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ON THE HAHN-BANACH EXTENSION PROPERTY 
BY 

TING-ON TOO) 

1. Introduction. In this paper, we consider real linear spaces. By (V: || ||) we 
mean a normed (real) linear space V with norm || ||. By the statement " V has the 
(7 , X) norm preserving (Hahn-Banach) extension property" we mean the follow
ing: 7 is a subspace of the normed linear space X, Fis a normed linear space, and 
any bounded linear function / : 7-> V has a linear extension F: X-+ V such that 
|| F || = H/!. By the statement " F has the unrestricted norm preserving (Hahn-
Banach) extension property" we mean that V has the (7 , X) norm preserving 
extension property for all 7 and X with 7 c X. By (V: <) we mean a partial 
ordered linear space (OLS) with the vector ordering < which is not necessarily 
antisymmetric. By the statement " F has the (7, X) dominated (Hahn-Banach) 
extension property" we mean the following: (V: <) is an OLS, 7is a subspace of 
the linear space X, and for any sublinear (i.e., subadditive and positively homo
geneous) function p: X-> V, any linear function/: 7—> V such thatf(y) <p(y) for 
all ye Y has a linear extension F: X-> V such that F(x) <p(x) for all x e X. By the 
statement "Fhas the unrestricted dominated (Hahn-Banach) extension property" 
we mean that V has the (7 , X) dominated-extension property for all 7 and X 
with Ycz X. 

The classical Hahn-Banach theorem asserts that the real number field R has the 
unrestricted norm preserving extension property and also the unrestricted domin
ated extension property. In [1], G. Elliott and I. Halperin proved that for all 
finite-dimensional normed linear spaces V there is a single pair ( 70, X0) such that 
when V has the ( 70, X0) norm preserving extension property then V must have the 
unrestricted norm preserving extension property. This result is stated precisely as 
follows : 

THEOREM I. Let X0 = C(3), the normed linear space with sup norm of all continuous 
functionals on the discrete topological space of three elements, and let 70 be a sub-
space of XQ generated by (0, 1, 1) and (1, 0, 1). 

If a finite-dimensional normed linear space V has the ( 70, X0) norm preserving 
extension property then V has the unrestricted norm preserving extension property. 

The question arises: Is there a corresponding result to the above theorem for 
dominated extensions in ordered linear spaces? The answer is "yes". We shall 
show in the main theorem (§3) that there exists a class 51 of OLS's which includes 
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the finite dimensional OLS's such that there is a single pair ( Y0, X0) of linear spaces 
such that if V e 2i has the ( Y0, X0). dominated extension property then V must have 
the unrestricted dominated extension property. 

2. Preliminaries. Besides Theorem I, some results proved in [2], [3], [4] and [6] 
will be used in the proof of our main theorem. Let F be a linear space. A non-empty 
subset C of V is said to be a wedge if u, v e C and t e R, t > 0, imply that u+v and 
tu are in C. A wedge Cis said to be sharp if ue C and —ueC imply that u = 0, 
the zero element of V. If (V: <) is an OLS, then the set C={v: v>0} is a wedge and 
is called the positive wedge of (V: <). Conversely, a wedge C in a linear space V 
determines a vector ordering < by taking v > 0 iff v e C. Therefore, a wedge C in V 
uniquely determines and is determined by a vector ordering < . The positive wedge 
C corresponding to the vector ordering < is sharp iff the vector ordering is anti
symmetric. For convenience, if C is the positive wedge corresponding to the 
ordering < , we sometimes write (V: C) instead of (V: <) . A wedge C in an OLS 
(V: C) is said to be reproducing if V is the linear hull of C. An OLS (V: <) is said 
to have the least upper bound property if every set of elements with an upper 
bound has a least upper bound (not necessarily unique). The least upper bound is 
unique if the ordering < is antisymmetric (or, equivalently, the positive wedge C is 
sharp). If (V: C) has the least upper bound property and if C is reproducing and 
sharp, we call (V: C) a boundedly complete vector lattice. A point e of an OLS 
(V: <) is said to be an order unit of V if e > 0 is such that, given any v e V we 
have — Xe < v < Xe for some A e R. A point u of a wedge C in V is said to be a core 
point of C if C contains a line segment through u in each direction. A wedge C in a 
linear space V is said to be lineally closed if every line intersects C in a set which is 
closed in the natural topology of the line, or equivalently, if v1 e C, v e C and 
tVi — veC for some real f>0 implies that tvv± — veC; where ^ = in f{ t eR: 
tvx — ve C, *>()}. We state without proof some results which will be used in the 
sequel. 

