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Abstract

Our set-up will consist of the following: (i) a graph with vertex set V and edge set E ; (ii) for
each vertex v e V a non-trivial group Gv given by a presentation (x,,; r,,); (iii) for each edge
e = {u,v} 6 E a group Ge given by a presentation (xu, xv ; Te) where ie consists of the
elements of ru u iv together with some further words on xu u x,,. We let G = (x; r) where
x = U»6K xt, > r = UeeE Te • *-)ur a*m ' s t 0 t ry t o describe the structure of G in terms of the
groups Gv (v 6 V), Ge (e e E). Under suitable conditions the natural homomorphisms
Gv —> G (v e V), Ge —• G (e € E) are injective; and there is a short exact sequence

0 - 0(ZG «C IGj St*vn~l -* 0(ZG ®C /Ge) - /G - 0

(where, for any group H , IH is the augmentation ideal). Some (co)homological consequences
of these results are derived.

1991 Mathematics subject classification (Amer. Math. Soc.): 20 F 05, 20 J 05.

1. Introduction

In [8], [9], [10] we considered groups given by presentations where the gen-
erating set is partitioned into non-empty disjoint subsets, and each denning
relator involves symbols from exactly two of these subsets. Such a group G
can be expressed in the form

(Fv{veV);t),
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206 Stephen J. Pride [2]

where each Fv is a non-trivial free group, and t is a set of cyclically reduced
elements of *veVFv , with each element of t involving symbols from exactly
two factors. Associated with G we have a graph F with vertex set V and
edge set

E — {{u, v} : some element of t involves symbols from F and Fv}.

For e = {u, v} 6 E we have a group Ge = (Fu, Fv; te), where tg consists
of all elements of t involving symbols from Fu and Fv .

^u Ge Fv (Ge a homomorphic image of Fu * Fv).

The idea is then to try to describe the structure of G in terms of the groups

In this paper we replace the free groups Fv by arbitrary non-trivial groups
Gv . Our set-up will thus consist of the following.

(a) A graph F with vertex set V and edge set E. We assume for conve-
nience that no vertex of F is isolated.

(b) For each vertex v e V a group Gv given by a presentation (xv ; rv),
where the elements of rv are cyclically reduced words on xv .

(c) For each edge e — {u, v} e E, a group Ge given by a presentation
(xu ,xv;re) where re consists of the elements of TuUrv, together with some
cyclically reduced words each involving at least one xu -symbol and at least
one xv -symbol.

We let
G = (X;T)

where
X = U Xv ' r = U Te •

veV e€E

We can assume without loss of generality that r is slender, that is, if R e r
then no cyclic permutation of /?* except for R itself belongs to r.

EXAMPLE 1. If each Gv is cyclic of order 2 and each Ge is finite dihedral,
then G is a Coxeter group.

This example in fact motivated the work for this paper. In [11], R. Stohr
and I obtained a short exact sequence connecting the augmentation ideal of
certain Coxeter groups (aspherical Coxeter groups) with the augmentation
ideals of the cyclic and dihedral groups Gv (v e V), Ge (e e E), and we
used this to obtain results about (co)homology. The present paper arose from
the realisation that the computations in [11] can be extended to the general
set-up described above.

We will need to make two assumptions, which will be explained shortly.
Later (see Theorem 3) we will give some fairly general sufficient conditions
which ensure that our two assumptions hold.
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[3] Cohomology of groups 207

ASSUMPTION 1. The natural maps Gv -* G (v e V), Ge —* G (e e E)
are injective (and so we regard the Gv and Ge as subgroups of G).

To state the second assumption we need some definitions and notation
(which will be used throughout the rest of the paper).

Write G = F/N, where F is the free group on x and N is the normal
closure of r in F. We let M denote the relation module for the given
presentation of G. Thus M is the left ZG-module with underlying abelian
group Nab - N/N', and (/-action

WN-UN' = WUW~V (WeF, Ue N).

