i>(fc)l + C 

From the definition of jur we see that (Cp, jur> = 0, so that from the 
earlier formula for fi we obtain 

Qk(Xi A . . . A X2k) 

= (2m)kk\((p - k)\)'ld~\xl A . . . A X2k A 0*"-', / i 7 ) / . 

In particular, we find that for I , 7 e I we have 

Q(X, Y) = 2m((p - \)\y]d~\x A Y A 0P'\ ju7)/. 

Now Connes [8] defines the Chern character, ch, to be 

ch^CY, A . . . A Xlk) = (2iri)-*(*0~ V(8*(A-, A . . . A X2,) ), 

where T' is the non-normalized trace on End(F r) corresponding to T. 
Recalling that 

T\I) = |det(f) I = d 

by the comment just after Proposition 4.3, we obtain from above 

c h ^ A . . . A I 2 ^ ( I , A . . . A ^ A 0p~k
9 ixT)/(p - k)\ 

for k ^ 1. By definition 
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cho = / ( / ) = |det T\=d 

= d(YlAYp+vA...AYpAY2p?lA%+lA...AYpAY2p) 

= (0p^T)/pl 

Thus the formula for ch^ given above for k = 1 is also valid for k = 0. 
Notice, in particular, that (0P, ixF) > 0, and also that ch ¥= 0, while 
ch^ = 0 for k > /?, where p is the height of T. If we let J denote 
contraction, as done in [5], and if exp(0) is defined using the usual power 
series with the exterior product as done in [17], then it is evident that the 
Chern character can be written succinctly as 

ch(K r) = exp(0) J nT. 

Let us now investigate the nature of ju . Note first that since T(D) Q 
Rp X Zq X R*p, we have 

(êj9T(x)) G Z for/7 + 1 g j ^p + q, 

for any x e D. But each Et is in Z), and 

(ëj, T(E,) > = (f*(ëy), £,) = < ^ + J , £,.>. 

It follows that Yj is integral for 2p + I ^ j ^ n. Let e denote the sign of 
det(T). Now because { Y] is the image under T~l of the standard basis for 
H*, and because of the orientation of that basis, we have 

ed~l = de t ( f _ 1 ) = (Ex A . . . A En, 

Yp+xAYxA...AY2pAYpAY2p + xA...A Yn). 

Thus 

j ^ A Ylp+X A . . . A F , 

= d(- \y?p+x A Yx A . . . A Y2p A Yp A Y2p+l A . . . A ?„ 

= e ( - i y £ , A . . . A £ „ . 

Then if iV is any subset of { 1 , . . . , « } of cardinality 2p, and if EN is the 
corresponding basis element for /KPL coming from the basis {Et} of L, 
we have 

(EN, f) = (EN A Y2p+l A .. . A Yn, ,x< A Y2p+l A .. . A Y„) 

= c ( - \Y(EN AY2p+xA...AY„,ExA...A E„), 

which is an integer because Y2p+\, . . . , Yn are integral as seen above. It 
follows that JU is integral. Now by definition \x is decomposable over R. 
We show that, in fact, JU is decomposable over Z, that is: 

4.4 LEMMA. There is an integral basis {F} for D c L*9 and an integer m, 
such that 
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/ = mFx A . . . A F2p. 

Proof. Let C denote the subgroup of Zn c L spanned by Y2+1, . . . , Yn. 
By Theorem 5 on page 393 of [27], there is a basis {Fj} for Zn and there are 
integers kx, . . . , k such that kxF2 +x, . . . , &J^ is a basis for C. In 
particular, 

V i A - - - A y« = <*2, + i A . . . A F „ 
for some integer c. Let {Fj} denote the dual basis for L*. For any subset TV 
of cardinality 2p in {1, . . . , n) let FN denote the corresponding basis 
element for A PL*. Then there are real numbers aN such that 

VT = 2 aNFN 

as N ranges over all possible such subsets. For such N, let FN denote the 
corresponding basis element for A2pL. Then 

< iV , /> = (FN A Y2p+X A . . . A Yn,v
T A Y2p+i A ... A Yn) 

= c(FN A F2p+X A .. . A F„,f A Y2p+X A ... A Y„), 

from which it is clear that (FN, iiT) = 0 unless Â  = {1, . . . , 2p } . It follows 
that all the aN = 0 unless this condition is met, so that 

\iT = mfx A . . . A F2p 

for some number m. But m e Z by the integrality of ji . 

We have thus shown all but the existence part of: 

4.5 THEOREM. Let 0 e A L be given. For each embedding map T of 
heightp there is a decomposable element /x of /\pZn c APL* such that the 
Chern character of the projective Ag-module V is given by 

ch(J/ r) = exp(fl) J /A7, 

and the curvature, for an appropriate connection, is given by 

Q(X, Y) = 2<iTi((p - l)!)_ 1 |det(f) \~l(X A Y A 0P~\ /x7)/. 

In particular, (0P, \iT) > 0. 
Conversely, for any decomposable JU in tëpZn such that (Qp, /x> > 0, there 

exists an embedding map T of height p such that for some positive integer m 
the sum of m copies of VT has Chern character and curvature as given above 
with ju, = mp . 

Proof of existence. By assumption there is an oriented basis {Fj} for 
IT c L* such that 

/x = meFx AFp+xA...AFpAF2p 

where m is a positive integer and e = z t l . Let v = fx/m, so that v also 
satisfies the hypotheses of the theorem. We will produce an embedding 
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map T such that \xT = v. Then m copies of VT will have the desired Chern 
character and curvature. Let {F} denote the dual basis for L, and let W 
denote the linear span of F{, . . . , F2 . Since (6P, v) ¥= 0, we can find a new 
basis {Yj} for W, not necessarily integral, such that if we extend it to 
a basis for L by Y2p+J

 = ^ip+j ^or' J = 1, . . . , #, then 

« = i K A y,+y + £ zy A y2p+/ 
7 = 1 y = l 

for certain Z- e L. Define 7*: / / —> L by 

for 1 èj^p 

-j-p for/? + 1 ^j^p+q 

T*{ëj) = Yp+J îorl^j^p + q. 

T*(e,) (I 
Then 

(A2r*)(co) = 2 r*(ë7) A r*(e7) 

= 2 ç+v A Yj + 2 y^+/ A z,. 
./'=i y '= 1 

= - 0 . 

Let 7" be the adjoint of 71*, so T goes from L* to //*. The above calculation 
shows that T satisfies condition 3 in Definition 4.1 of an embedding map. 
Let {Yj} be the dual basis to {Yj} for L*. Note that Y2p+J = F2p+J for 
1 ^ j ^ q, while the span of Yj, . . . , Y2p is the same as the span of 
F b . . . , F2p. Then for fixed A: 

/ y ?) = f < r * ( e A f*>_= <er TW>_ torl^j^p 

W ' A7 ^ ( ^ J . ) = ( ? / ^ r ( y A ) > f o r / J + l S j g „ . 

From this it is clear that 
_ = [T~\ek) fo r i ^ k ^p 

In particular, 

^(^p+y) = ^ + / f ° r ] = j = 4> 

while f ( j p for 1 ^ y ' ^ 2/? is contained in the span of f(Y,), . . . , T(Y2p\ 
which is the span of ?j, ex, . . . , ? , e . It follows that T satisfies condition 1 
in the definition of an embedding map. It is also clear from the above that 
T satisfies condition 2', and hence condition 2. Thus T is an embedding 
map for 0. As before, with d = |det(T) |, we have 
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/ = d 2 Yj A i ; + / r 

But by the definition of det(r) we have 

det(f) i J A f f + l A . . . A f / f 2 p A . . . A 7 „ 

= F, A . . . A Fn, 

so that, remembering that Y = E for j ^ 2p + 1, we obtain 

det(f) I l Yj A l j + / , = Fx A . . . A F2p. 

Thus jur agrees with v up to a sign. But (0P, jixr> > 0, since up to a positive 
constant this is ch0(F ), while (0P, v) > 0 by assumption. Hence the sign 
must be positive, and /xr = v. Thus VT has curvature and Chern character 
as stated in the theorem, except using v instead of it. Since the Chern 
character is additive on direct sums of modules, the sum of m copies of V 
will have the desired curvature and Chern character for ju. 

Actually, if 2p < n, then we can alter the above definition of T by 
setting 

r * ( ^ + i ) = ™~lZx, T*(ep + X) = mY2p+], 

and then we will still have A2!T*(<o) = — 0, but the determinant of T will 
be multiplied by m, so that \iT = /A. However if 2/7 = n, there does not 
seem to be enough room for such a maneuver. 

We remark that if /A e A°L*, so that/? = 0, then it is easily seen that the 
V constructed above is free of rank JU. 

Let us discuss now the reason for defining 6 by 

p(x,y) = e(0(x,y)\ 

rather than by the e(6(x, y)) which Elliott uses in [17]. Elliott's formulas 
for the Chern character are not quite correct as stated, but need to have 0 
replaced everywhere by —0, or to have changed the basic commutation 
relation. (See his comment in the second paragraph of [16].) The source of 
this problem occurs in the middle of page 180, where Elliott appeals to 
Connes' calculation on page 601 of [8]. The problem is that Connes' 
calculation is off by a sign. To be more precise, if for X = e(0o) with 
0O G (0, 1) one uses the commutation relation UXU2 = XU2UX, as does 
Connes on page 601, then chj for the module with trace 0O is — 1; while if 
one uses the relation UXU2 = XU2UX, as does Connes on page 602, then 
cri! for this module is + 1 . As Elliott explains on page 178 of [17], the 
Chern character, unlike the trace on K0, is not intrinsic to the C*-algebra, 
but depends on the formulation of the dual group action. In particular, it 
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is easily seen to depend on the orientation of the Lie algebra. The 
difference in commutation relations above can be viewed as an implicit 
change in this orientation, in that the second version can be rewritten as 
U2Ul = XU{U2. 

5. Tensor products with finite-dimensional representations. In this 
section we, in effect, generalize the results of the previous section to the 
case in which, as in Proposition 3.6, the group M has a finite group as a 
factor. But we do this by considering a slightly more general case, which 
involves tensoring projective modules by the spaces of finite dimensional 
cocycle representations. 

Suppose that, much as in Proposition 3.6, M = N X F where 
N = R^ X Zq and Fis a finite commutative group. Because F i s finite, it 
is clear that S(M) = S(N) 0 S(F), where S(F) is just the space of 
complex-valued functions on F, and the tensor product is just an algebraic 

A 

one. The Heisenberg cocycle on M X M will clearly be the product of 
that from N and that from F, and the Heisenberg representation will 
decompose correspondingly. If T is a homomorphism of D = Zn into 
M X M, then it is clear that T is an embedding with cocompact range if 

A 

and only if its projection into N X TV is. In this case the completion of 
S(N) will form an elementary projective module for the pull-back of the 
Heisenberg cocycle from N, while S(F) will be, under the projection of T 
into F X F, just the vector space of a finite dimensional cocycle 
representation of D. (We avoid the terminology "projective representa­
tion" for evident reasons.) The cocycle for M is just the product of those 
for N and F, exactly as happens when forming the inner tensor product of 
cocycle (i.e., "multiplier") unitary representations [29]. This suggests that 
instead of concerning ourselves with the effects of all the possible finite 
groups F and all the possible homomorphisms of D into F X F which 
can be used, we simply consider the process of tensoring with all possible 
finite dimensional cocycle representations of D. We proceed to explore 
this process in this section. A hint of the existence of such a process can be 
found in the construction near the top of page 602 of [8]. In anticipation 
that the process may be useful for other groups, we will for a while 
consider arbitrary discrete groups. 

I should mention at this point that the statement of the second 
proposition of my announcement [50] concerning this tensoring process is 
not quite correct, in that it ignores what happens with the norms involved. 
But we will see that it is correct at the level of the various dense 
subalgebras we use. To handle the norms, we proceed by defining a 
suitable bimodule by which we can "induce" projective modules. 

Let D be any discrete group. Given a cocycle a on D, let Aa = C*(D, a), 
and let Ca be the dense *-subalgebra CC(D9 o) of Aa. Let y be another 
cocycle on D, and let S be the Hilbert space of a finite dimensional right 
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unitary y-representation of D. Define a right cocycle action of D on 
Ca ® E by 

(f®£)x = (fx)®(ix\ x e D. 

