Appendix A: Hardy space lemmas

A.1 Multipliers in h^1

We recall that ω is a modulus of continuity if $\omega : [0, \infty) \longrightarrow \mathbb{R}^+$ is continuous, increasing, $\omega(0) = 0$ and $\omega(2t) \le C\omega(t)$, 0 < t < 1. A modulus of continuity determines the Banach space $C_{\omega}(\mathbb{R})$ of bounded continuous functions $f : \mathbb{R} \longrightarrow \mathbb{C}$ such that

$$|f|_{C_{\omega}} \doteq \sup_{x \neq y} \frac{|f(y) - f(x)|}{\omega(|x - y|)} < \infty,$$

equipped with the norm $||f||_{C_{\omega}} = ||f||_{L^{\infty}} + |f|_{C_{\omega}}$. Note that C_{ω} is only determined by the behavior of $\omega(t)$ for values of t close to 0. Consider a modulus of continuity $\omega(t)$ that satisfies

$$\frac{1}{h^n} \int_0^h \omega(t) t^{n-1} \, \mathrm{d}t \le K \left(1 + \log \frac{1}{h} \right)^{-1}, \quad 0 < h < 1,$$
(A.1)

and the corresponding space $C_{\omega}(\mathbb{R}^n)$.

LEMMA A.1.1. Let $b \in C_{\omega}(\mathbb{R}^n)$ and $f \in h^1(\mathbb{R}^n)$. Then $bf \in h^1(\mathbb{R}^n)$ and there exists C > 0 such that

$$\|bf\|_{h^1} \le C \|b\|_{C_{\omega}} \|f\|_{h^1}, \quad b \in C_{\omega}(\mathbb{R}^n), f \in h^1(\mathbb{R}^n).$$

PROOF. Let $b(x) \in C_{\omega}$. It is enough to check that $||bf|| \le C ||b||_{C_{\omega}}$ for every h^1 -atom a with C an absolute constant. This fact is obvious for atoms supported in balls B with radius $\rho \ge 1$ without moment condition because b is bounded so $ba/||b||_{L^{\infty}}$ is again an atom without moment condition. If $B = B(x_0, \rho)$, $\rho < 1$, we may write $a(x)b(x) = b(x_0)a(x) + (b(x) - b(x_0))a(x) = \beta_1(x) + \beta_2(x)$. Then $\beta_1(x)/||b||_{L^{\infty}}$ is again an atom while $\beta_2(x)$ is supported in B and satisfies

$$\begin{aligned} \|\beta_2\|_{L^{\infty}} &\leq 2\|b\|_{L^{\infty}} \|a\|_{L^{\infty}} \leq \frac{C}{\rho^n}, \\ \|\beta_2\|_{L^1} &\leq C\|a\|_{L^{\infty}} \int_B \omega(|x-x_0|) \,\mathrm{d}x \leq \frac{C'}{(1+|\log \rho|)}. \end{aligned}$$

https://doi.org/10.1017/CB Gambridge Books Online On Gambridge Upiversity Press, 2009

We wish to conclude that $||m_{\Phi}\beta_2||_{L^1} < \infty$. Let $B^* = B(x_0, 2\rho)$. Since $m_{\Phi}\beta_2(x) \le ||\beta_2||_{L^{\infty}}$, we have

$$J_1 = \int_{B^*} m_{\Phi} \beta_2(x) \, \mathrm{d}x \le C |B^*| \rho^{-n} \le C'.$$

It remains to estimate

$$J_{2} = \int_{\mathbb{R}\setminus B^{*}} m_{\Phi} \beta_{2}(x) \, \mathrm{d}x = \int_{2\rho \le |x-x_{0}| \le 2} m_{\Phi} \beta_{2}(x) \, \mathrm{d}x \tag{A.2}$$

(observe that $m_{\Phi}\beta_2$ is supported in $B(x_0, 2)$ because supp $\Phi \subset B(0, 1)$). If $0 < \varepsilon < 1$ and $\Phi_{\varepsilon} * \beta_2(x) \neq 0$ for some $|x - x_0| \ge 2\rho$ it is easy to conclude that $\varepsilon \ge |x - x_0|/2$, which implies

$$|\Phi_{\varepsilon} * \beta_2(x)| \le \left| \int \Phi_{\varepsilon}(y) \beta_2(x-y) \, \mathrm{d}y \right| \le \frac{C \|\beta_2\|_{L^1}}{\varepsilon^n} \le \frac{C' |x-x_0|^{-n}}{(1+|\log \rho|)}$$

so

$$m_{\Phi}\beta_2(x) \le \frac{C'}{|x - x_0|^n (1 + |\log \rho|)}$$
 for $|x - x_0| \ge 2\rho$. (A.3)

It follows from (A.2) and (A.3) that

$$J_2 \le \int_{2\rho \le |x-x_0| \le 2} \frac{C'}{|x-x_0|^n (1+|\log \rho|)} \, \mathrm{d}x \le C''$$

which leads to

$$||ba||_{h^1} \le ||\beta_1||_{h^1} + ||\beta_2||_{h^1} \le C_1 + J_1 + J_2 \le C_2.$$

Inspection of the proof shows that C_2 may be estimated by $C \|b\|_{C_{\alpha}}$.