Similarly for v e V, e e E we have relation modules Mv , Mg (which are,
respectively, left %GV-, ZGe-modules) corresponding to the presentations
of Gv, Ge. We also have the submodules Mv, Me of M generated by
{RN1

 :RETV}, {RN' :Rere} respectively.
For e € E, let Pe be the free left ZG-module with basis {te

R : R e re) ,
and let Ke be the kernel of the epimorphism

Pe^Me,t
e
R^RN' (Rere).

Let P be the free left ZG-module with basis {tR : R e r} , and let K be the
kernel of the epimorphism

R (RET).

Now we have an epimorphism

e€E

given by

fR~tR (eeE,R€te).

This obviously carries © e 6 £ Ke into K.
ASSUMPTION 2. a carries ® e e £ Ke onto K.
We will have more to say about this assumption at the end of this introduc-

tion. The assumption is intimately connected with the structure of identity
sequences over the presentation of G.

In the statements of Theorems 1 and 2, and the Corollaries, below, it will
be supposed that Assumptions 1 and 2 hold.

THEOREM 1. There is a short exact sequence

0 - 0 ( Z G ®G Arj | 5 ( u ) | - ' - 0 ZG ®Gf Me - M - 0.
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208 Stephen J. Pride [4]

(Here S(v) is the adjacency set of v, that is, the set of edges of F incident
with v.)

COROLLARY 1.1. There is a short exact sequence

0 - @(ZG®C> IGvf
m~x

(Here, for any group H, IH is the augmentation ideal.)

COROLLARY 1.2. Let A be any right ZG-module, and let B be any left
ZG-module.

(i) There is a long exact sequence

e€E

terminating in

e€E

(ii) There is a long exact sequence

. . . -> H"(G, B)
v€V

starting with

0 - HomZG(/G, B) - J I HomZG(IGe, B)
e€E

Y[(HomZG(IGv, B)f™-1 - H2(G, B) - ••• .
vev

REMARK. In the above Corollary, ( )'lS(")l~1 is to be interpreted as direct
sum in(i), and direct product in (ii).

COROLLARY 1.3. Suppose there exists n > 1 such that Gv has cohomolog-
ical dimension less than or equal to n for all v € V. Then any finite subgroup
of G is contained in a conjugate of some subgroup Ge (eeE).

A proof of Theorem 1 will be given in Section 2.
The proof of Corollary 1.1 is similar to arguments used in the proof of

[11,Theorem 4]. (Details are left to the reader.) The proof of Corollary
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1.2 is obtained by considering the long exact Tor and Ext sequences (in the
second and first variables respectively) derived from the short exact sequence
in Corollary 1.1, and then using dimension shifting arguments and Shapiro's
Lemma. The computations are similar to those in [11, Section 4], and are
left to the reader. To prove Corollary 1.3, observe that under the stated
conditions we have

Hn+2(G,B)*l[Hn+2(Ge,B)
eeE

for all left ZG-modules B . Now use Serre's Theorem [6].
Before stating the next theorem, we recall the definition of a combinatori-

ally aspherical group (for further information see [2] or [3]).
Let a group H be given by a presentation (y; s) , so that H is (isomorphic

to) O/X, where O is the free group on y and Z is the normal closure of
s in O. For S e s write S - 5 p ( S ) , where S is not a proper power and
p(S) is a positive integer. Let X be the free left Z//-module with basis
{bs : S £ i). We say that H (or more precisely the given presentation of
H) is combinatorially aspherical (CA) if the kernel of the epimorphism

bs .-» st (S e s)
from X onto the relation module Z/l!, is generated by the elements
(l-SL)bs (Set).

THEOREM 2. If each Ge is CA then G is CA.

This theorem will be proved in Section 3.
We now give conditions which guarantee that Assumptions 1 and 2 hold.

Let e — {u,v} be an edge of T. We will say that Ge (or more precisely
the given presentation of Ge) has property-Wk if no non-trivial element of
Gu * Gv of free product length less than or equal to 2k lies in the kernel of
the natural epimorphism Gu* Gv —> Ge .