Note that we use module notation for the action of D on E and Ca. 
Caution must be exercised here because cocycles are involved, so that, for 
example, (i;x)y = y(x, y)!~(xy) instead of = i-(xy). But if this is kept in 
mind, it is easily seen that the above right action of D has cocycle ay. We 
need to extend this action to an action of Aay on a suitable completion. 
For this we need an inner-product with values in Cay. Since we are using 
right actions, it is convenient to choose the ordinary inner-product on E to 
be linear in the second variable. We recall that the inner-product on Ca 

with values in Ca is defined by 

(f, gX(x) = (/* * g)(x). 

Then on C0 ® E, as a right Cay-module for the action defined above, we 
define an inner-product with values in Cay by 

</ ® i, g ® V)oy(x) = a g)0(x)(èx, „>. 
We defer momentarily verification of its properties, and notice instead 
that the left action of Ca on Ca ® E coming from the action on the first 
factor is "unitary" for this inner-product, that is, for y e D 

(y(f ® 0, y(g ® V) )oy(x) = (uyf, uyg)a(x)(èx, 7,) 

= </, gUx)(ix, v) 

= (f®tg®V)ay(x). 

This means that when we form the completion of Ca ® S, the left action of 
Ca will extend to an action of Aa. 

We now argue along the same lines that one uses when showing that 
left-regular representations of groups absorb all other representations 
under inner tensor products. Let E0 denote E but with the trivial 
representation of the group D. Then Cay 0 S0 is a right Cay-module by 
action on the first factor, and has an evident Cay-valued inner-product. 
Define a bijection, / , from Cay ® E0 onto Cc ® E by 

J(ux ®£) = ux® &. 

It is easily checked that / is a Cay-module homomorphism. We verify that 
it preserves the inner-products. For x, y, z e D and £, TJ e E we have 

(J(ux ® & J(uy ® v) >ay(^) = <ux ® èx, uy ® Vy)oy(z) 

= « * uy)(zX (&)z9 ny>, 

which is non-zero only when z = x~ y, so we can substitute this 
expression to obtain 
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= (u* * uy)(z)( tix)(x ]y), w) 

= (u* * uy){z)y{x, x~ly)(&, t]y) 

= (Ux ®£,Uy® T?>ay(z), 

where the last inner-product is that on Cay ® 2 0 . Since it is clear that the 
inner-product on Cay ® £Q is indeed an inner-product, it follows that that 
on Ca ® H is one also. It is now also clear that the completion, P~, of 
Ca ® S for this inner-product is isomorphic to (A ) m , where m is the di­
mension of S, and thus is a projective (free) right ylay-module. Since we 
had checked earlier that the left action of D on Ca ® S is "unitary" for the 
inner-product, it is clear that this left action extends to an action on P~, 
and so gives a *-homomorphism of Aa into the C*-algebra End^ (P~). 
(We remark that we could have defined P~ as just the completion of 
Coy ® S0, that is as (Aay)

m, but then the left action of Aa would have 
had a somewhat more complicated, unmotivated, expression.) Now 
End^ (P~) is isomorphic to Mm(Aay), the algebra of m X m matrices 
over Aoy. Thus one has an isomorphism of K0(Aay) with K0 of this 
endomorphism algebra, which is order-preserving but in general does not 
preserve the order unit. The homomorphism of Aa into the endomorphism 
algebra is clearly unital, and so defines a corresponding homomorphism of 
AT0-groups which is order-preserving and preserves order-units, but need 
not be an isomorphism. Composing, we obtain an order-preserving 
homomorphism from K0(Aa) into K0(Aoy). At the level of projective 
modules this homomorphism just comes by "inducing". That is, given a 
projective right y4a-module V, we let 

HK = V®AP* 

(where this is the purely algebraic tensor product). As usual, ~ V is seen to 
be projective by first noticing that this is clear if V is (finitely generated) 
free, and then using the fact that tensor products preserve direct sums. We 
summarize the above by: 

5.1 PROPOSITION. Let D be a discrete group, let o be a cocycle on D, and 
let A0 = C*(D, o). Let S be the Hilbert space for a finite-dimensional 
unitary right y-representation of D, where y is a cocycle on D. Then 'E 
determines a functor from the category of projective A0-modules to the 
category of projective A^y-modules. This functor consists of tensoring with 
the Aa- Aay-bimodule P~ which is the completion of CC(D, o) ® S, with the 
left action of Aa coming from the evident action of D on the first factor, with 
the right action defined by (f ® £)x = (fx) ® (£x), and with Aay-valued 
inner-product defined by 

https://doi.org/10.4153/CJM-1988-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-012-9


PROJECTIVE MODULES 301 

(f ® & g ® T,>0y(x) = </, g>a(x)<^, T|>. 

yl similar situation prevails for the reduced C*-algebras. 

Proof. The only assertion we have not yet verified is the one which 
concerns the reduced C*-algebras. For this we need the following facts 
which should have been made explicit in [42], and whose proofs are 
routine. 

5.2 LEMMA. Let B be a C*-algebra and let X be a right B-module with 
definite B-valued inner-product. Let L(X) be the pre-C*-algebra of 
"bounded" operators on X. Let Y be the Hilbert space of a faithful 
representation of B. Then the norm of any element ofL(X) is the same as its 
norm as an operator on the Hilbert space obtained by inducing Y via X, i.e., 
on X ® 5 Y completed in the usual way. 

5.3 COROLLARY. With X and B as above, let p be a faithful state of B. 
Then the norm of an element ofL(X) is the same as its norm as an operator 
on the Hilbert space obtained by completing Xfor the ordinary inner-product 
defined by 

(x, x')p = P( (x9 x')B). 

We continue the proof of Proposition 5.1. The reduced algebra 
C*(D, ay) comes from the tracial state on CC(D, ay) consisting of 
evaluating functions at the identity element, e, of D. Since the 
corresponding representation is faithful for C*(D, a), we can apply 
Corollary 5.3. But the corresponding ordinary inner-product on CC(D, a) 
® 2 is given by 

(f®H,g®ri) = (f®H,g® V)oy(e) = (f, g)a(eXi rj>. 

The representation of CC(D, a) on the left is thus equivalent to m copies of 
the left regular representation, where m is the dimension of 2, and so does 
give a representation of C*(D, a) on the completion of CC(D, a) ® 2. The 
rest of the proof works as for the full C*-algebras. 

In order to compute Chern characters we really need the above set-up at 
the level of Schwartz spaces, but, of course, our problem is that we do not 
know how to define S(D) for an arbitrary discrete group. Thus we 
specialize now to the case in which D == Zn (where the full and reduced 
C*-algebras coincide). We will let Sa = S(D, a) and similarly for ay. Let 
Q~ = Sa ® 2 . Then, with exactly the same formulas as before, Q~ 
becomes a left-Sa right-Say-bimodule with Say-valued inner-product, 
which as a right ^ - m o d u l e is isomorphic to (Say)

m. The only detail 
which needs a moment's thought is that the range of the inner-product lies 
in S , but this follows immediately from the fact that the pointwise 
product of a Schwartz function on D by a bounded function is again a 
Schwartz function. 
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Thus QA defines a functor from the projective right modules over Sa to 
those over Say. Since we have not yet completed, this functor takes an 
especially simple form (as is also true when working with the Ca and Coy 

above), namely 

*V = V ®Sa Q~ = V ®So (Sa 0 2) = V 0 H, 

with the right action defined by 

(v 0 Qx = (vx) 0 (&t) 

and with the ^ - v a l u e d inner-product defined by 

(v 0 £, w 0 riXyix) = <v, w\(x)(èx, ij> 

(the point being that the right-hand side is not so readily understood when 
working with the completion). 

We let the Lie algebra L of Tn act as a Lie algebra of derivations on 
both Sa and Say as in the previous section. 

5.4 PROPOSITION. Let V be a projective right Sa-module, and let V be a 
connection on V for the action of L on Sa. Let 2 be the Hilbert space of 
a finite-dimensional unitary right y-representation ofD. Define V on the right 
Say-module V 0 Z by 

V(v 0 ^ = (Vv) 0 £. 

Then V is a connection. Let Q, be the curvature ofV. Then the curvature, Œ, of 
V is given by 

Û(X, Y) = Q(X, Y) 0 U e Ende (V ® 2), 

where I? is the identity operator on S. 

Proof For X e L, v 0 £ e F ® S , and x e D w e have 

Vx( (v 0 Qux) = Vx( (vx) 0 (fx) ) = (Vx(vx) ) 0 £x 

= ((Vx(v))ux + v(X(ux)))®& 

= (Vx(v) 0 i)ux + 2T7-/(X, * > ( V M * ) 0 £x 

= (Vx(v 0 £) K + 2T7/(X, *>(V ® € K 

= (V,(v 0 0 )ux 4- (v 0 £)(X(>J ), 

so that V is indeed a connection. (Here, our notation is ambiguous as to 
when ux is in Sa or Soy.) Note that we have used strongly the special form 
of the action of L on S0 and Soy. The asserted form of fi follows from a 
straight-forward calculation. 

The Chern characters of V and F 0 H are defined in terms of the 
canonical normalized traces r° and ray on Sa and Soy respectively, and of 
the corresponding traces on the endomorphism algebras. We must deter-
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mine how these traces are related. Assume, as before, that V is equipped 
with an ^-valued inner-product. Then for v, w G V and £, 77 G H 
we have 

T°\ <v 0 £, w 0 V\y) = (v 0 £, w 0 7)>a7(e) 

= <V, W » ) ( ^ , Tl> = T°( <V, W>a)<£, T,>. 

Let £ a = End5 (F), which is where 2 takes its values, and let 

Eay = EndsJV ® 2). 

Then on F we have the jE"a-valued inner-product defined by 

(v, w)E(y') = v(w, v'\ 

for v' G V. In terms of this inner-product there is, as discussed before 
Proposition 3.3, the canonically associated (unnormalized) trace on Ea, 
which we again denote by ra, defined by 

A <V, *)E) = A (W, V>a). 

(So we let the context determine the intended domain of Ta, instead of 
decorating it with V.) In the same way there is the canonically associated 
trace ray on E . 

5.5 LEMMA. Let V and H be as above. Let Ea and E be the 
endomorphism algebras of Vand F 0 H , with canonical traces, r° and Tay as 
above. Let T G Ea, so that T 0 U G Eay. Then 

ray(T 0 7H) = T°(T) dim(H). 

Proof. It suffices to verify this for T of the form (v, w)E , since these 
span E0. Let {£,} be an orthonormal basis for 2. Then for any 77 G S and 
v' G F we have 

2 (v 0 £,, w 0 ^>£OY(V/ 0 T]) 

= 2 (v 0 £,)<w 0 £,, v' 0 T]>aY 

= 2 2 ( ( v ® €,•)*)<* 0 €,, / 0 T]>aY(x) 

= 2 (v* ® 2 (fc)<É,-X, TJ>)<W, V'X(X) 
x \ i 1 

= V<W, v ' ) a ® TJ = ( <V, W>^ 0 / ^ ( v ' 0 7]). 

That is, 

2 (v 0 £,, w 0 £Z>£CTY = (v, w>^ 0 J s . 

Then 
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ra\ <v, w)a 0 I~) = r a Y(2 <v 0 £,, w 0 £,>^) 

= 2 A (v, w)0)(^ *,.> 

= ra( (v, w>a) dim(H), 

where we used here one of the calculations made in the paragraph before 
the lemma. 

We can now obtain the main result of this section: 

5.6 THEOREM. Let V be a projective right S0-module, and let H be the 
Hilbert space of a finite-dimensional right unitary y-representation of D, so 
that V 0 S is a projective Say-module. Then the Chern characters ch and 
ch ~ of V and V 0 'E respectively are related by 

chK®~ = (dim Z)chv. 