EXAMPLE A.1.2. Suppose that a modulus of continuity $\omega(t)$ satisfies:

$$\omega(t)/t^n$$
 is a decreasing function of t (A.4)

and

$$D = \int_0^1 \frac{\omega(t)}{t} \, \mathrm{d}t < \infty. \tag{A.5}$$

A short and elegant argument shows (*cf.* [**Ta**], page 25) that under these conditions $h^1(\mathbb{R}^n)$ is stable under multiplication by elements of $C_{\omega}(\mathbb{R}^n)$. On the other hand, (A.5) alone already implies that

$$\omega(h)\log\frac{1}{h} = \int_{h}^{1} \frac{\omega(h)}{t} \,\mathrm{d}t \leq \int_{h}^{1} \frac{\omega(t)}{t} \,\mathrm{d}t \leq D, \quad 0 < h < 1,$$

which keeping in mind the obvious estimate

$$\frac{1}{h^n} \int_0^h \omega(t) t^{n-1} \, \mathrm{d}t \le \frac{\omega(h)}{n}$$

shows that the modulus of continuity ω satisfies (A.1) and Lemma A.1.1 can be applied, proving the mentioned stability of $h^1(\mathbb{R}^n)$ under multiplication by elements of $C_{\omega}(\mathbb{R}^n)$.

Consider now a modulus of continuity $\omega(t)$ such that

$$\omega(t) = \frac{1 - n \log t}{\log^2 t}, \quad \text{for } 0 < t < 1/2.$$

Since $\omega(t) \ge |\log t|^{-1}$ it follows that $\int_0^{1/2} (\omega(t)/t) dt = \infty$ and the Dini condition (A.5) is not satisfied. On the other hand,

$$\frac{1}{h^n} \int_0^h \omega(t) t^{n-1} \, \mathrm{d}t = \left(\log \frac{1}{h}\right)^{-1} \approx \left(1 + \log \frac{1}{h}\right)^{-1}, \quad \text{as } h \to 0$$

so criterion (A.1) is satisfied. This shows that (A.5) is strictly more stringent than (A.1).

A.2 Commutators

We consider now a bounded smooth function $\psi(\xi), \xi \in \mathbb{R}$, such that

$$\left|\frac{\mathrm{d}^k}{\mathrm{d}x^k}\psi(\xi)\right| \leq C_k \frac{1}{(1+|\xi|)^k}, \qquad \xi \in \mathbb{R}, \quad k = 0, 1, 2, \dots$$

Then $\psi(\xi)$ is a symbol of order zero and defines the pseudo-differential operator

$$\psi(D)u(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ix\xi} \psi(\xi) \widehat{u}(\xi) \, \mathrm{d}\xi, \quad u \in \mathcal{S}(\mathbb{R}).$$

In particular, $\psi(D)$ is bounded in $h^1(\mathbb{R})$. The Schwartz kernel of $\psi(D)$ is the tempered distribution k(x - y) defined by $\hat{k}(\xi) = \psi(\xi)$ which is smooth outside the diagonal $x \neq y$. Moreover, k(x - y) may be expressed as

$$k(x-y) = \lim_{\varepsilon \to 0} \frac{1}{2\pi} \int e^{i(x-y)\xi-\varepsilon|\xi|^2} \psi(\xi) d\xi = \lim_{\varepsilon \to 0} k_\varepsilon(x-y),$$

where the limit holds both in the sense of S' and pointwise for $x \neq y$. Furthermore, the approximating kernels $k_{\varepsilon}(x-y)$ satisfy uniformly in $0 < \varepsilon < 1$ the pointwise estimates

$$|k_{\varepsilon}(x-y)| \le \frac{C_j}{|x-y|^j}, \quad j = 1, 2, \dots$$
 (A.6)

which of course also hold for k(x - y) itself when $x \neq y$.