EXAMPLE 2 (E. Fennessey). For e = {«, v}, let Dg denote the cartesian
subgroup of Gu * Gv (that is, De is the kernel of the natural epimorphism
Gu * Gv -* Gu x Gv). Let fe — xe - (ru U rv), where we regard the elements
of ie as belonging to Gu *GV. Then Ge has property- W{ if ie C De, and

Ge has property-JF2 if te c lf^D'e for some prime p(e).
EXAMPLE 3 (see M. Edjvet [4, Example 4.1]). For v e V ,let \v consist

of a single element (which we take to be v itself). Let q> be a mapping from
VUE into {2, 3 , 4 , . . . } , and let

Ge = (u, v ; u m , v m , (uvfe)) (e = {u,v}eE).

Then Gg always has property-PP,, and has property-R^ if (p(e) > 2.
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THEOREM 3. Assumptions 1 and 2 hold if either of the following conditions
is satisfied.

(1) Each Ge has property-W2.
(II) F is triangle-free and each Ge has property-Wx.

REMARKS. (1) A proof of the theorem will be given in Section 4. Another
proof (based on extending results on van Kampen and spherical diagrams
over free groups obtained in [8], [9], [10], to analogous results for diagrams
over free products) has been given by E. Fennessey [5].

(2) Note that Theorem 3 applies to many Coxeter groups (take q>(v) — 2
for all v € V in Example 3). We remark that, for Coxeter groups, As-
sumption 1 always holds [12, p. 245]. To guarantee that Assumption 2 holds
we can get by with a weaker condition than (I)/(II), namely the asphericity
condition [11] referred to earlier.

(3) We can, in fact, formulate an asphericity condition for our general
set-up, as follows. For e = {u, v} e E, let me be the length of the shortest
non-trivial element of Ker(Gu * Gv -> Ge). (Note that either me = 1 (which
means that one of the natural homomorphisms Gu -> Ge, Gv -> Ge is not
injective), or me is even.) The asphericity condition would require that:

(i) we > 4 for all e (that is, each Ge has property- Wx);
(ii) for any triangle F (with edges el,e2,e2, say)

1 1 1 1

It seems plausible that an analogue of Theorem 3 could be obtained under
the weaker asphericity condition.

To complete this introduction we now discuss Assumption 2 in more detail.
We first briefly review some basic ideas concerning identity sequences (for
further information, see [2], especially Sections 2, 3).

Let w be the set of words on x (reduced or not). For s c r , let sw denote
the subset of w consisting of all words of the form

WS'W1 (W evr,Ses,e = ±l).

If C = WReW~l is an element of rw then we define eval(C) to be the
element eWNtR of the free module P. If a = (Cl, C2, ... , Cn) is a finite
sequence of elements of rw then we define eval(er) to be £/=i eval(C/). If
F e w then av is the sequence {VCXV~X, VC2V

l, . . . , VCnV~l).

A finite sequence (C,, C2, . . . , Cn) of elements C, = WtR^W~x of ele-
ments of rw is called an identity sequence if C{C2--. Cn is freely equal to 1.
We define operations on such sequences as follows.

(1) Replace Wi by a word freely equal to it for i - I, ... , n .
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(2) Delete two successive terms C , C +1 if C-+1 is identically equal to

C7>.

(3) Replace two successive terms Cj,Cj+x by either C.+ 1 , Cj^CjCj+l

or CJCJ+XCJX , Cj. Two identity sequences are said to be Peiffer equivalent
if one can be obtained from the other by a finite number of operations (1),
(2), (2)"1 (the operation inverse to (2)), and (3). The Peiffer equivalence
class of a sequence a will be denoted by {a). The set of Peiffer equivalence
classes is a left ZG-module with addition defined by

and G-action defined by

WN - {a) = (aw).

This ZG-module is isomorphic to K under the mapping

(a) •-> eval(er).