Proof Note that this makes sense even though the modules are over 
different algebras, since these algebras are acted on by the same Lie 
algebra, L, and the Chern characters are just formal sums of alternating 
multi-linear forms on L. To compute the Chern characters, we equip V 
with an ^-valued inner-product and a connection, V, for the action of L 
on Sa. As indicated in [8], the Chern character of F will be independent of 
these choices. We equip V 0 S with the corresponding Soy-valued inner-
product and the connection V defined above. Let fi and Ù be the 
curvatures of V and V, which have values in the endomorphism algebras 
Ea and Eay of V and V ® S respectively. We let T° and ray be the traces 
on Ea and Eay as described above. 

The Chern characters are defined in terms of exterior powers of Q, and Ù 
respectively, so we must see how these exterior powers are related. 
According to Proposition 5.4 we have 

Û(X, Y) = Q(X, Y) 0 /^, 

that is, Ù is the composition of Q with the homomorphism from Ea into 
Eay which takes a T in Ea to T 0 1%. But it is then easily checked that 
exterior powers will be related by the same composition, that is, 

(Û A . . . A U)(Xl A . . . A X2k) 

= ( (Q A . . . A ti)(XY A . . . A X2k) ) 0 U. 

When we take traces, using Lemma 5.5, we obtain 

T°\ (2 A . . . A SX*i A . . . A X2k) ) 

= (dim £)ra( (0 A . . . A 9)(XX A . . . A X2k) ). 

Putting in the required factors of {Im)"k/k\, we obtain the desired 
result. 
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Actually, we want to construct modules over a fixed algebra Sa, and so 
we now change our point of view slightly and assume that V is an 
^ - m o d u l e while H is the space of a y-representation of D, so that it is 
V ® S which is an ^-module. We also change back to notation in terms 
of skew bilinear forms. Thus let 

o(x,y) = ê(0(x,y)/2) 

as in the previous section, and let 

Y(*> y) = ëOK*, y)/2) 

for some rational \p in A L, so that 

(oy)(x,y) = ë((0 + *)(*, y)\2). 

Putting everything together, we see that if T is an embedding map for 
0 4- t//, then VT ® S will be an ^-module whose Chern character is 

(dim 2) exp(0 + i//) J / i r 

for /x as in Theorem 4.5. 
Incidently, we now see why it was not necessary for us to put any 

non-degeneracy hypotheses on 0, namely that in adding various rational 
i//'s to 0 (to get ay) we can obtain non-degenerate forms. In fact, if 
integral >//'s are added, ay does not change at all, while the effect on the 
Chern character can be seen to simply involve replacement of ju, by another 
integral decomposable form. 

5.7 Definition. Let 0 e A2L, and let 

o(x,y) = e(0(x,y)/2) 

as above. Then by a standard ^-module we mean any projective right 
^-module which is isomorphic to a direct sum of modules of the form 
V ® S where 2 is the Hilbert space of a finite-dimensional right unitary 
y-representation of D (where y(x, y) = ?(^(x, y)/2) for some rational 
xP G A2L), and V is an elementary S#+^-module, that is, is constructed 
from an embedding map T as described in the previous section. (Different 
summands of a standard module may have different i//'s.) By a standard 
A ̂ -module we mean the completion of any standard ^-module, or 
equivalently, any module isomorphic to a finite direct sum of modules of 
form "V where S is as above and F i s an elementary yl#+^-module. 

Thus the standard A ̂ -modules are the ones which we know how to 
construct, by the methods of this section and the last. Furthermore, we 
have seen that we are able to calculate the Chern characters of standard 
modules, and thus determine the elements of K0 which they represent since 
the Chern character is faithful on K0(Ae). 
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In calculating the Chern characters of standard modules we need to 
know the dimension of S. But, given a rational \p, it does not seem possible 
in general to see immediately from its coefficients for the standard basis 
what the dimension will be of a corresponding irreducible cocycle 
representation. One must first "diagonalize" \p and then inspect the 
denominators of the new coefficients. For our present purposes, however, 
we will only need to use \p9s of a fairly special form, for which the 
dimension can be immediately determined. Specifically, in the next section 
we will need: 

5.8 PROPOSITION. Let \p be a rational element of A L. Suppose that there 
is an integral basis for L such that, when \p is expressed as a linear 
combination of the corresponding basis elements for A L, all of the 
coefficients are integers except one, which is of form p/qforp and q rela­
tively prime. Let y be the corresponding cocycle on D defined by 

y(x,y) = e(xP(x, y)/2). 

Then there is an irreducible right unitary y-representation of D of dimension 
\q\. (And in fact all irreducible y-representations of D will have dimen­
sion \q\.) 

Proof Let {Ft} be the given basis, arranged so that it is the coefficient of 
Fx A F2 which isp/q, and let {F;} be the dual basis for L*. Since all other 
coefficients of \p are integers, y(F, F) = 1 unless /', / ^ 2. As the space H of 
the representation we take r(Z/Zq). We let Fx act by translation by 1, and 
we let F2 act by pointwise multiplication by the function 

(m 4- Zq) I—» e(mp/q). 

We let all the other Ft act as the identity operator. This is essentially the 
Heisenberg representation of M X M where M = Z/Zq, and so is 
irreducible. Then routine calculations show that for J G H and JC, y e D 
we have 

(&c)y = e(x2yxp/q)i(x + y\ 

where 

x = 2 XjF; and y = 2 ypy 

We recognize the cocycle here as being essentially the Heisenberg cocycle. 
The skew bicharacter which is cohomologous to it is easily seen to be y. 
Adjusting the action above by the corresponding coboundary, we obtain 
the desired y-representation. 

The fact that all irreducible representations are of dimension \q\ follows 
from Proposition 34 of [18], though we will early in Section 7 give a short 
proof of it for our special setting. 
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6. The positive cone of K0(Ae). The objective of the present section is to 
show that for 0 not rational, every element of K0(Ae) of positive trace is 
represented by a standard module, so that the positive cone of K0(Ae) 
consists exactly of its elements of positive trace. As soon as we have 
proven in Section 7 that cancellation holds (for 6 not rational), it will 
follow that every projective A ̂ -module is isomorphic to a standard 
module. 

For the proof of cancellation we need the additional fact that positive 
elements of K0(A$) are represented by modules having as direct summands 
arbitrarily high multiples of standard modules. The proof of this fact must 
be carried through the inductive arguments used in this section. Thus the 
main theorem of this section is: 

6.1 THEOREM. Let ^ G A I , and assume that 0 is not rational. Then every 
element of KO(A0) with strictly positive trace is represented by a standard 
module, so that the positive cone of K0(Ae) consists of its elements of strictly 
positive trace, together with zero. Furthermore, for any integer m > 0 
every positive element of K0(Ae) is represented by a standard module which 
has as a direct summand m copies of a (non-zero) standard module. 

Of crucial importance for the proof of Theorem 6.1 is the work of 
George Elliott [16], in which he describes the range of the Chern character 
on KO(A0), and shows that the Chern character is injective on KO(A0). This 
reduces our task to showing that for every element of AeL* which is in the 
range of the Chern character and which has positive 0th component 
(the trace), we can find a standard module with that given element as its 
Chern character (for 0 not rational). We now recall Elliott's specific 
results, with the slightly more explicit notation which we will need (and 
with the modification of conventions which we discussed at the end of 
Section 4). 

We let A\L be the even part of the exterior algebra of L, so that A\L is a 
commutative finite-dimensional graded algebra under the exterior prod­
uct. Then 0, as an element of the algebra AeL, is nilpotent, and 
consequently exp(0) is defined by a finite series (where here exp(0) should 
not be confused with the composition of 0 with the function 
/ i—> exp(27r//) ). Viewing D as the integral lattice in L*, we can view A?D 
as the integral part of AeL*, and it thus makes sense to pair elements of 
A?D with exp(0) to get real numbers. For /x e A\D we denote this pairing 
by (exp(0), /x). Then Elliott shows that the range of the trace on Ko(A0) is 
exactly the set 

<exp(0), AeD) 

of real numbers. (For a proof of this fact using Connes' «-traces see [36].) 
In interpreting this expression, we must pair the various terms in the series 
for exp(#) with the elements of AeD of the same degree. 
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More generally, we can contract elements of AeL* by 0, giving a 
nilpotent endomorphism of A?L* which lowers degree by 2. Exponentiat­
ing this endomorphism, we obtain an automorphism of AeL*, which 
Elliott denotes by exp(l A 6). Elliott then shows that the range of the 
Chern character on K0(Ae), which will be a subset of AeL*, is exactly 
the image of AeD under exp(l A 0). Since exp(l A 0) is easily seen to be 
just contraction by exp(0), we will often find it convenient to denote the 
image under exp(l A 6) of LI e AeL* by (exp 6) J JU. It is easily seen 
that the 0-degree term of (exp 0) J ju is exactly the trace term (exp(0), /x) 
indicated above, and that the term of degree 2k is defined, for 
Xh...,X2k G L, by 

(Xx A . . . A X2h (exp 0) J ju> 

t 

= 2 (xx A ... A x2k A ep-\ h)/(P - k)\ 
p=k 

where by [ip we mean the term of JU, of degree 2/?, and where t is n/2 or 
(n — l)/2 according to whether the dimension, n, of L is even or odd. 

Our objective then, is to show (for 6 not rational) that, given any 
fi e A\D for which (exp(0), JU) > 0 (the trace condition), we can construct 
a standard module whose Chern character is (exp 6) J JU. 

To do this, we must see how the elementary and standard modules 
constructed earlier fit in with Elliott's results. Now from Theorem 4.5 it is 
clear that the elementary modules correspond exactly to the JU'S which are 
homogeneous (i.e., concentrated in one degree) and decomposable over Z. 
Now let \p be a rational element of A L and let y be the corresponding 
cocycle as in Section 5. Let S be the Hilbert space for an irreducible finite 
dimensional right unitary y-representation for D, and let V be an 
elementary S0+^-module, so that V ® S is a standard ^-module. Let d^ 
denote the dimension of S, which is the same as the dimension of any 
other irreducible y-representation, by Proposition 34 of [18] or an 
argument we give early in Section 7. Let /x be the homogeneous 
decomposable element of AfD corresponding to V. Then by Theorem 5.6 
and the discussion immediately after, the Chern character of V ® S is 

^(exp(0 + *) ) J /i = (exp 9) J (^(exp *) J /x). 

(One can show that ^ (exp i//) J /i is in AeD.) Consequently, standard 
^-modules have as Chern characters finite sums of such terms (satisfying 
the positive trace condition). 

Conversely, Theorems 4.5 and 5.6 show that for any homogeneous 
decomposable v e AfD we can construct an ^-module whose Chern 
character is 

(exp 6) J (^(exp *//) J v), 
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provided that the trace condition 

<exp(0 + 1//), v) > 0 

is satisfied. We can rewrite this trace condition as 

<exp(0), ^(exp * ) J y ) > 0. 

It now becomes evident that the proof of Theorem 6.1 can be reduced to 
proving a statement just about elements of AfD, and we can forget (for 
this purpose) that there are any C*-algebras or modules involved. 
Specifically, it is sufficient to prove: 

6.2 THEOREM. Let 0 e A L and assume that 0 is not rational Let 
ju G AfD. If (exp(0), /x) > 0, then /x can be expressed as a finite sum of 
terms of the form d,(exp \p) J v for which 

(1) v e AfD, and v is homogeneous and decomposable over Z, 
(2) xf/ G A L and i// is rational, 
(3) <exp(0), ^(exp * ) J u ) > 0. 

Furthermore, for any positive integer m we can arrange that one of these 
terms occurs m times in the sum. 

For ju e AeL* we will denote its component of degree 2k by \ik. By the 
height of /A we will mean the largest integer k for which pk ¥* 0. From 
Theorem 4.5 and the discussion shortly before Lemma 4.4, this 
corresponds to the definition of height given in Definition 4.1. We will 
prove Theorem 6.2 by induction on the height of /A. For given height k, we 
first treat the case in which \ik is decomposable over Z, and then show how 
to deal with the general case. 

To start the induction we need to know that the theorem is true for 
height 0. Now for this case, the first part of the theorem is obvious, as \i is 
trivially already homogeneous and decomposable. However, the multiplic­
ity statement at the end of the theorem is not evident, and to prove it we 
must clearly go beyond height 0, and use the irrationality of 6. For future 
purposes it is convenient for us to consider a slightly more general case. 