We consider a function b(x) of class $C^{1+\sigma}$, $0 < \sigma < 1$, and wish to prove that the commutator $[\psi(D), b\partial_x]$ is bounded in $h^1(\mathbb{R})$. A simple standard computation that includes an integration by parts gives

$$[\psi(D), b\partial_x]u(x) = \int k'(x-y)(b(y) - b(x))u(y) \,\mathrm{d}y - \psi(D)(b'u)$$

where the integral should be interpreted as the pairing

$$\langle \langle k'(x-\cdot)(b(\cdot)-b(x)), u(\cdot) \rangle$$

between a distribution depending on the parameter *x* and a test function *u*. Since multiplication by *b'* is bounded in $h^1(\mathbb{R})$ with norm controlled by $||b'||_{C^{\sigma}}$, we need only worry about the remaining integral term that can be rewritten as

$$Tu(x) = \int (y-x)k'(x-y)\frac{b(x) - b(y)}{x-y}u(y) \, dy$$

= $\int k_1(x-y)\beta(x,y)u(y) \, dy$ (A.7)

where

$$\beta(x, y) = \int_0^1 b'(\tau x + (1 - \tau)y) d\tau$$
 and $k_1(x) = -xk'(x)$.

Observe that $\beta \in C^{\sigma}(\mathbb{R}^2)$.

LEMMA A.2.1. Assume T is given by (A.7) with kernel

$$K(x, y) = k_1(x - y) \beta(x, y).$$

Then T is bounded in $h^1(\mathbb{R})$.

PROOF. It follows that $\hat{k}_1(\xi) = (\xi k(\xi))' = \psi(\xi) + \xi \psi'(\xi)$. In other words, $\hat{k}_1(\xi) = \psi_1(\xi)$ is a symbol of order zero and *T* has kernel $k_1(x-y)\beta(x,y)$. We may write $\beta(x,y) = b'(x) + |x-y|^{\sigma}r(x,y)$ with $r(x,y) \in L^{\infty}(\mathbb{R}^2)$ so

$$Tu(x) = b'(x)\psi_1(D)u(x) + \int k_1(x-y) |x-y|^{\sigma} r(x, y)u(y) \, \mathrm{d}y,$$

= $T_1u(x) + T_2u(x).$

The first operator T_1 is obviously bounded in h^1 because it is the composite of $\psi_1(D)$ with multiplication by a C^{σ} function. To analyze T_2 we check—writing $k_1 = \lim_{\epsilon \to 0} k_{1,\epsilon}$ and using (A.6) for $k_{1,\epsilon}$ —that its Schwartz kernel is a locally integrable distribution given by the integrable function $k_2(x, y) = k_1(x - y)|x - y|^{\sigma}r(x, y)$. Hence, $|k_2(x, y)| \le C_1|k_1(x - y)||x - y|^{\sigma} = k_3(x - y)$. Observe that $k_3(x) \le C \min(|x|^{\sigma-1}, |x|^{-2})$ so $k_3 \in L^1(\mathbb{R})$. We will now show that

$$m_{\Phi}k_3(x) = \sup_{0<\varepsilon<1} |\Phi_{\varepsilon} * k_3(x)| \in L^1(\mathbb{R}),$$

where $\Phi \ge 0 \in C_c^{\infty}([-1/2, 1/2])$, $\int \Phi dz = 1$, $\Phi_{\varepsilon}(x) = \varepsilon^{-1} \Phi(x/\varepsilon)$. Since $m_{\Phi}k_3$ is pointwise majorized by the restricted Hardy–Littlewood maximal function

$$mk_3(x) = \sup_{0 < \varepsilon < 1} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} k_3(t) dt$$

we start by observing that

$$\sup_{0<\varepsilon<1} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} |t|^{\sigma-1} dt \le \frac{|x|^{\sigma-1}}{\sigma}.$$
 (A.8)

In doing so we may assume that x > 0. If $0 < \varepsilon \le x$ we have

$$\frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} |t|^{\sigma-1} \, \mathrm{d}t = \frac{(x+\varepsilon)^{\sigma} - (x-\varepsilon)^{\sigma}}{2\varepsilon\sigma} \le \frac{(x+\varepsilon)^{\sigma-1}}{\sigma} \le \frac{x^{\sigma-1}}{\sigma}$$

where we have used the elementary inequality

$$\frac{b^{\sigma} - a^{\sigma}}{b - a} \le b^{\sigma - 1}, \quad 0 \le a < b, \quad 0 < \sigma < 1.$$

Similarly, if $0 < x < \varepsilon$,

$$\frac{1}{2\varepsilon}\int_{x-\varepsilon}^{x+\varepsilon}|t|^{\sigma-1}\,\mathrm{d}t=\frac{(x+\varepsilon)^{\sigma}+(x-\varepsilon)^{\sigma}}{2\varepsilon\sigma}\leq\frac{(x+\varepsilon)^{\sigma-1}}{\sigma}\leq\frac{x^{\sigma-1}}{\sigma}.$$