Consider the following assumption.
ASSUMPTION 2 ' . Every identity sequence a is Peiffer equivalent to a prod-

uct axa2... ak of identity sequences at (1 < i < k), where for i = I, ... , k
there is an edge e( of T such that all terms of ai belong to r" .

It is easy to see that Assumption 2' implies Assumption 2. Moreover, one
can show that if Assumption 1 holds then Assumption 2 implies Assumption
2' (see the second remark at the end of Section 3). Thus Assumptions 1 and
2 are equivalent to Assumptions 1 and 2'.

2. Proof of Theorem 1

We will need the following results.

LEMMA 1. The submodules Mv (v e V) generate their direct sum in M.

PROOF. Let Q be the free left ZG-module with basis {bx : x e x} . There
is a standard short exact sequence

where the embedding pi is given by

dW,
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with d/dx Fox differentiation, and n the natural projection ZF -* ZG [1,
p. 43]. The image of Mv under fi lies in the submodule of Q generated by
{bx:x€xj.

LEMMA 2. For e e E, v e V we have ~M = ZG <8>G M , ~M ^ ZG ®c

PROOF. Let e = {u,v} e E, and let Qe be the free left Z<7e-module with
basis {be

x : x e \u U \v} . Then we have a short exact sequence

analogous to (2.1). Tensoring by the free right ZGe-module ZG we get the
exact sequence

0 - • ZG®G Me -^-* ZG®G Qe -+ ZG®G IGe -» 0 .

Now ZG®G Qe is isomorphic to the submodule of Q generated by {bx : x e

x a U x J , under the mapping 1 ®be
x i-> bx . The image of (1 ®ne){ZG®G Me)

under this isomorphism is precisely n(Me). Thus Me = ZG ®G Me, as

required.
The other result is similar.

Assumption 2 implies that the kernel of the induced homomorphism

a K

consists of the cosets mod.®Ke of the elements of Ker a. We note that
Ker a is (freely) generated by the elements

te
R-4v) (vGV,eeS'(v),RGiv).

(Here e(v) is some fixed element of S{v), and S'(v) — S(v) - {e(v)}.)
Now 0 P J @ K e s $ I f . Let / = {u, v} be an edge of T and let Jdf

u

be the module Mu regarded as a submodule of the factor Mf of 0 Me, and

similarly for v . Then Mu n Mv = 0, by Lemma 1, so we get the submodule

{u,v}€E

© ©
v€Ve€S(v)
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of © M ? . The submodule of L corresponding to Kera* is generated by
the elements

m - me{v) (veV, ee s'(v), meMv).

(Here me is the element m of Mv thought of as an element of the factor
Me of 0 Me , and similarly for m*(t)).) Now there is an automorphism of
L denned by

me^me-me(v) (v € V, e e S'(v), m e Mv),

'<«> ' ( » > (veV,meMv).

The image of 0 u 6 K© e gs ' ( t ; )^ t under this automorphism is Kera*. Con-
sequently we have a short exact sequence

v€Ve€S'(v)

Now Theorem 1 follows using Lemma 2.

3. Proof of Theorem 2

For e = {u, v} an edge of T, write Ge — Fe/Ne, where Fe is the free
group on xu U x^ , and Ne is the normal closure of re in Fe . The relation
module Me is then Ne/N'e . Let Ae be the free left ZG-module with basis
{ae

R : R € re) . By assumption the kernel Be of the epimorphism

is generated by the elements (1 - RNe)aR (R e re). Tensoring the exact
sequence

by the free right ZGe-module ZG gives the exact sequence

0 -> ZG ®G B —> ZG ®G A —• ZG ®G M —> 0.
e e e

Now we have isomorphisms

•LG ®Ge Me '- • Me

(the latter by Lemma 2). Thus we obtain an isomorphism

(3.1)
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carrying the generating set

{l®{l-RNe)a
e
R:Rere}

of ZG ®G Be to

{(l-RN)te
R:Rere}.