THEOREM II ([6]). If an OLS (V: <) has the least upper bound property, then V 
has the unrestricted dominated extension property. 

THEOREM III (W. E. Bonnice and R. J. Silverman [3], [4]). If a finite-dimensional 
OLS (V: C) has the unrestricted dominated extension property, then C is lineally 
closed. 

THEOREM IV. (1) A point u is a core point of the wedge C in(V: C) ijfu is an order 
unit of(V: <) where < is the vector ordering corresponding to C. (2) IfCis a finite 
dimensional wedge (i.e., the linear hull of C is finite dimensional), then C has a core 
point relative to its linear hull. 

THEOREM V ([3] p. 211). Let (V: C) be an OLS and let V1 be the linear hull ofC 
Then (V: C) has the (Y, X) dominated extension property (unrestricted dominated 
extension property) iff (Vx: C) has the (Y, X) dominated extension property (un
restricted dominated extension property). 
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Let (V: || ||) be a normed linear space, e be a vector of norm one in V and let 
P={ve V:v = X(u+e)9 XeR, A>0, H | < 1 } . Then P is a wedge and (V:P) is an 
OLS with e as an order unit. We shall call this OLS (V: P) the OLS deduced from 
(V: || ||) and e. Conversely, if (V: C) is an OLS with an order unit e and is such that 
C is sharp and lineally closed then the function || || : V->R defined by ||#|| = 
inf {ÀeR: — Xe<x<Xe, A>0} for all x e V9 is a norm. We shall call this normed 
linear space (V: || ||) the normed linear space deduced from (V: C) and the order 
unit e. Moreover, it is easy to verify that the set 

P = {xeF; jc = X(u+e), A e R, A > 0, \\u\\ < 1} 

coincides with C and the OLS (V:P) deduced from (V: || ||) coincides with the 
original OLS (V: C). From this remark and Theorem 1, Theorem 2 of [2], we have 
the following theorem : 

THEOREM VI (Nachbin [2]). Let (V: C) be an OLS with an order unit e such that C 
is sharp and lineally closed. Let (V: || ||) be the normed linear space deduced from 
(V: C) and the order unit e. Then (V: || ||) has the unrestricted norm preserving 
extension property iff (V: C) is a boundedly complete vector lattice. 

3. The main theorem. We begin with the following lemmas: 

LEMMA 1. Let (V: <) be an OLS with an order unit e such that the positive wedge 
C corresponding to < is lineally closed and sharp, and let (V: \\ ||) be the normed 
linear space deduced from (V: <) and the order unit e. If (V: <) has the (7 , X) 
dominated extension property, then (V: || ||) has the (Y, X) norm preserving 
extension property when X is normed by any normed linear space norm. 

Proof. Assume that (V: <) has the (7, X) dominated extension property and 
that || || is a normed linear space norm on X. Let / : Y-+ V be a bounded linear 
function and define a function p: X->V by p(x)=\\f\\ \\x\\e for all xeX. Then p 
is sublinear. Moreover, from the assumption that (V: \\ ||) is deduced from (V: <) 
and the order unit e of (V: <), and that C is lineally closed, we have 

P(y) = 11/11 \\y\\e > \\f(y)\\e >f(y) for all ye Y. 

Therefore, by the (Y, X) dominated extension property of (V: <) there exists a 
linear extension F of /on the whole space Zinto V such that ||/|| \\x\\e=p(x)>F(x) 
for all xeX. Since H = i n f { A > 0 : -\e<v<\e} for all veV, \\f\\ \\x\\ > \\F(x)\\ 
for all xeX. This implies that ||F|| < ||/||. On the other hand, 

| |F | |=sup{ | |F (x ) | | :W <l,xeX} 

> s u p { | | F W | | : | b | | <l,yeY} 

= ll/ll. 
Thus, ||F|| = ll/ll. This shows that (V: \\ ||) has the (7, X) norm preserving ex
tension property. 

2—C.M.B. 
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LEMMA 2. Let R2={(a, b): a,beR} and let R3={{a, b, c):a,b,ce R}. If a finite 
dimensional OLS (V: C) has the (R2, R3) dominated extension property, then the 
positive wedge C is lineally closed. 

Proof. We remark that if (V: C) has the (R2, R3) dominated extension property 
then it has the (R, R2) dominated extension property. With this remark, it is 
easily seen from the proof of Theorem III ([4] pp. 844-849, [5]) that if the un
restricted dominated extension property of (V: C) is replaced by the (R2, R3) 
dominated extension property the result is still valid and hence the lemma follows. 