This proves (A.8). Thus,

$$m_{\Phi}k_{3}(x) \leq C mk_{3}(x) \leq C' |x|^{\sigma-1}$$

which shows that $m_{\Phi}k_3$ is locally integrable. For large |x| the inequality $k_3(x) \le C|x|^{-2}$ easily implies $m_{\Phi}k_3(x) \le C|x|^{-2}$ and we conclude that $m_{\Phi}k_3 \in L^1$. Finally, we see that

$$|\Phi_{\varepsilon} * T_2 u(x)| \le \Phi_{\varepsilon} * k_3 * |u|(x) \le m_{\Phi} k_3 * |u|(x)$$

so $m_{\Phi}T_2u(x) \le m_{\Phi}k_3 * |u|(x)$, which implies that $||T_2u||_{h^1} \le C||u||_{L^1} \le C||u||_{h^1}$. This proves that $T = T_1 + T_2$ is bounded in $h^1(\mathbb{R})$.

Summing up, we have proved:

PROPOSITION A.2.2. If $\psi(\xi)$, $\xi \in \mathbb{R}$, is a smooth symbol of order 0 and $b(x) \in C^{1+\sigma}(\mathbb{R})$, $0 < \sigma < 1$, the commutator

 $[\psi(D), b\partial_x]$

is bounded in $h^1(\mathbb{R})$.

A.3 Change of variables

Consider a diffeomorphism $F : \mathbb{R}^n \to \mathbb{R}^n$ of class C^1 , with Jacobian F' such that for some $K \ge 1$

$$K^{-1}|x-y| \le |F(x) - F(y)| \le K|x-y|, \quad x, y \in \mathbb{R}^n.$$
(A.9)

Write $H = F^{-1}$, denote by H' the Jacobian matrix of H, and assume that

$$\det H' \in C_{\omega},\tag{A.10}$$

where the modulus of continuity $\omega(t)$ satisfies

$$\frac{1}{h^n} \int_0^h \omega(t) t^{n-1} \, \mathrm{d}t \le K \left(1 + \log \frac{1}{h} \right)^{-1}, \quad 0 < h < 1.$$

Notice that if F is a diffeomorphism of Hölder class $C^{1+\varepsilon}$, $\varepsilon > 0$, then (A.9) and (A.10) hold.

PROPOSITION A.3.1 (S. Chanillo, [Ch2]). If F satisfies (A.9) and (A.10), the map $h^1(\mathbb{R}^n) \ni g \mapsto g \circ F$ is bounded in $h^1(\mathbb{R}^n)$.

The main step in the proof of the proposition is

LEMMA A.3.2. Let $H: \mathbb{R}^n \to \mathbb{R}^n$ be a homeomorphism such that for some $K \ge 1$

$$K^{-1}|x-y| \le |H(x) - H(y)| \le K|x-y|, \quad x, y \in \mathbb{R}^n.$$
(A.11)

Let $\Phi \in C_c^{\infty}(B(0,1))$, $\Phi_t(x) = t^{-n}\Phi(x/t)$, $u \in H^1(\mathbb{R}^n)$ and set

$$U(x, t) = \int \Phi_t (H(x) - H(z))u(z) dz, \quad 0 < t < 1$$
$$U^*(x) = \sup_{0 < t < 1} |U(x, t)|.$$

Then there exists a constant C > 0 depending on the dimension *n*, on *K* and on Φ but not on *u* such that

$$\int U^*(x) \, \mathrm{d}x \le C \|u\|_{h^1}. \tag{A.12}$$

PROOF. In view of the atomic decomposition it is enough to prove (A.12) when u(x) is an atom, that we denote by a(x). We must show that if a(x) is an h^1 -atom and

$$A(x, t) = \int \Phi_t (H(x) - H(z)) a(z) dz, \quad 0 < t < 1,$$

$$A^*(x) = \sup_{0 < t < 1} |A(x, t)|,$$

then $||A^*||_{L^1} \leq C$ with *C* independent of a(x). Let a(x) be an atom supported in ball $B = B(z_0, r)$ such that $||a||_{L^{\infty}} \leq |B|^{-1}$. Note that in view of (A.11) and the hypothesis on Φ

$$|x-z| \ge Kt \implies |H(x) - H(z)| \ge t \implies \Phi_t(H(x) - H(z)) = 0$$

for 0 < t < 1 so

$$|A(x,t)| \le ||a||_{L^{\infty}} ||\Phi||_{L^{\infty}} \int_{|z-x| < Kt} \frac{1}{t^n} \, \mathrm{d}z \le \frac{C}{r^n}.$$