6.3 LEMMA. For any 0 in A L the conclusions of Theorem 6.2 are true 
whenever ju is of the form JU0 + aFx A F2 where Fx and F2 are part of an 
integral oriented basis {Ft} for D such that 6l2 = (6, F{ A F2) is irrational. 
(We permit a = 0, to take care of the case of height 0.) 

Proof Let v = Fx A F2, let {Ft} denote the dual basis to {Ft} for L, and 
let yp = (p/q)Fx A F2 where p and q are integers yet to be chosen. Then 

<exp(0), #(exp i//) J v) = p + q0l2. 

Since 0n is irrational, we can choose/? and q such that q > 0 and 

0 < m(p + qOl2) < <exp(0), /x> = ju0 + a0n, 
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where m is the desired multiplicity as in the statement of Theorem 6.2. If 
JU,0 — mp > 0, then the decomposition 

ju = mq(exp \p) J v 4- (/x0 — mp) 

has almost the desired form. If /i0 — mp ^ 0, then mqOn < ##i2> s o t n a t 

« ^ mq. Let € = sign(tf — mq), let i/ = eu, and let 

^ = *Oo - rnp)/(a - mq)Fx A F2. 

Then 

e(a — ra/?)(exp i//) J i/ = ju0 — mp + (a — mp)Fx A i^, 

which when paired with exp 0 is positive, so that 

/x = m#(exp \p) J y 4- e(a — m/?)(exp i//) J u' 

gives a sum of almost the desired form. Now p/q may not be a reduced 
fraction, but in any event d^ will divide q, by Proposition 5.8, so the first 
term above is a sum of copies of d^(cxp \p) J u. The factor e(a — mp), 
which is positive because of the c, is handled in the same way. We thus 
obtain a sum of the desired form. 

We find it necessary to treat separately also the case of height 1, because 
there is not yet enough height to maneuver very freely, and because D may 
have a small number of generators. In fact this case is the most 
complicated one. 

6.4 LEMMA. Let 0 e A L, and assume that 0 is not rational Then the 
conclusions of Theorem 6.2 hold for any ju of height 1. 

Proof Since fi{ is in A D, there is, according to Lemma 5 on page 71 of 
[24], a basis, {ij}, for D for which JUJ has the special form 

r 

Ml = 2 0/*2,--l A F2i 

where the ai are non-zero integers. The number, r, of a/s is called the rank 
of JHj. (Equivalently, r is the smallest integer such that (/Xj)r+1 = 0.) We 
will argue by induction on this rank. 

To begin the induction we must prove the conclusion of Theorem 6.2 
when r = 1, so jiij is of the form aFx A F2. We must treat three suc­
cessive cases. The first is that in which (0, ju,j) is irrational, so that 
1̂2 = (̂ > ^i ^ Fi) *s a l s o - But we treated this case in Lemma 6.3. The 

next case is that in which 8X2 is rational but there is some basis vector 
Ft with i ë 3 such that 0Xi = (0, Fx A ij) is irrational (or, by similar 
arguments, (0, F2 A ij) is irrational). Then for any integer /?, yet to be 
chosen, we have 
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M, = aFx AF2 = pFx A (aF2 + (1 - p)Ft) 

+ (1 - p)Fx A (aF2 - pi?). 

Let 

Vl = pFx A (aF2 + (1 - p)Fi). 

Then for an integer u0 yet to be chosen, and for v = v0 + vx, we have 

<exp(0), u> = u0 + /rafl12 + p(\ - p)0u. 

By WeyPs Theorem 9 in [59] we can choose p and vQ so that /? ^ 0, 1 
and 

0 < <exp(0), u> < <exp(0), /i>. 

Let i/ = jit — u, so that 0 < (exp(0), i/) and 

v\=(\ -p)FlA (aF2 - pF^. 

Then 

(9,v\) = ( 1 - ^ ) a f l 1 2 - ( l - / ^ f l , , , 

which is irrational. Both v and t/ are clearly of rank 1, and so by Lemma 5 
on page 71 of [24] they can be put in the form to which Lemma 6.3 applies. 
That is, we have reduced this second case to the first. 

Finally, we must consider the case in which (0, Fx A /j) and (09 F2 A ij) 
are rational for all /. We reduce this case also to the first. Since 0 is not 
rational, there is some pair of basis vectors, which by rearrangement we 
can assume to be F3 and F4, such that 034 = (0, F3 A F4) is irrational. For 
integers q and v0 yet to be chosen let ux = qF3 A F4 and v = v0 + vl9 so 
that 

<exp(0), v) = v0 + q034. 

Then we can choose v0 and q ¥= 0 such that 

0 < <exp(0), u> < <exp(0), /x>. 

Notice that the first case then applies to v. Let i/ = /x — i>, so for any 
integer p, yet to be chosen, we have 

v\ = aFx A F2 - qf3 A F4 

= (aFx + (1 - 7?)F3) A (/>F2 - 4F4) 

+ ( ^ -pF3) A ( ( l - / ? ) F 2 + ^F4). 

Let 

Ai = (fl^ + (1 - />)F3) A (pF2 - qF4). 

Then 
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(0, X,) = aP0n 4 (1 - p)P032 ~ aqOu - (1 - p)q034. 

Since 012, 032 and 014 are by assumption rational, while 634 is irrational, we 
can choose p ¥= 0, 1 and integer X0 such that, with X = X0 4 Xb 

we have 

0 < <exp(0), X> < <exp(0), i/>. 

Let X' = v' — X, so that 

0 < <exp(0), X'> 

and 

X\ = (aFx - PF3) A ( (1 - />)F2 4- qF4). 

Then (0, Xj) and (0, X't) are both irrational. Thus we have 

/JL = v 4 A 4 X', 

arranged so that after an application of Lemma 5 on page 71 of [24], 
Lemma 6.3 applies to each of the three terms on the right. This concludes 
the proof for r = 1. 

We now prove the induction step. That is, we assume Lemma 6.4 to be 
true for all jUj of rank r — 1 or less (r â 2), and we show it to be true for all 
/X] of rank r. We do this by showing that we can find v and v' of height 
^ 1 such that /x = v 4 v\ while vx and v\ have rank ^r — 1, and 
0 < (exp(0), v) and 0 < (exp(0), i/). Then by the induction hypotheses v 
and v' have expressions as sums of the desired form, including the 
multiplicity statement, and so \i does also. As before, by Lemma 5 on page 
71 of [24] there is an oriented basis {Ft} for D such that 

r 

MI = SÛÂ-I A 4-

Throughout let 6tj = (89 Ft A E). We must again consider several cases. 
Case 1. Assume that some cross-term of 0 for fil is irrational, that is, 

for somey, k ^ 2r not of the form 2/ — 1 and 2z, we have 6-k irrational. 
Then by rearranging the basis (and possibly changing signs), we can 
assume that 

(6.5) jUj = aFx A F2 4- bF3 A F4 4 p 

where a ^ 0 ^ b, while p is of rank r — 2, and 023 is irrational. For any 
integer p, yet to be chosen, we have, much as above, 

(6.6) H = {aFx + (1 - />)F3) A (pF2 + M y 

+ (aFt - pF3) A ( (1 - /,)F2 - bF4) + p. 

Let 
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u, = (oF, + (1 - p)F3) A (pF2 + bF4), 

so that 

(6.7) <0, u,> = /?2023 + p(a0X2 ~ bd34 - 023) + aM14 + 6034. 

By Weyl's Theorem 9 in [59] we can choose/? and an integer v0 so that, for 
V = V0 + L>,, 

0 < <exp(0), u> < <exp(0), M>. 

Let v' = jit — u, so that I/J has rank r — 1. Then JU, = L> + i/ is of the desired 
form. 

Case 2. Assume that no cross-terms of 6 for fix are irrational, but some 
#2/-1,2/ ^S irrational, where /' ^ r. Again by rearranging the basis we can 
assume that jUj is of the form (6.5) above where now 0X2 is irrational while 
#23 and 0X4 are rational. We then express fix as in (6.6) and define vx as 
done there, so that we obtain (6.7). We then see that as long as aOn — b034 

is irrational, we can again apply Weyl's theorem and proceed as in Case 1. 
Thus we only need to deal with the situation in which a0n — b034 is 
rational. But note that if we then add any non-zero integral multiple of 0n 

to aOX2 — bd34 we will obtain an irrational number. This suggests that for a 
yet to be chosen integer q we write 

/i = qFx A F2 + (a - q)Fx A F2 + bF3 A F4 4- p 

and let Xx = qFx A F2. Since 8X2 is irrational we can choose q ¥= 0 and an 
integer X0 such that, for X = X0 + Xx, 

0 < <exp(0), A> < <exp(0), /x>. 

Now X j is of rank 1 and so X has an expression as a sum of the desired 
form. Let \i! = JU — X. Then /xr still has rank ^ r , but (a — q)0x2 — bd34 is 
now irrational, so that we can apply to yJ the argument given at the 
beginning of Case 2. 

Case 3. Assume that all #• for /', j ^ 2r are rational, but that 0ik is 
irrational for some / ^ 2r and some k ^ 2r 4- 1. By rearranging the 
basis we can assume that / = 1, and that yx has form 

jitj = aFx A F2 + p, 

where the rank of p is ^ r — 1. For an integer q yet to be chosen write 

yx = qFx A Fk + ^ A (tfF2 - ^ ) + p 

and let À j = ^ A Fk. Since #1A: is irrational we can choose q ¥= 0 and an 
integer X0 so that, for X = X0 + Al5 

0 < <exp(0), A> < <exp((9), ju>. 

Now X x is of rank 1 and so X has an expression as a sum of the desired 
form. Let fi' = /x — X. Then /A' still has rank r, but it is now of the form to 
which Case 2 applies. 
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Case 4. Assume that all 0- for which either / ^ 2r or y ^ 2r are rational. 
Since 6 is not rational, we can find /', j' = 2r + 1 such that #•• is irra­
tional. For an integer q yet to be chosen write 

H = qFl A Î? + aFx A F2 + ( - ^ A | + p 

where p is of rank r — 1, and let 

Xj = ^ A Fj + aF, A F2. 

Since 0^ is irrational, we can choose q ¥= 0 and an integer X0 such that, for 
\ = \0 + Xb 

0 < <exp(0), X) < <exp(0), /x). 

Let X' = fi — X. Then Xj and Xj are both of rank ^ r , and are in the form 
to which Case 2 applies, so that we obtain the desired expression for jit. 

This concludes the proof of the induction step, and so of Lemma 6.4. 

The induction step in the proof of Theorem 6.2 has two stages. The first 
deals with the case in which iik is decomposable. 

6.8 LEMMA. Let 6 G A L, and assume that 0 is not rational Suppose that 
for some fixed k = 2 it is known that the conclusions of Theorem 6.2 are 
true for all fi of height ^k — 1. Then the conclusions of Theorem 6.2 
are true for all /x of height k for which \ik is decomposable. 

Proof. Notice that dim(L) ^ 4, since otherwise there are no \i of height 
^ 2 . The condition on \ik means that there is an oriented basis {F;} for D 
such that 

Hk = aeFl A . . . A F2h 

where a is a positive integer and e = ± 1 . We must consider three cases 
(which are somewhat parallel to the three cases treated in the first half of 
the proof of Lemma 6.4). 

Case I. We suppose that 6 is not rational on the linear span of 
F}, . . . , F2k. For convenience we rearrange these basis elements so that 
02£-i,2A is irrational. Let 

vk = cF, A . . . A F2k, 

so that \ik = avh and let v = vk, so that all the lower order terms of v are 0. 
We wish to find a rational \p e. A L such that d^ = a and 

0 < a(exp(0), (exp if) J u) < <exp(0), /x>. 

For if we then set X = fi — d,(exp \ff) J v, we see that X is of height 
^k — 1 and 0 < (exp(0), X), so that by the induction hypothesis X has an 
expression as a sum of the desired form, including the multiplicity 
requirement for m. Since <^(exp \p) J v already is of the desired form, it 
will then follow that JLI has the desired expression as a sum. 
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It is notationally convenient to treat first the case k = 2. This will also 
give a good indication of how the general argument works. Thus we 
assume for the moment that 034 is irrational and that 

ev = Fx A F2 A F3 A F4. 

