Nonoscillation of third order retarded equations

Bhagat Singh and R.S. Dahiya

The third order delay equation

 $y'''(t) + a(t)y_{\tau}(t) = 0$

is studied for its nonoscillatory nature under the general condition in which a(t) has been allowed to oscillate. It is shown by way of a differential inequality that if g(t) is a thrice differentiable and eventually positive function then

 $g'''(t) + t^2 |a(t)| a(t) \le 0$

is sufficient for this equation to have bounded nonoscillatory solutions.

1. Introduction

In this paper, we study the third order retarded equation

(1)
$$y'''(t) + a(t)y_{T}(t) = 0$$
,

where $y_{\tau}(t) \equiv y(t-\tau(t))$ and

(i) $a : (-\infty, \infty) \rightarrow (-\infty, \infty)$ is a continuous function,

(ii) τ is a nonnegative, real valued, continuous and bounded function of $t \in (-\infty, \infty)$.

Our aim here is to prove a theorem that establishes the existence of a bounded nonoscillatory solution of equation (1) on some half line $[t_0, \infty)$. Equations of the type

9

Received 31 July 1973.

(2)
$$y''(t) + p(t)y(t) = 0$$
, $p(t) \ge 0$

have been studied by Onose [2], but the assumption that p be nonnegative is restrictive. For this reason, the study of equation (1) under oscillating a becomes all the more interesting.

Call a function $g \in C[t_0, \infty)$ oscillatory if it has arbitrarily large zeros on $[t_0, \infty)$. Otherwise call it non-oscillatory.

In what follows, the term "solution" will be applied only to continuous and extendable solutions of equation (1) over some half line $[t_0,\infty)$, $t_0 > 0$.

The second order retarded equation

(3)
$$y''(t) + a(t)y_{\tau}(t) = 0$$

when a is oscillating has been studied by Wong [4]. The most interesting part of our theorem is the differential inequality

(4)
$$g'''(t) + t^2 |a(t)|g(t) \le 0$$
, $g(t) > 0$

as being sufficient for the existence of bounded non-oscillatory solutions of equation (1).

2. Main result

THEOREM 1. Let g be a thrice differentiable function on some half line $[T, \infty)$, $T \ge t_0 > 0$ such that

(5)
$$\liminf_{t\to\infty} g(t) > 0,$$

and

$$g'''(t) + t^2 |a(t)|g(t) \le 0$$

eventually. Then equation (1) has bounded non-oscillatory solutions.

Proof. Let T be large enough so that g(t) > 0 in $[T, \infty)$. Then inequality (4) implies that there exists some $T_1 > T$ such that

$$g''(t) \le 0$$
, $g''(t) > 0$, $g(t) > 0$, $t \ge T_1$.

This means that g' is monotonic, and hence two cases arise.

Case 1. $g'(t) \ge 0$, $t \ge T_1$. Dividing (4) by g(t) and integrating between $[T_1, t]$ we have

(6)
$$\frac{g''(t)}{g(t)} - \frac{g''(T_1)}{g(T_1)} + \int_{T_1}^t \frac{g''(s)g'(s)}{g^2(s)} ds + \int_{T_1}^t s^2 |a(s)|^2 ds \le 0 ;$$

(6) immediately implies

(7)
$$\lim_{t\to\infty}\int_{T_1}^t s^2|a(s)|ds < \infty.$$

Case 2. $g'(t) \leq 0$, $t \geq T_1$. In this case also we shall prove that (7) holds. Suppose to the contrary

(8)
$$\int_{T_1}^{\infty} t^2 |a(t)| dt = \infty .$$

Then from inequality (6) and (8) it follows that

(9)
$$\lim_{t\to\infty}\int_{T_1}^t \frac{g''(s)g'(s)}{g^2(s)} ds = -\infty.$$

Now g'' is decreasing and nonnegative. Therefore

$$\lim_{t \to \infty} \int_{T_1}^t \frac{g''(s)g'(s)}{g^2(s)} ds \ge \lim_{t \to \infty} \left[g''(T_1) \int_{T_1}^t \frac{g'(s)}{g^2(s)} ds \right]$$
$$= \lim_{t \to \infty} \left\{ g''(T_1) \left[-\frac{1}{g(t)} + \frac{1}{g(T_1)} \right] \right\} > -\infty$$

by Condition (5). This is the required contradiction. Thus conclusion (7) holds as a result of inequality (4) and condition (5).