showing that

$$|A^*(x)| \le \frac{C}{r^n}.\tag{A.13}$$

If we write $B^* = B(z_0, 2r)$ we see right away that

$$\int_{B^*} A^*(x) \, \mathrm{d} x \le C$$

and we need only concern ourselves with the integral

$$\int_{\mathbb{R}^n \setminus B^*} A^*(x) \, \mathrm{d}x.$$

We first consider the case 0 < r < 1 so that a(x) has vanishing mean $\int a(x) dx = 0$. We will initially show that A(x, t) = 0 if $x \notin B^*$ and $2Kt \le |x - z_0|$. Since $|x - z_0| \ge 2r$ and $|z - z_0| \le r$ implies that $|z - z_0| \le |x - z_0|/2$ we obtain from the triangular property that $|x - z| \ge |x - z_0|/2$ if $|x - z_0| \ge 2r$ and $|z - z_0| \le r$. Thus, $2Kt \le |x - z_0| \le 2|x - z| \le 2K|H(x) - H(z)|$. This implies that $|H(x) - H(z)|/t \ge 1$ so $\Phi_t(H(x) - H(z))a(z) = 0$.

Hence, A(x, t) = 0 if $|x - z_0| \ge 2r$ and $t \le |x - z_0|/(2K)$ and when we estimate $A^*(x)$ on $\mathbb{R}^n \setminus B^*$ we may take the supremum of |A(x, t)| for t in the range $|x - z_0|/(2K) \le t < 1$. We may write

$$|A(x,t)| = \left| \int \left(\Phi_t(H(x) - H(z)) - \Phi_t(H(x) - H(z_0)) \, a(z) \, \mathrm{d}z \right) \right|$$

$$\leq \frac{C \, \|a\|_{L^{\infty}}}{t^{n+1}} \int_{B(z_0,r)} |H(z) - H(z_0)| \, \mathrm{d}z$$

$$\leq \frac{Cr}{|x - z_0|^{n+1}}$$

to conclude that

$$A^*(x) \le \frac{Cr}{|x - z_0|^{n+1}} \quad \text{for} \quad x \notin B^*$$

and

$$\int_{B^*} A^*(x) \, \mathrm{d} x \le C.$$

Assume now that $r \ge 1$. Then, for $|z - z_0| \le r$ and $|x - z_0| \ge (K + 1)r$ we have $|x - z| \ge (K + 1)r - r = Kr$ so

$$|H(x) - H(z)| \ge r \ge 1$$
 and $\Phi_t(H(x) - H(z)) = 0.$

This shows that supp $A(x, t) \subset B(z_0, (K+1)r)$ and also supp $A^* \subset B(z_0, (K+1)r)$. Hence, we get

$$||A^*||_{L^1} \le ||A^*||_{L^\infty} |\operatorname{supp} A^*| \le C,$$

where we have used (A.13).

Proof of Proposition A.3.1. Let $g \in h^1(\mathbb{R}^n)$. Choose some test function $0 \le \Phi \in C_c^{\infty}(B(0, 1))$ with $\int \Phi(x) dx = 1$ and set $v = g \circ F$. We must show that $v^*(x) = \sup_{0 \le t \le 1} |\Phi_t * [g \circ F](x)|$ satisfies $||v^*||_{L^1} \le C ||g||_{h^1}$. Since

$$\int v^*(y) \, \mathrm{d}y = \int v^* \circ H(x) \, |\det H'(x)| \, \mathrm{d}x \le C \|v^* \circ H\|_{L^1},$$

it is enough to estimate

$$\|v^* \circ H\|_{L^1} = \int \sup_{0 < t < 1} \left| \int \Phi_t(H(x) - z)g(F(z)) \, \mathrm{d}z \right| \, \mathrm{d}x$$

which after the change of variables z = H(y) may be written as

$$I = \int \sup_{0 < t < 1} \left| \int \Phi_t(H(x) - H(y)) g(y) \, | \det H'(y) | \, \mathrm{d}y \right| \, \mathrm{d}x$$

because $H = F^{-1}$. Notice that $u(y) = \pm g(y) \det H'(y) \in h^1(\mathbb{R}^n)$ by Lemma A.1.1 and (A.10); furthermore, $||u||_{h^1} \leq C ||g||_{h^1}$. Using Lemma A.3.2 we get $I \leq C ||u||_{h^1} \leq C' ||g||_{h^1}$, as we wished to prove.