We look for \p of the form 

\P = rFx A F2 + pFx A F 3 + ^ A F4 

where/? and # are integers but r = c + \la for an integer c, so that d^ = a 
by Proposition 5.6. Notice that 

^ A $ = - 2 / 7 ^ A F2 A F3 A F4, 

so that r does not occur in this expression. Then 

(exp \p) J ev = —pq + rF3 A F4 — pF2 A F4 — qFx A F3 + ev, 

so that 

<exp(0), (exp \P) J ev) 

= "PI + ^ 3 4 ~ />*24 ~~ ^ 1 3 + (^12^34 ~~ #13^24 + ^ 1 4 ^ ) 

= r034 - p(q + 024) - #013 + rest. 

Since 034 is irrational, we can choose q so that 034 and q + 024 are linearly 
independent over the rationals. Since r = c + 1/a, we can then choose 
c and /? such that 

0 < a<exp(0), (exp * ) J u ) < <exp(0), /i>, 

as desired. 
For the general case with k ^ 3 we look for t// of the form 

$ = rFx A F2 + pFx A F2k_x + qF2 A F2k + «<*>, 

where 

^ = F 3 A f 4 + F 5 A F 6 + . . . + F 2 , _ 3 A F2k_2 

and r = c + \/a, for c, «, p, q integers. Then 

(l/fc!)i/A - -pqnk~2Fx A . . . A F2h 

so that 

<exp(0), (1/Jfc!>/A J cy> = -pqnk~2. 

Notice that r does not occur in this expression. Next, we see that 

(\/(k - I ) ! ) / " 1 

= rnk-2Fx A . . . A F2k_2 + pnk'2Fi A F3 A . . . A F2k_l 

+ qnk~2F2 A . . . A F2k_2 A F2k 
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+ pqnk~iFx A F2k_x A F2 A F2k A $*~3/( (A: - 3)!), 

so that 

(l/(fc - 1)!W**-1 J « u 

= ™k-2F2k_, A F2yt + /wi*"2/^ A F2k + qn^F, A F2k_x 

- pqnk-\F3 AF4 + ... + F2„_3 A F2n_2), 

and 

<exp(0), ( l / ( * - l ) ! )** - 1 Jeu) 

= rnk~202k-U2k +pnk-\2k + qnk~20X2k_x 

- Pqnk-\e34 + ... + e2n_X2n_2). 

Notice the occurrence of the irrational 02k_x 2k. For j là k — 2 we see in 
much the same way that 4*J will be of the form 

rnj~% + pnj~% + WJ~% + P<1"J~% + n% 

where the £( are elements of NL. Thus 

<exp(0), (l/j'W J v) 

will be a homogeneous polynomial in r, p, q and n of degree y of form 

rni~ sx + /?/77~ ^ + qnJ~ s3 + pqnJ~ s4 + «À?5 

where the ^ are real numbers. Adding up these various expressions, we 
find that 

<exp(0), (exp xp) J u> 

= rP^/i) + />P2(/i) + tfP3(>z) + MP4(/ i) + P5(n) 

where the Pt are polynomials of degree k — 2 or less, with the coefficient of 
nk~2 being irrational for Pl5 while it is rational for P4. We can rewrite this 
more specifically as 

r(ank~2 + g^/i) ) + p( (jB - q)nk~2 + 62(/i) ) + </P3(«) + P5(n) 

where Qx and Q2 are polynomials of degree ^k — 3, a is irrational 
( = 92k- I,2Â:)'

 a n d /? is real. We can thus choose q so that a and fS — q are 
independent over the rationals. For this choice set 

Q3(n) = ^P3(/i) + P5(/i) and y = fi - q, 

so that we obtain 

r(ank~2 + g ^ ) ) + p(ynk~2 + g 2 («) ) + g3(/i). 

We claim now that we can choose n so that ank~2 + gj(«) and 
yn~ + <22(H)

 a r e independent over the rationals. Dividing through by y 
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(noting that a/y is irrational), we see that to show this it suffices to prove 
the following result, which may well be known, but for which I have not 
found a reference. 

6.9 SUBLEMMA. Let a be a real (or complex) number, and let P and Q be 
monic polynomials. If aP(n)/Q(n) is rational for at least (degree(P) + 
degree(g) + 1) distinct integers, then a is rational. 

Proof. The proof is by induction on (degree(P) 4- degree(g) ). The case 
for which this sum is 0 is clear. Let S be a set of distinct integers for which 
aP(n)/Q(n) is rational. 

Case 1. Suppose that degree(g) < degree(P). Fix m e S. Then for 
all n G S 

a(P(n)/Q(n) - P(m)/Q(m)) 

is rational. We rewrite this as 

a(P(n) - (P(m)/Q(m))Q(n))/Q(n), 

and note that the numerator is still monic in n because degree(g) < 
degree(P). Furthermore the numerator is 0 when n = m, and so we can 
factor out a term n — m and rewrite our expression as 

a(n - m)R(n)/Q(n) 

where R is a polynomial, still monic, with degree^) = degree(P) — 1. 
For n ¥= m we can divide by n — m to find that aR(n)/Q(n) is rational for 
all n e S\{m}. By the induction hypothesis it follows that a is 
rational. 

Case 2. Suppose that degree^) < degree(g) and that P(m) = 0 for 
some m G S. Then we can factor as <x(n — m)R(n)/Q(n) and conclude 
that a is rational as above. 

Case 3. Suppose that degree^) < degree(g) and that P(m) =£ 0 for all 
m e S. Then, assuming that a ¥= 0, we see that a~lQ(n)/P(n) satisfies 
the hypotheses of Case 1, so that a~l and hence a is rational. 

Case 4. Suppose that degree(P) = degree(g). If P and Q are equal then 
we are clearly done. If they are not equal, then in view of the size of S, 
there must exist an m e S such that P(m) ¥= Q(m). For this m consider as 
above 

a(P(n) - (P(m)/Q(m))Q(n))/Q(n). 

Now the coefficient of the term of highest degree in the numerator is 
1 — P(m)/Q(m), since P(m) ¥= Q(m). We can factor out this term, as 
well as n — m, to obtain 

a(l - P(m)/Q(m))(n - m)R(n)/Q(n), 

where R is monic and degree(P) = degree(g) — 1. Then for any 
n G S\{m}, 
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a(\ - P(m)/Q(m))R(n)/Q(n) 

is rational. By the induction hypothesis we conclude that 

a(\ - P(m)/Q(m)) 

is rational. But by assumption aP(m)/Q(m) is rational, so that a is 
rational. 

Returning to the proof of Case I of Lemma 6.8, we fix n as claimed. It is 
then clear that we can choose c and p (recalling that r = c -f \/a) 
so that 

0 < <exp(0), (exp ^)Jv)< <exp(0), /i>, 

as desired. 
Case II. We suppose now that 6 is rational on the linear span of 

Fh . . . , F2h but that 0^ is irrational for some / ^ 2k and some y â 2k + 1. 
For convenience we reorder Fl9.. . , F2k so that 6 y is irrational for a fixed 
j ^ 2k + 1. Then we can rewrite \ik as 

H = ae[2F, A (F2 - Î?) - F, A (F2 - 2^) ] A F3 A . . . A F2,. 

For integers v0 and /? yet to be chosen let 

v = v0 + pFx A Fj + 2aeF, A ( F r | ) A F 3 A . . . A F2k. 

Then 

(exp(#), u) = v0 4- /7^j + constant, 

so that we can choose vQ and p such that 

0 < <exp(0), u> < <exp(0), /x>. 

Notice that F b (F2 — Fj), F3, . . . , F2A: forms part of an integral basis for 
L*, and that 

(0, Fx A (F2 - Î?) > = 012 - BXj 

is irrational, since 012 is assumed rational while Oy is assumed irrational. 
Let 1/ = fi — v, so that 0 < (exp(0), i/) and 

t/k = -aeFx A(F2-2FJ) AF3A...A F2h. 

Notice that F b (F2 — 2Fj), F3, . . . , F2k forms part of an integral basis for 
L*, and that 

{6, Fx A (F2 - IFj) > = 012 - 20ly 

is irrational. 
Thus v and 1/ are both in exactly the form to which Case I applies, and 

so they can be expressed as a sum of terms of the desired form, including 
the multiplicity statement. 
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Case III. We suppose now that 0tj is rational if either / ê 2k or j ^ 2k. 
Since 6 is assumed not to be rational, we can find /, j' = 2k + 1 such that 
0tj is irrational. For integers v0 and p yet to be chosen let 

v = v0+pF,AFJ + F3A...AF2kAFlAFJ. 

Then 

(exp(0), v) = uQ + pdy + constant, 

so that we can choose u0 and p such that 

0 < <exp(fl), u> < <exp(0), /x>. 

Notice that y is in exactly the form to which Case I applies, and so can be 
expressed as a sum of terms of the desired form. 

Let i/ = JU — u, so that 0 < (exp(0), i/) and 

vfk = (aeFx A F2 - Ft A j?) A F3 A . . . A F2h 

which can be rewritten as 

[ («F , - F,) A (2F2 - FJ) + («F , - 2Î?) A ( - F 2 + Fj)} 

AF3A...AF2k. 

For integers À0 and q yet to be chosen let 

\ = X0 + qFiAFj + (aeF, - Î?) A (2F2 - j p 

A F3 A . . . A F2/t. 

Then 

(exp(0), A) = X0 4- #0^ + constant, 

so that we can choose X0 and q such that 

0 < <exp(0), A) < <exp(0), t/>. 

Notice that (^ei^ — i^), (27^ ~~ Fj), F3, . . . , î A: form part of an integral 
basis for L*, and that 

(0, (a€Fx - /}) A (2F2 - j p > = 2a£»12 - ^ l y - 20a + ^ 

is irrational, since 012, 0l7 and 6i2 are assumed rational while Qt- is assumed 
irrational. 

Let X! = & - X, so that 0 < <exp(0), A'), and 

\'k = (aeFx - 2Ç) A (-F2 + j p A F3 A . . . A F2„. 

If a is odd, then #6 and 2 are relatively prime, and so (aeFl — 27;), 
( —F2 + Fj), F3,. . ., F2k form part of an integral basis for L*. If <s is even, 
then after factoring out a 2 from (tfcFj — 2F2), the terms again form part 
of an integral basis. Furthermore 0 is not rational on the linear span of 
these terms, for reasons similar to those given above for A. 
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Thus X and \' are both in exactly the form to which Case I applies, and 
so they can be expressed as a sum of terms of the desired form, including 
the multiplicity statement. Since \i = v + X + À', we are done. 

The final stage of the induction step is given by: 

6.10 LEMMA. Assume that 0 is not rational. Suppose that for some fixed 
k ^ 2 it is known that the conclusions of Theorem 6.2 are true for all ju of 
height kfor which pk is decomposable. Then the conclusions of Theorem 6.2 
are true for all \i of height k. 

Proof. Since 0 is not rational, we can choose an oriented basis {Ft} for D 
such that 6nis not rational. Any iik e A\kD can be expressed as a linear 
combination of the (decomposable) basis elements for A D which come 
from the basis {Ft}. In analogy with the rank which was used in the proof 
of Lemma 6.4, we define the length of a \ik to be the number of non-zero 
terms in its expression as a linear combination of these basis elements. 
Our proof is by induction on the length, the case of length 1 being just the 
hypothesis of the lemma. 

So suppose that for some integer m ^ 2 it is known that the conclusion 
holds for all [i of height k for which [ik has length = m — 1. Let /x be of 
height k with [ik of length m such that 0 < (exp(0), jit). Then we can 
express nk as nk = vk + vk where vk has length 1 and vk has length m — 1. 
For integers u0 and p yet to be chosen, set 

v = v0 + pFx A F 2 + vk. 

Then 

<exp(0), v) = u0 + p6l2 + (6k/k\, vk). 

Since 6n is irrational, we can choose v0 and/? so that 

0 < <exp(0), v) < <exp(0), JU>. 