Since a : ®Ke —> K is onto, we deduce that K is generated by the
elements

{\-RN)tR (Rere,eeE),

as required.
REMARKS. (1) We can obviously prove the following result by similar ar-

guments.
Suppose Assumptions 1 and 2 hold. For e e E, let Xe be a set of

generators for the ZG-module Be. Then 1 ®G Xe = {1 <g> x : x e Xe}
is a set of generators for the ZG-module ZG ®G Be , and so the image of

<8>r X under the composition

(3.2)

is a generating set of K.
(2) In particular, for e = {u, v} e E, let we be the set of words on

xuUxv. Let He be the set of identity sequences of elements of r j f . If
T = (WlR

e
l
l W^1, ..., WnR

ej W~x) is an element of Ze , let eval^t) denote
the element exWxNea

e
R +• •+en\VnNeaR of Ae. Then Be = {evale(r) :

T € X J . The image of {1 ® evale(r) :"t e Z?, e e £ } under (3.2) is
{eval(t) : T G Ee, e e ^ } . From this we deduce that if a is an identity
sequence of elements of rw then

eval(ff) = F,Areval(T,) + • • • + VmNeval(Tm)

for certain elements V(N of G and elements xt of \JeeE ̂  . Thus

4. Proof of Theorem 3

For e = {u, v} e E, we will write ie for the set re - (ru U r v ) , and we
will denote the union of all the r^'s by f. The free product Gu * Gv will be
denoted by Ge.

We will be interested in diagrams over the presentation (x; r) of G. (For
the general theory of diagrams over presentations, see [7, Chapter V].) Our
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main concern will be with what we will call r-discs and r-spheres. An r-disc
(respectively r-sphere) is a finitely tesselated disc (respectively, sphere) whose
oriented edges are labelled by elements of x u x~ , and where each region
has a boundary path labelled by an element of r .

Let M be an r-disc or r-sphere. We let E(M) denote the set of regions
of M which are labelled by elements of f. If A e E(M), and if the label on
A belongs to ie then we define e(A) to be e. For any path a in M, we let
tp(a) denote the set of all v e V for which some element of x^ occurs in
the label of a .

Suppose E(M) / 0 . Choose some A e E(M), and consider the collection
of all regions A' of M for which the following holds: there exist regions A =
\,Al,...,An = A' with tp(dAt) c e{A) (i = 1, . . . , n) , and where A.,
A1+1 have an edge in common for i = 0, ..., n- I. We call this collection,
and also the subdiagram F of M which it determines, a federation. We
define e{F) to be e(A).

Let Fj be a federation of M . If F, / M , then construct a federation
F2 of M - F , . (The reader at this point may object, since we have only
defined the concept of federation for r-discs and r-spheres. However, it is
clear that we can define the concept of federation for subdiagrams of r-discs.)
If F2 ^ M - F t , then choose a federation F3 of M - (Fj U F2) , and so on.
Eventually, we will get a collection F , , . . . , Fn of subdiagrams of M which
cover M,with F/ + 1 a federation of M - | J j - = 1 F r We call {F.}"=1 a federal
subdivision of M.

LEMMA 3. Let D be an r-disc having a federal subdivision {F,}"=1 with
the following properties: (i) each F(. is simply connected; (ii) the label on
dFi defines a non-trivial element of the kernel of the natural epimorphism
G?(F j -> Ge(F j (i = 1, . . . , n). Then there exists some Fj such that FjDdD
contains at least one edge, and e(Fj) c tp{dH).

This is a special case of the proof of the main lemma of Edjvet's paper [4].
(We remark that, strictly speaking, Edjvet's result only applies when each x^
is a singleton. However, the extension to the more general situation where
the xv's may have more than one element is easy.)

The proof that Assumption 1 holds now follows from Lemma 3 using
arguments similar to those in the proof of Theorem 1 of [6] (see also the
proof of Theorem 4 of [6]).