LEMMA 3. If{V: <) is a finite dimensional OLS such that the ordering < is anti
symmetric and if(V: <) has the (R2, R3) dominated extension property, then (V: <) 
has the unrestricted dominated extension property. 

Proof. Let C be the positive wedge of F corresponding to < . By Theorem V, we 
may assume that V is the linear hull of C without loss of generality. Then by 
Theorem IV, since V is finite dimensional, C has a core point e which is an order 
unit of (V: <) . Define || ||: V-+R by ||i?||=inf {Aeiî: Xe>v> -Xe, A>0} for all 
veV. Since < is antisymmetric, C is sharp. Furthermore, since (V: <) has the 
(R2, R3) dominated extension property, then, by Lemma 2, C is lineally closed. 
Hence (V: \\ ||) is the normed linear space deduced from (V: <) and the order unit 
e. Thus, by Lemma \,{V: || ||) has the (R2, R3) norm preserving extension property 
when R3 is normed by any normed linear space norm. Let X0 = C(3) and let 
70={A(0, 1, l) + w(l,0, 1): A, ueR}c: c(3). Since C(3) is a three-dimensional 
normed real linear space and YQ is a two-dimensional subspace of C(3), (V: || ||) 
has the ( Y0, X0) norm preserving extension property. Thus, by Theorem I, 
(V: || ||) has the unrestricted norm-preserving extension property. Then, by 
Theorem VI, the original ordered linear space (V: <) is a boundedly complete 
vector lattice, and by Theorem II, (V: < ) has the unrestricted dominated extension 
property. 

THEOREM. Let (V: <) be an OLS and let V0={veV:v>0 and -v>0}. If the 
quotient linear space V/VQ is finite dimensional, then the following two statements are 
equivalent: 

(1) V has the (R2, R3) dominated extension property. 
(2) V has the unrestricted dominated extension property. 

Proof. Clearly (2) implies (1). To see (1) implies (2), assume that (V: <) has the 
(R2, R3) dominated extension property. By Theorem V, we may assume that the 
positive wedge C of (V, < ) is reproducing without loss of generality. Let V1 be a 
subspace of F such that VX^V/V0. Then V= V1 © VQ, the algebraic direct sum of 
the subspaces V± and V0. We show that (Vx: < ) has the (i?2> ^3) dominated 
extension property. Let/?: R3-^V1 be a sublinear function and le t / : R2->VX be a 
linear function such that f(y) <p(y) for all yeR2. Since (V, <) has the R2, R3) 
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dominated extension property, / has a linear extension F: R3-> V such that 
F(x) <p(x) for all x e R3. Let F(.v) = F1(x) + F0(x)9 where Ft(x) e Vx and F0(x) e V0 

for all x G R3. Since F(y)=f(y) e Vx for all y e R2, F0(y)=0 and hence Fx{y)^f{y) 
for all y e i?2. Also, the linearity of F implies the linearity of F± : thus Fx is a linear 
extension of /on i?3 into Vx. Furthermore, Fi is dominated by p. Indeed, since 
F0(x) G K0, 

/?(JC) - Fi(x) = p(x) - F{x) + F0(x) > 0 for all XER3. 

This shows that (Kx*. <) has the (R2, R3) dominated extension property. By our 
assumption (V±: <) is finite dimensional, and since the set {veV^v^O and 
— v>0}={0}9 the ordering < is antisymmetric on V±. Therefore, by the proof 
of Lemma 3 (Fj.: <) is a boundedly complete vector lattice. It follows that 
V has the least upper bound property and hence, by Theorem II, V has the 
unrestricted dominated extension property. 

REFERENCES 

1. G. Elliott, and I. Halperin, Linear normed spaces with extension property, Canad. Math. 
Bull. 9, No. 4 (1966), 433-441. 

2. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Am. Math. 
Soc. 68 (1950), 28-46. 

3. W. E. Bonnice, and R. J. Silverman, The Hahn-Banach theorem for finite dimensional spaces, 
Trans. Am. Math. Soc. 121 (1966), 210-222. 

4. , The Hahn-Banach extension and the least upper bound properties are equivalent, Proc. 
Am. Math. Soc. 18, No. 5 (1967), 843-850. 

5. T. O. To, A note of correction to a theorem of W. E. Bonnice andR. J. Silverman, Trans. Am. 
Math. Soc. 139 (1969), 163-166. 

6. M. M. Day, Notes on Ordered Linear Spaces, University of Illinois, 1950, unpublished. 

UNIVERSITY OF SASKATCHEWAN, 

SASKATOON, SASKATCHEWAN 

https://doi.org/10.4153/CMB-1970-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-002-4