Now we employ a process of approximation as used in Singh [3].

Define the approximations

(10)
$$y_0(t) \equiv 1$$
, $y'_0(t) \equiv 0$, $y''_0(t) \equiv 0$,

(11)
$$y_n(t) = \frac{1}{2} - \int_t^{\infty} \frac{(s-t)^2}{2} a(s) y_{n-1}(s-\tau(s)) ds$$
, $n = 1, 2, 3, ..., \infty$.

Let $T_2 > T_1$ be so large that for $t \ge T_2$,

(12)
$$\int_{t}^{\infty} s^{2} |a(s)| ds \leq \frac{1}{2} .$$

From (10), (11) and (12) it follows that if $t \ge T_2$,

$$|y_{1}(t)| \leq \frac{1}{2} + \int_{t}^{\infty} \frac{(s-t)^{2}}{2} |\alpha(s)| |y_{0}(s-\tau(s))|$$
$$\leq \frac{1}{2} + \frac{1}{2} = 1$$

and

 $|y'_1(t)| \leq \frac{1}{2}$.

Similarly for any positive integer n, boundedness of τ implies the existence of a large positive number $M \ge T_2$ such that for $t \ge M$,

(13)
$$|y_n(t)| \le 1$$
, $|y_n(t-\tau(t))| \le 1$

and

(14)
$$|y'_n(t)| \leq \frac{1}{2}$$
.

Thus $\{y_n(t)\}_{n=1}^{\infty}$ is a uniformly bounded equicontinuous sequence of functions on some positive half line $t \ge M$. By Arzela's Theorem it has a uniformly convergent subsequence

$$\left\{y_{n_k}(t)\right\}_{k=1}^{\infty}$$

which converges to a solution of the integral equation

(15)
$$y(t) = \frac{1}{2} - \int_{t}^{\infty} \frac{(s-t)^2}{2} a(s)y(s-\tau(s)) ds$$

This solution in turn is the required bounded solution of equation (1). This solution is also nonoscillatory.

12

REMARK. It is interesting to note that the delay term $\tau(t)$ does not play any role in inequality (4).

Consider

$$g(t) = t^{3/2} ,$$

$$a(t) = \frac{3}{8} \frac{\sin t}{1+t^{7}} ,$$

$$g^{\text{III}}(t) = \frac{3}{2} \cdot \frac{1}{2} \cdot \left(-\frac{1}{2}\right) \cdot \frac{1}{t^{3/2}} ;$$

then $\lim_{t\to\infty} g(t) = \infty$,

$$g'''(t) + t^{2}|a(t)|g(t) = -\frac{3}{8} \cdot \frac{1}{t^{3/2}} + \frac{3}{8} \frac{t^{2} \cdot t^{3/2}}{(1+t)^{7}} \cdot |\sinh|$$
$$= -\frac{3}{8} \left[\frac{1}{t^{3/2}} - \frac{t^{7/2}}{(1+t)^{7}} |\sinh| \right]$$
$$= -\frac{3}{8} \left[t^{-7/2} \left\{ t^{2} - |\sinh| \frac{t^{7}}{(1+t^{7})} \right\} \right]$$
$$\leq 0 \quad \text{for large } t .$$

Thus the equation

$$y''(t) + \frac{3}{8} \frac{\sin t}{(1+t)^7} y_{\tau}(t) = 0$$

has a bounded nonoscillatory solution.

References

- [1] Marvin S. Keener, "On the solutions of certain linear nonhomogeneous second-order differential equations", Applicable Anal. 1 (1971), 57-63.
- [2] Hiroshi Onose, "Oscillatory property of ordinary differential equations of arbitrary order", J. Differential Equations 7 (1970), 454-458.

13

- [3] Bhagat Singh, "A necessary and sufficient condition for the oscillation of even order nonlinear delay differential equation", *Canad. J. Math.* (to appear).
- [4] James S.W. Wong, "Second order oscillation with retarded arguments", Ordinary differential equations, 1971 NRL-MRC Conference, 581-596 (Academic Press, New York and London, 1972).

Department of Mathematics, University of Wisconsin,

Manitowoc Center,

Manitowoc,

Wisconsin,

USA;

Department of Mathematics, lowa State University, Ames, lowa, USA.

14