Let & = fi — v, so that 0 < (exp 0, vf) and vk has length m — 1. Then by 
the induction hypotheses both v and v' have expressions as sums of the 
desired type, including the multiplicity statement, and so \i does also. 

This concludes the induction step, and so concludes the proofs of 
Theorems 6.1 and 6.2. 

We remark that Theorem 6.1 can fail for 8 rational. In fact already for 
T there are elements of K0(C(T4) ) with positive trace which do not come 
from any complex vector bundle over T , as can be seen by examining the 
Chern characters of line bundles [20, 23]. 

7. The cancellation theorem. We use the notation of Section 6. The goal 
of this section is to prove: 
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7.1 THEOREM. Let 6 e A L , and assume that 6 is not rational Then 
cancellation holds for projective modules over Ag, that is, if U, V and W are 
projective Ag-modules such that 

U® W = V® W, 

then U = V. Equivalently, any two projective Ag-modules which are stably 
isomorphic (i.e., represent the same element of K0(Ag)) are in fact 
isomorphic. 

Since from Theorem 6.1 we know that every element in the positive cone 
of K0(Ae) is represented by a standard module, we immediately obtain: 

7.2 COROLLARY. If 6 is not rational, then every projective Ag-module is 
isomorphic to a standard module. 

Thus we know how to construct all projective A ̂ -modules, up to 
isomorphism. 

At the end of this section we will give some further interesting 
consequences of Theorem 7.1. 

Our proof of Theorem 7.1 parallels the proof in [49] for the 
two-generator case. In view of the information which we have amassed in 
the previous sections, the main fact which we still need is a bound on the 
topological stable rank of the endomorphism algebras of standard 
modules, so that we can apply the results of [57]. To obtain this bound, we 
need a convenient description of the endomorphism algebras of standard 
modules of the form ~ V where V is elementary. 

We use notation as in Definition 5.7. Thus let 0 and a be as earlier, let \p 
be a rational element of A L, and let y be the corresponding cocycle for 
\p on D = Zn. Let 'E be the Hilbert space for an irreducible 
finite-dimensional right unitary y-representation of D, and let V be an 
elementary Ae+^-module. 

Since \p is rational, we can, according to Lemma 5 on page 71 of [24], 
"diagonalize" xp into 2 X 2 blocks, that is, we can find a basis 

/ i , . . . , / * , g i , . . . , g * , hl9...,hj 

for Z), where 2k + j = n (though there may be no /z/s), such that 

Ufa gi) = PitQi for each /, 

where pt and qt are relatively prime integers, while \p on all other pairs of 
these basis vectors is zero. For each / let Ft be the cyclic group of order 
qh let Pi be the Heisenberg cocycle on Ft X Ft, and map f and g, to ele­
ments in Ft and irrespectively such that, identifying/ and gi with their 
images, we have 

M, gt) = Wii) 
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(while fï(gh /•) = 1). Let F be the product of the /j's, so that F is the 
product of the ij's. Map D into F X F by means of the maps on the /• 
and gi used above, and by sending the hi to the identity element. Let /? 
denote the Heisenberg cocycle on F X F, and let ft also denote its 
pull-back to D. Then the anti-symmetrization of /3 on D will coincide with 
that of y (which is y since y is already anti-symmetric), where to see this 
we must recall the factor of 2 used in defining y in terms of \p. Thus fi and 
y are cohomologous, so that y-representations of D correspond to 
/^-representations. Let C be the subgroup of D spanned by the qtfh the 
qigl and the A7-, so that C is exactly the kernel of the map of D onto 
F X F, and /? is trivial on C. Under any irreducible ^-representation of D 
the elements of C will be carried to scalar multiples of the identity 
operator, thus defining a character, x> on C, which can be extended (not 
uniquely) to a character, also x, on D. Then the inner tensor product of the 
given representation with x will be a /^-representation of D which is trivial 
on C, and so is the pull-back of a ^-representation of F X F. But 
up to isomorphism F X F has only one irreducible /^-representation, 
namely the Heisenberg representation on L2(F). Thus we have shown that 
any irreducible /^-representation of D is just the inner tensor product of 
the Heisenberg representation on L (F) with some character x of D. 

Let V be an elementary ,4 #+^-module. For the present purposes it 
is most convenient to go back to the original construction summarized 
in Proposition 3.2, rather than the definition given in Notation 4.2. 
Thus V comes from an embedding of D as a lattice in N X TV, where 
N = Rp X Xq with 2p + q = n, and where the pull-back to D of the 
Heisenberg cocycle on TV X N, say ô, is cohomologous to ay. Thus, taking 
into account the isomorphisms of A8 with AQ+, and of A8p with Ae, we see 
that we can assume that V is as just described above, and that the 
finite-dimensional ^-representation is of form L (F) ® x, where we abuse 
notation by letting x denote also the (one-dimensional) space of 
the representation x- That is, standard modules for which H is irreduc­
ible are obtained by "inducing" V of the above form by means of the 
bimodule determined by L (F) ® x in the way described in Proposition 
5.1. Now at the level of dense subspaces this "induced" module is just 
S(N) ® L"(F) ® X' a s discussed shortly before Proposition 5.4, and from 
this point of view it is evident that the effect of x is the same as that of 
composing the action of SSp (that is, S(D) ) on S(N) ® F2(F), with the 
automorphism of SSp corresponding to x under the dual action. This then 
remains true for the completions. Now D ( = Tn) is path-connected, so 
that the automorphism of A8o corresponding to a x G t) is connected by 
a path to the identity automorphism. It follows that if Kis any projective 
,4^-module, and if Vx denotes the module obtained by composing the 
action of A8p with the automorphism from x, then Vx is isomorphic to V. 
(This is most easily seen at the level of projections.) It follows that for our 
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present purposes we can ignore the dual action of D on modules, and 
assume that x = 1. 

Since F is finite, it is clear that 

S(N) ® L2(F) = S(N X F), 

and that the action of SSp corresponds to the Heisenberg action for 
M = N X F, since 8 and ft come from the Heisenberg cocycles for TV and 
F respectively. If we keep in mind the passage from bicharacters to 
anti-symmetric bicharacters which we have used since Section 4, the above 
discussion can be summarized by: 

7.3 THEOREM. Let 0 be any element of A L. Then every standard 
Ae-module is, up to isomorphism, the direct sum of modules obtained (as in 
Section 3) from embeddings of D as a lattice in groups M X M, where M 
is of the form M = Rp X Xq X F,for 2p + q = n and for F some finite 
Abe Han group. 

We are now exactly in a position to apply Proposition 3.2, with the roles 
of D and D interchanged. We find that the endomorphism algebra of a 
module coming from an embedding of D as a lattice in a group M X M 
is C*(D , /?). Now D is itself a lattice i n M X M according to Lemma 
3.1, and so must be of form Z" X F0 for some finite Abelian group F0, for 
the reasons discussed after Proposition 3.6. But then C*(D±, ft) will have 
topological stable rank no larger than n + 1, according to Proposition 3.9. 
Thus the endomorphism algebra of each of the summands described in 
Theorem 7.3 will have topological stable rank no larger than n + 1. 

What remains then is to see how topological stable rank of endomor­
phism algebras behaves under taking direct sums of the corresponding 
modules. Now according to [21], for C*-algebras the topological stable 
rank is the same as the Bass stable rank. But it follows from Theorem 1.9 
of [57] that the Bass stable rank of the endomorphism ring of a direct sum 
of modules is no larger than the maximum of the Bass stable ranks of the 
endomorphism rings of the summands. Thus the same must be true for 
the topological stable rank. It seems desirable to have a direct proof of this 
fact, not passing through the Bass stable rank, and which works for 
general Banach algebras: 

7.4 PROPOSITION. Let A be a Banach algebra with identity element, and let 
Vx and V2 be projective A -modules. If 

t s r ( E n d ^ ) ) ^ n for j = 1,2, 

then 

t s r C E n d ^ ® V2)) ^ n. 

Proof Let T = (7j, . . . , Tn) be an element of 
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(EndA(Vl®V2))
n, 

and let N be a neighborhood of T. We must show that N contains an 
element of 

Lgn ( E n d ^ F , 0 * 9 ) , 

in the notation of [48]. Now each T{ can be written as a 2 X 2 matrix 
{tjk) where 

t)k e H o m ^ , Vj). 

By the hypotheses on Vx we can perturb {t\x} slightly so that the new T 
is still in TV while the new {tl

u} is in Lgn(EndA(Vx) ). Thus there is {Vu} 
in (End,,(F,) )" such that 

Then for each k we have 

h\ = ^ (^ I^ I IVII» 

and so we can perform "elementary row operations" to make all the t2X 

equal to 0. That is, we can find an invertible n X n matrix, E, with entries 
in End^(F1 © F2), such that, if R = ET where T is viewed as a column 
vector so that R is also, and if R = {Rt} and Rt = {rljk} with 

^ e Hom^rç , Vj), 

then we have rl
2l = 0 for all /, and r\x = t\x (the new ones). Now EN is a 

neighborhood of £ T = R. So by the hypothesis on V2 we can perturb {rl
22} 

slightly so that the new R is still in EN while the new {rl
22} is in 

Lgn(EndA(V2) ). We can then again perform "elementary row operations" 
to make the r\2 equal to 0. That is, we can find an invertible n X n matrix, 
F9 with entries in E n d ^ F j © F2), such that each 2 X 2 block of P = FR 
is diagonal with entries t\x and rl

22 (the new ones). But P is then 
clearly in 

Lgn(EndA(V]®V2)), 

so that E~ F~ P is also. But E~XF~XP is clearly in N, so we are done. 

Combining this result with the previous discussion, we obtain: 

7.5 THEOREM. Let 0 be any element of A L. Then for any standard 
Ae-module V one has 

t s r (End^(F)) ^ n + 1. 

We now return to the proof of Theorem 7.1. We argue as in the proof of 
Theorem 2.2 of [49]. For any projective module Y we denote by [Y] its 
class in K0. Let U and V be as in the statement of Theorem 7.1, so that 
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[U] = [V]. Because of the hypothesis on 0, Theorem 6.1 is applicable, so 
we can represent [ V] by a standard module, which can be assumed to have 
as a direct summand n 4- 1 copies of a (non-zero) standard module Y. 
That is, we can find a projective module Z such that 

[ Z © Yn+]] = [V]. 

What we will actually show is that Z 0 Yn+] = V. Since Fis an arbitrary 
representative of [V], we will be done. 

Since Z 0 Yn+X and V are stably isomorphic, there is an integer m such 
that, as modules, 

z e r*+1
 ®A% = V®A%. 

We need: 

7.6 LEMMA. Let 6 be any element of A L. Then any non-zero projective 
Ag-module is a generator for the category of projective Ae-modules. 

Before proving the lemma, we show how to use it to complete the proof 
of Theorem 7.1. From the lemma we know that Y is a generator, so that 
AQ is a summand of Yk for some integer k. By adding the complementary 
module to the last equation above, we obtain 

Z © Yn + ]+k = VQ Yk. 

Now because y is a standard module, we know from Theorem 7.5 that 

t s r C E n d ^ r ) ) ^ n + 1, 

so that from Theorem 2.3 of [48] we have 

Bsr(End4y))^« + 1, 

where Bsr denotes the Bass stable rank. We are thus exactly in a position 
to apply the cancellation theorems of Warfield, Theorems 1.2 and 1.6 of 
[57] (which are also restated as Theorem 2.1 of [49]; see also Proposition 1 
of [30] ), to conclude that 

Z © Yn+l = V. 