LEMMA 4. Let S bean r-sphere having a federal subdivision {F(}"=1 with
n > 1. Then there is a simply connected federation F whose boundary label
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defines the identity of Ker(GLF) —> <JWF)) . Moreover, for any given vertex of
S, F can be chosen so that that vertex does not lie in the interior of F .

PROOF. By arguing as on p. 573 of [9], we can find some federation Fp

and a component C of S - Fp with all Y}; c C simply connected. Suppose
that for each F;. c C the boundary label of F defines a non-trivial element
of Ker(Ge(F j —> Ge^ ,) (the boundary label must define an element of this

kernel). Then by Lemma 1 (applied to C), there exists F^CC with ^
containing at least one edge, and e(Fq) C tp{dC). Now tp(dC) C e(Fp), so
e(¥g) = e(Fp). Since F? and Fp have an edge in common, this contradicts
the fact that Fp and F^ are federations (they should have been incorporated
into one larger federation!).

The last statement of the lemma follows as on the bottom of p. 104 of
[10].

We will now show that Assumption 2' holds.
If a is an identity sequence then we define the rank rk(a) of a to be the

ordered pair (n,, n2), where n, is the number of terms belonging to fw, and
n2 is the number of terms belonging to rw - fw. The proof is by induction
on rank (where ordered pairs are given the lexicographical ordering).

If rk(cr) = (0,0) there is nothing to prove.
Suppose rk(ff) > (0 ,0 ) . We are going to use the theory of spherical pic-

tures, which is a standard geometric tool for detailing with identity sequences
(see [2], [10], for the general theory).

Construct a spherical picture P , having a spray whose associated identity
sequence is a (see [10, p. 103]). Let P' be a spherical subpicture of P
containing at least one disc of P , and which is minimal with respect to this
property.

Assume first that some disc of P' is labelled by an element of f. Then
dualising P' to obtain an r-sphere, and arguing as in [10, pp. 103-105]
(making use of Lemma 4 above), we can find a simple closed transverse path
S in P with the following properties.

(4.1) S does not intersect any disc of P , and does not intersect the bound-
ary of P .

(4.2) There is at least one disc of P inside 5 .
(4.3) There is some e = {«, v} e E such that all discs inside 8 are

labelled by elements of re .
(4.4) At least one disc inside S is labelled by an element of ie .
(4.5) The label U on S defines the identity of Ge = Gu*Gv.
Let k, I be the number of discs inside and outside S respectively. Then
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we can construct a spray for P where the first k paths are connected to the
discs inside S and the remaining / paths are connected to the discs outside
S, and where the identity sequence a — (C, , C2,... , Ck, Ck+l, ... , Ck+l)
associated with the spray is such that ClC2...Ck is freely equal to a conju-
gate ZUZ~l of U (see [10, pp. 105-106]). It is important to note that a
and a are Peiffer equivalent. For since a and a' both arise from sprays,
a~la' has the primary identity property as defined in [2, p. 177] (see [10],
especially statement (1.3) on p. 102, in this regard). Hence [2, Proposition
16(ii)] applies.

Now since U defines the identity of Gu * Gv there is a sequence
(Z>,, . . . , Dm) of elements of (ra U rvf such that DlD2...Dm is freely
equal to ZUZ~l. Let

T \ U \ 1 • • • 5 •^- '«* » ^ - ' 1 ' 1 1 9 • • • » ^- ' t -_l_/ / •
v I ' ' rfl * K-rl * ' K+l'

Then ax x is Peiffer equivalent to a' (and hence to a). Also, ax is an
identity sequence all of whose terms lie in r", and T is an identity sequence
with rk(r) < rk(ff). Now apply the inductive hypothesis to T .

Next suppose that no disc of P7 is labelled by an element of f. Then all
discs of P7 are labelled by elements of rv for some v e V. By taking S to
be a suitable path encircling P1, and by choosing an edge e incident with
v , we have that (4.1)-(4.3) hold, and instead of (4.4) and (4.5) we have that
the label U on d is the empty word. It is now an easy matter to adapt the
arguments of the previous two paragraphs to obtain the required result.
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