This concludes the proof of Theorem 7.1, except for: 

Proof of Lemma 7.6. This is most easily carried out by using the 
description of projective modules in terms of projections. For any m, view 
A™ as a right ^-module with y^-valued inner-product, and view the 
endomorphism algebra of A^ as being the algebra Mm(A0) of m X m 
matrices, acting on Afî on the left. Then for some m there is a projection, 
<?, in Mm(Ae) such that V is isomorphic to the module e(An

e
l). We note 

that this identification equips V with an ^-valued inner-product. As we 
will see shortly, the crux of the matter is to show that the span of the range 
of this inner-product, which is an ideal in Ae, is in fact all of A0. 
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Let a denote not only the dual action of Tn on Ae, but also its extension 
to B = Mm(A0). Fix a primitive ideal P of B. Then the function on Tn 

defined by 

t H> «_,(*) H> \\a_t(e) + P| 
\B/P — 

We + «,(i») II 
for / G Tn, is clearly continuous. But the image of e in each B/at(P) is a 
projection, and so its norm there is either 0 or 1. Since Tn is connected, it 
follows that the image of e in each B/at(P) is either always zero or never 
zero. But a gives a transitive action of Tn on ¥rim(Ae) by Proposition 34 of 
[18], and so also on Prim(P), because the primitive ideals of B correspond 
to those of AQ in an evident way. Thus for any primitive ideal Q of B the 
image of e in B/Q is not zero, since e ¥= 0. At the level of A0, this means 
that for any primitive ideal P of Ae not all the entries of the matrix e are in 
P. But these entries are contained in the range of the A #-valued 
inner-product of V, so this range is not contained in P for any primitive 
ideal P of Ae. Consequently, the span of the range of the inner-product, 
which is an ideal of Ae, must be dense in Ae. But Ae has an identity 
element, and so this span must be all of Ae. 

In particular, there must be elements xx,. . . , xm and y]9 . . . , ym of V 
such that 

2 (xi9 yt) = lA$. 
But then the homomorphism of Ae into Vm defined by a \—> (yta) has as 
left inverse the homomorphism 

(v,.) ^ 2 <x„ v,)Ae, 

and so exhibits Ae as a direct summand of Vm, as desired. 

From Theorems 7.1 and 7.5 we obtain: 

7.7 COROLLARY. Let 6 G A L and assume that 0 is not rational Then for 
every projective Ae-module V we have 

t s r (End^(F)) ^ n + 1. 

Actually, continuing the comments made at the end of Section 3, I can 
show that the upper bound of n 4- 1 in this corollary can be replaced 
by 2. 

From Theorem 7.1 we immediately obtain a generalization of Corollary 
2.5 of [49] (see also Proposition 4.5.1 of [4] ): 

7.8 COROLLARY. Let 0 G A L, and assume that 0 is not rational. If p and 
q are projections in some Mn{A^) which represent the same element of 
K0(Ae), then they are unitarily equivalent in Mn(Ae). 

Proof. Since/? and q represent the same element of K0(Ag), the modules 
p(A0)

n and q(A0)
n are stably isomorphic. But then by Theorem 7.1 they are 
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isomorphic, and there is a partial isometry, v, in Mn(Ae) with vv* = p and 
v*v = q. But the same will apply to 1 — p and 1 — q. Putting together the 
partial isometries for these two cases gives the desired unitary equiva­
lence. 

In the next section we will obtain an even stronger result (Theorem 
8.13). 

We remark that Corollary 2.5 of [49] was phrased only in terms of the 
trace on Ae, and not in terms of KO(A0). It is clear that a similar rephrasing 
of Corollary 7.8 can be given in those cases for which the trace is faithful 
on K0(A0). Now the condition that the trace be faithful is equivalent, by 
Theorem 3.1 of [17], to the condition that the functional 

/i H> <exp(0), ju> 

from AeZ) to R be injective. (See the discussion after the statement of 
Theorem 6.1.) This injectivity implies that 0 is not rational even on any 
two-dimensional rational subspace, for if Fx and F2 are elements of some 
basis for D such that 

(0, F} A'F2) = k/m 

for integers k and m, then 

<exp(0), k - mFx A F2) = 0, 

so that the functional is not injective. Thus injectivity of the trace implies 
that the hypotheses of Theorem 7.1 hold (as long as D ^ Z), and also that 
A0 is simple. Thus we obtain: 

7.9 COROLLARY. Suppose that JU M> (exp(0), /x) is injective from AeD to R 
(and D ¥= Z). If p and q are projections in some Mn(Ag) which have the 
same trace, then they are unitarily equivalent in Mn{Ag). 

As another interesting consequence of the cancellation theorem and 
of our characterization of the positive cone we have: 

7.10 COROLLARY. Assume that 0 is not rational, and let r denote the 
canonical normalized trace on Ag, viewed also as a homomorphism from 
KQ(AB). Let 7] G K0(AQ) and suppose that 0 < 7(17) < 1. Then there is a 
projection, p, in Ag (not just in some Mk(Ae)) such that 77 = [/?]. 
Furthermore, the projections in Ae generate all of K0(Ae). 

Proof Let £ = [A0] - TJ, SO that 0 < T(£) < 1. By Theorem 6.1 there 
are projective A ̂ -modules V and W representing TJ and £ respectively. 
Then [V © W] = [Ae], so that by cancellation, V ® W = Ae as right 
^-modules. (Actually, we only need here that stably free modules are 
free.) For any such isomorphism the projection of Ae on the image of V 
will be given by a^ G A B with the desired property. This argument works 
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with [Ag] replaced by any other positive element, f, of KO(A0) for which 
7(17) < r(f). It follows that the projections in Ae generate all of KO(A0). 

However, under the conditions that the trace, r, is faithful on K0(A0), we 
have a stronger result: 

7.11 THEOREM. Suppose that /x 1—» (exp(0), /x) w infective from AeD to R. 
77iew we can find a totally ordered family, S, of projections in Ae such that 

T(S) = (r(K0(Ae))) O (0, 1]. 

In particular, every projection in A0 will be unitarily equivalent to some 
element of S. 

Proof Since Ae is separable, (r(Ko(A0) ) ) Pi (0, 1] is countable. Let 
{tk:\ ^ k < 00} be an enumeration of its elements, with t] = 1. We will 
construct a sequence {pk} of projections such that r(pk) = tk and 
whenever tk < t- then pk < p-. The construction is by induction on k, 
and we start, of course, by settingpx = 1. Suppose that/?], . . . ,pk_l have 
been chosen. Let ta and th be, respectively, the largest and the smallest of 
* ! , . . . , tk_ ! such that ta < tk and tk < th. Then/?^ < ph, and every other of 
the/?,- is either smaller than/?a or larger than/^. By Corollary 7.10 we can 
find projections q and r in Ae such that 

T(<7) = tk - ta and r(r) = th - tk. 

Then the right ^ -module qAe © M^ will represent an element of KO(A0) 
whose trace is th — ta, as will (ph — pa)Ae. Since the trace is assumed to be 
faithful on K0(Ae). these two modules are stably isomorphic. Since 
cancellation holds, these modules are actually isomorphic. This means that 
there must be a subprojection, / / , of ph — pa such that r(p') = tk — ta. We 
l e t A = Pa + P'-

We remark that the C*-subalgebra of Ae generated by {pk} will be a 
commutative subalgebra (with Cantor spectrum) such that its injection 
into AB gives an isomorphism at the level of K0. In Section 9/9 of [25] 
Kumjian showed that when D = Tr one can actually embed a simple 
/IF-algebra into Ae giving an isomorphism at the level of KQ. It would be 
interesting to know if this result generalizes to the higher dimensional 
case. 

A referee has pointed out that the above results quickly give the 
following answer to a question which Norbert Riedel asked me. 

7.12 PROPOSITION. Assume that 6 is not rational. Then there exists in Ae a 
totally ordered family, S\ oj projections which cannot he enlarged to a totally 
ordered family, S, of projections in A0 such that every projection in A0 is 
unitarily equivalent to some element of S. 
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Proof. Choose a proper projection, p, in A0, and let r = T(/?), so that 
0 < r < 1. Since 0 is irrational, we can find a subalgebra of A0 to which 
Theorem 7.11 applies. From this we see that we can find in Ae an infinite 
sequence {#•} of non-zero orthogonal projections such that 

2 <qj) > r. 

Let C denote the set of subsequences {q, } such that 

2 T{qj) = r. 

A Cantor diagonal argument using the fact that the sequence (r(q•) ) 
converges to 0 shows that C is uncountable. Let N denote the von 
Neumann algebra generated by A0 on L2(A0, T). Then each element of C 
has a sum in TV, the sum being a projection which may or may not be in A0. 
The distance between sums for different elements of C will be 2. Since C is 
uncountable and A0 is separable, some elements of C must have sum not in 
A0. Let {pj} be the sequence of partial sums for such an element of C. 
Then {pj} is a totally ordered sequence of projections in Ae, whose 
supremum is a projection, e, in N which is not in A0. Furthermore it is 
clear that r(e) = r. It follows that {pj} cannot be enlarged to a totally 
ordered family of projections of A0 containing a projection of trace r. 

8. Consequences for K]-groups. For a unital C*-algebra A we let Um(A) 
denote the group of unitary elements of Mm(A), and we let U^(A) de­
note the connected component of the identity element of Um(A), so that, 
by definition, KX(A) is the direct limit of the groups Um(A)/U^(A) for 
the usual inclusions. The purpose of this section is to show that when 0 is 
not rational, the natural maps of Um(A0)/U^(A0) into KX(A0) are isomor­
phisms. We then obtain an interesting consequence for projections. 

We begin with the surjectivity: 

8.1 THEOREM. Let 6 G A L, and assume that 0 is not rational Then for 
every integer m ^ 1 the natural map from Um(A0) to KX(A0) is surjective. 

It is clear that to prove this it suffices to treat the case m = 1. One way 
to approach this would be to try to apply Theorem 10.10 of [48], which 
would require showing that csr(^4^) ^ 2 (as defined there), but I do not 
know how to do this (except in the two-generator case; see Corollary 8.6 
of [48] ). Instead, we will give a proof by induction on n for D = Z". 
The induction step will be based on: 

8.2 PROPOSITION. Let A be a unital C*-algebra, and let a be an 
automorphism of A which is in the connected component of the iden­
tity automorphism. Let a also denote the corresponding action of Z on A. 
Assume that 

(1) Every element of KX(A) is represented by an element of UX(A). 
(2) The projections in A generate K0(A ). 
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Then every element of KX{A Xa Z) is represented by an element of 
UX(A Xa Z). 

Proof. For brevity, write U(A) instead of UX{A), and similarly for 
U(A Xa Z). Note that the hypothesis on a implies that a acts as the 
identity automorphism on both K0(A) and KX(A). Then the exact sequence 
of Pimsner and Voiculescu [37] for the Toeplitz extension gives the 
following commutative diagram with exact second row: 

U(A) l—^U(A XaZ) 

0 +»KX(A) l—^Kl(A XaZ) m » KQ(A) - • O 

where / comes from the inclusion of A in A Xa Z, and "ind" is the 
index map for the Toeplitz extension. The assertion of the proposition is 
that the second vertical map is surjective. Since the first hypothesis 
of the proposition is that the first vertical map is surjective, it clearly 
suffices to show that every element of K0(A ) is the index of some element 
of U(A Xa Z). But from the second hypothesis we see that it suffices to 
show just that every projection, p, in A is the index of some element of 
U(A Xa Z). Now since a is path-connected to the identity automorphism, 
it follows that a(p) is path-connected to p through projections, and so 
there is a partial isometry, v, such that vv* = p and v*v = a(p). Let t 
denote the unitary in A Xa Z corresponding to 1 G Z. Motivated by 
Lemma 1.2 of [37], we set 

u = pvt~ p + (\ — p). 

Then one checks immediately that u is a unitary in A XaZ. Furthermore, 
it is easily seen, as indicated at the top of page 102 of [37], that the index 
of u is p. 

We remark that the analogous statement for K0(A Xa Z) is not true, 
that is, under the hypotheses of the above theorem we cannot con­
clude that the projections in A XaZ generate K0(A Xa Z). For example, 
let A = C(T) and let a be the trivial action, so that 

A XaZ = C(T2). 

Proof of Theorem 8.1. We argue by induction on n, where D = Zn. For 
n = 2 the conclusion of the theorem was obtained by Pimsner and 
Voiculescu in Corollary 2.5 of [37] (or we could even start with n = 1 
and A = C(T) ). Thus we need to show that for any n ^ 3 the conclusion 
of the theorem holds if it is known to hold for n — \. Now by Proposi­
tion 3.10 
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A0 = B0XaZ 

where B0 = C*(D\ 6) and U is a summand of D of rank n — 1. That a is 
in the connected component of the identity automorphism is easily seen 
by bringing appropriate coefficients of 0 to integers. We can always 
arrange that the restriction of 0 to Df not be rational. Then by the 
induction hypothesis we know that U(B0) maps onto KX(B0). This means 
that the first hypothesis of Proposition 8.2 holds. But the second 
hypothesis also holds by Corollary 7.10. Thus Proposition 8.2 applies to 
show that U(A0) maps onto KX(A0). 

We remark that Theorem 8.1 can fail if 0 is permitted to be rational, 
since for A = C(T3) we have 

UA/U°A ~ Hl(T\ Z) = Z3 

(see 11.7 of [55] ), while KX(A) = Z4. 

8.3 THEOREM. Let 0 e A L, and assume that 6 is not rational Then for 
every integer m Ê 1 the natural map from Um(A0)/Um(A0) to KX(A0) is 
injective, and so is an isomorphism. 

We will show that this theorem is in a sense a corollary of the 
cancellation theorem. To do this, we will, for any C*-algebra A, let TA 
denote the C*-algebra of continuous functions from the circle, T7, into 
A. Our proof of Theorem 8.3 is based on: 

8.4 THEOREM. Let A be a unital C*-algebra. Then TA has cancellation 
(that is, the cancellation law holds for projective TA-modules) if and only 

if 
(1) A has cancellation and 
(2) For every projective A-module V the natural map from Aut^(F)/ 

Aut^(F) into KX(A) is infective. 

Proof. We will assume first that TA has cancellation, and show that this 
implies property (2). It is this implication which will provide our proof of 
Theorem 8.3. We use the following familiar "clutching" construction. 
View TA as consisting of the continuous functions from the interval [0, 1 ] 
to A which agree at the endpoints. Let F be any projective A -module, and 
let u G Aut^(F). (If desired, we can always assume that V has been 
equipped with an A -valued inner-product, and that u is unitary for this 
inner-product.) We define a TA -module, X(u), by 

X(u) = {4>:[0, 1] -» V, continuous, with <j>(\) = u<t>(Q) }, 

with the evident right action of TA by pointwise multiplication. We state 
the elementary properties of this construction as a series of lemmas. 
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8.5 LEMMA. If u0 and ux are path-connected in Aut^(F), then 

Proof. Let {ut} be a path in Aut^(F) connecting u0 to ux. It is easily 
checked that the map which sends <f> e X(u0) to <j> e X(UX) defined by 

is an isomorphism. 

8.6 LEMMA. If Vx and V2 are projective A-modules, and if ux e Aut^(K,) 
and u2 £ Aut^(F2), //ze« 

X(ux © u2) = X(Wl) 0 X(w2). 

This is evident. 

8.7 LEMMA. If V — An and if iv denotes the identity automorphism of V, 
then X(iv) is isomorphic to the free module (TA)n. 

This is evident. 

8.8 LEMMA. For any V and u as earlier, X(u) is (finitely generated) 
projective. 

Proof. Choose an A -module W such that V © W = An for some « . I t 
is well known [55] that (u © iw) © (u © iw)~X is path-connected to the 
identity automorphism of A . By the above three lemmas this exhibits 
X(u) as a direct summand of the free TA -modules (TA) n. 

8.9 LEMMA. If UX, U2 ^ Aut^(F) and if ux and u2 are in the same class in 
KX(A), then X(ux) and X(u2) are stably isomorphic. 

Proof. That ux and u2 are in the same class in KX(A) means, by 
definition, that there is an A -module W such that V ® W is free and that 
ux © iw and u2 © iw are path-connected in Aut^(K © W). This means, 
by the above lemmas, that 

X(ux) © X(iw) = X(u2) © X(iw\ 

which says exactly that X(ux) and X(u2) are stably isomorphic. 

8.10 LEMMA. Ifux, u2 <= Aut^(F) and if X(ux) = X(u2), then there is a 
w <E Aut^(F) such that u2 is path-connected to wuxw~ in Aut^(K). 

Proof It is clear that X(ux) and X(u2) consist of the sections of locally 
trivial bundles over T with fiber V. It follows that any isomorphism from 
X(ux) to X(u2) must be given by left multiplication by a continuous 
function, say g, from [0, 1] into Aut^(F). For every <j> e X(UX) we 
must have 

u2g(0)<t>(0) = g(l)4<l) = g(l)«!*(0), 
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from which it follows that u2g(0) = g(l)u{. Let w = g(0). Then 

"2 = g(\)uxw~\ 

which is path-connected, via g, to wuxw~x. 

We now return to the proof of Theorem 8.4, and show that if TA has 
cancellation then property (2) holds. Let F be any projective A -module, let 
u e Aut^(F), and suppose that the class of u in KX(A) is 1. We must show 
that u G Aut^(F). Now the fact that the class of u in KX(A ) is 1 means, by 
Lemma 8.9, that X(u) and X(iv) are stably isomorphic. But TA is assumed 
to have cancellation, so X(u) and X(iv) are isomorphic. But then by 
Lemma 8.10 there i s a w e Aut^(F) such that u is path-connected to 
wivw~x = z'F, as desired. 

We now consider property (1). To each F we can associate X(iv), and it 
is easily seen from this that if TA has cancellation then A must also. We 
have thus proven one direction of Theorem 8.4. 

To prove the converse direction of Theorem 8.4 we need: 

8.11 LEMMA. Every projective TA-module is isomorphic to some X(u) for 
some projective A-module V and some u e Aut^(F). 

Proof. Any projective TA -module is of the form P(TA)n for some n, 
where P is a projection in Mn(TA ). But a projection in Mn(TA ) is the same 
as a continuous function (still denoted by P) from [0, 1] into projections in 
Mn(A) which agrees at the endpoints. Let p = P(0), and let V = pAn. 
Now P is a continuous path of projections, and so, as is well-known, one 
can find a continuous path, U, of invertible elements of Mn(A) such 
that 

P(t) = U(tylP(0)U(t) 

for all /. In particular, 

U(\)~lP(0)U(\) = P( l ) = P(0), 

so that U(l) commutes with P(Q) = p. Let u = pU(\), so that 
u e Aut^(F). We claim that P(TA)n is isomorphic to X(u). For if 
/ G P(TA)n, viewed as a function from T to An, we can define $ by 

<Kt) = U(t)f(t) = P(0)U(t)f(t). 

Then 

<K1) = P(0)I/(1)/(1) = IAKO), 

so that <£ e X(u). It is easily seen that this correspondence of <J> to / gives 
an isomorphism. 

Thus to show, for Theorem 8.4, that TA has cancellation, it suffices to 
consider modules of the form X{u). So let U, V and Y be projective 
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,4-modules, let u G Aut4(£/), v e A\xiA{V) and y e AuiA(Y), and 
suppose that 

X{u) © X(y) ~ X(v) © X(y). 

From Lemma 8.6 it follows that 

X(u®y) = X(v ®y). 

Considering this at any given point of /, we see that U © Y = K © K But 
by hypothesis 1 we are assuming that A has cancellation, so that U = V. 
Let r be a specific isomorphism, and let u' = r " vr, so w' G Aut^(£/), 
and 

X(u®y) = X(u' ®y\ 

where now both u © y and uf ® y are in Aut^( t /© 1̂ ). From Lemma 8.10 
it follows that there is a w e Aut^(^/ © 7 ) such that w' © y is 
path-connected t o w ( w 0 v ) w ~ . It follows that u and u' are in the same 
class in KX(A). But by hypothesis 2 it then follows that u and i/ are 
path-connected in Aut^(K). Then X(u) = X(wr) by Lemma 8.5. Thus the 
proof of Theorem 8.4 will be complete once we have: 

8.12 LEMMA. Let U and V be projective A-modules, let r be an 
isomorphism from Uto V, and let v e A\xtA{V). Then 

X(r~]vr) = X(v). 

Proof. It is easily verified that the map R from X(v) to X(r~ \r) defined 
by 

R(4>)(t) - rcj>(t) 

is an isomorphism. 

It is not clear to me whether Theorem 8.4 remains true if hypothesis 2 
is weakened to considering only free modules, nor whether there is 
a generalization to the case in which TA is replaced by a crossed prod­
uct with the integers. 

Proof of Theorem 8.3. We can express TAB as the crossed product 
Ae X Z for the trivial action of Z, and from this it is clear that TAe is 
again a non-commutative torus, whose "0" will not be rational since the 
original 6 is not. Thus TAe has cancellation by Theorem 7.1, and so we can 
apply Theorem 8.4 to obtain injectivity. 

We remark that Theorem 8.3 can fail if 6 is permitted to be rational. To 
be specific, it is known that if A = C(T4), then there is a unitary in U2(A ) 
which is not in the connected component of the identity element, and yet 
whose image in KX(A) is 1. (I am indebted to Steven Hurder for explain-
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ing this to me.) Notice also that this latter fact, together with Theo­
rem 8.4, immediately shows that cancellation fails for C(T5), since 
C(T5) = TC(T4). 

We will now see how Theorem 8.3 can be used to obtain further 
information about projections in non-commutative tori. If p and q are 
projections in a unital C*-algebra A which are in the same class in K0(A), 
then 1 — p and 1 — q also are in the same class. If A has cancellation, then 
it easily follows from this that there is a unitary u in A such that q = upu*. 
(See the proof of Theorem 7.8 above, or Corollary 2.5 of [49], or 
Proposition 4.5.1 of [4].) It is natural to ask whether u can, in fact, be 
chosen in the connected component of the identity element, so that p and 
q are in the same path-component of the set of projections in A. (My 
interest in this particular matter was heightened by questions which M.-D. 
Choi asked me.) For non-commutative tori we have: 

8.13 THEOREM. Let 0 e A L, and assume that 6 is not rational. For any 
m ^ 1 let p and q be projections in Mm(Ae) which are in the same class in 
K0(A0). Then there is a unitary u in Um{Ae) such that q = upu*, so thatp and q 
are in the same path-component of the set of projections in Mm(A0). In 
particular, the elements of the positive cone of K0(Ae) which are no bigger 
than [AQ\ (the class of the free module of rank one), exactly label the 
path-component s of the set of projections in Ae. 

Proof. Assume given/?, q and u with q = upu*. We first need to show 
that we can replace u by a unitary whose class in Kx(Ae) is 1, so that we 
can then invoke Theorem 8.3. Clearly we can assume that/? ¥= 1, so that 
p = 1 ~ p is not zero. By Theorems 6.1 and 7.1 the module p(Ae)

m 

is a standard module. Then by the last part of Theorem 6.1 there is 
a projection e ^ p such that e is equivalent to a sum of n + 2 mutually 
equivalent projections { /} , where D = Z". By Theorems 6.1 and 7.5, 

tsrtEnd^C/iOO ) ^ n + 1. 

Let B = Mm(A0). Then by Theorem 10.10 of [48], the image of 

AutAJOfx(A7))n + 2) 

in Kx(fxBfx) is all of Kx(f\Bfx). It follows that the image of 

AutAJLeAf) 

in Kx(eBe) is all of Kx(eBe). Now eAff will be a generator for the catego­
ry of projective ^-modules by Lemma 7.6 and so eBe will be Morita 
equivalent to Ae. Thus the inclusion of eBe into Mm(A0) induces an 
isomorphism of /^-groups. In particular, every element of Kx(Ae) will be 
represented by a unitary coming from eBe. Thus, for the u given at the 
beginning of the proof, we can find a unitary v e eBe such that [v] = [u*] 
where v = v © (1 — e). But vpv* = p since e = 1 —p. Thus 
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q = (uv)p(uv)*, 

and [uv] is [1] in K](A0), as desired. 
But now we can apply Theorem 8.3 to conclude that vu is in Um(Ae). 

We remark that Theorem 8.13 can fail if 0 is permitted to be rational. 
This was pointed out to me by Terry Loring, who showed me how to 
construct two projections,/? and q, in M2(C(T3) ), such that there is a u in 
U2(C(T3) ) with upu* = q, but there is no such u in £/2°(C(r3) ). 

Added in proof For further consequences of the results of this paper, see 
the author's paper: The homotopy groups of the unitary groups of non-
commutative tori, J. Operator Theory 17 (1987), 237-254. 
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