Appendix A: Hardy space lemmas

A. 1 Multipliers in h^{1}

We recall that ω is a modulus of continuity if $\omega:[0, \infty) \longrightarrow \mathbb{R}^{+}$is continuous, increasing, $\omega(0)=0$ and $\omega(2 t) \leq C \omega(t), 0<t<1$. A modulus of continuity determines the Banach space $C_{\omega}(\mathbb{R})$ of bounded continuous functions $f: \mathbb{R} \longrightarrow \mathbb{C}$ such that

$$
|f|_{C_{\omega}} \doteq \sup _{x \neq y} \frac{|f(y)-f(x)|}{\omega(|x-y|)}<\infty
$$

equipped with the norm $\|f\|_{C_{\omega}}=\|f\|_{L^{\infty}}+|f|_{C_{\omega}}$. Note that C_{ω} is only determined by the behavior of $\omega(t)$ for values of t close to 0 . Consider a modulus of continuity $\omega(t)$ that satisfies

$$
\begin{equation*}
\frac{1}{h^{n}} \int_{0}^{h} \omega(t) t^{n-1} \mathrm{~d} t \leq K\left(1+\log \frac{1}{h}\right)^{-1}, \quad 0<h<1 \tag{A.1}
\end{equation*}
$$

and the corresponding space $C_{\omega}\left(\mathbb{R}^{n}\right)$.
Lemma A.1.1. Let $b \in C_{\omega}\left(\mathbb{R}^{n}\right)$ and $f \in h^{1}\left(\mathbb{R}^{n}\right)$. Then $b f \in h^{1}\left(\mathbb{R}^{n}\right)$ and there exists $C>0$ such that

$$
\|b f\|_{h^{1}} \leq C\|b\|_{C_{\omega}}\|f\|_{h^{1}}, \quad b \in C_{\omega}\left(\mathbb{R}^{n}\right), f \in h^{1}\left(\mathbb{R}^{n}\right)
$$

Proof. Let $b(x) \in C_{\omega}$. It is enough to check that $\|b f\| \leq C\|b\|_{C_{\omega}}$ for every h^{1}-atom a with C an absolute constant. This fact is obvious for atoms supported in balls B with radius $\rho \geq 1$ without moment condition because b is bounded so $b a /\|b\|_{L^{\infty}}$ is again an atom without moment condition. If $B=B\left(x_{0}, \rho\right), \rho<1$, we may write $a(x) b(x)=b\left(x_{0}\right) a(x)+\left(b(x)-b\left(x_{0}\right)\right) a(x)=\beta_{1}(x)+\beta_{2}(x)$. Then $\beta_{1}(x) /\|b\|_{L^{\infty}}$ is again an atom while $\beta_{2}(x)$ is supported in B and satisfies

$$
\begin{aligned}
\left\|\beta_{2}\right\|_{L^{\infty}} & \leq 2\|b\|_{L^{\infty}}\|a\|_{L^{\infty}} \leq \frac{C}{\rho^{n}} \\
\left\|\beta_{2}\right\|_{L^{1}} & \leq C\|a\|_{L^{\infty}} \int_{B} \omega\left(\left|x-x_{0}\right|\right) \mathrm{d} x \leq \frac{C^{\prime}}{(1+|\log \rho|)}
\end{aligned}
$$

We wish to conclude that $\left\|m_{\Phi} \beta_{2}\right\|_{L^{1}}<\infty$. Let $B^{*}=B\left(x_{0}, 2 \rho\right)$. Since $m_{\Phi} \beta_{2}(x) \leq$ $\left\|\beta_{2}\right\|_{L^{\infty}}$, we have

$$
J_{1}=\int_{B^{*}} m_{\Phi} \beta_{2}(x) \mathrm{d} x \leq C\left|B^{*}\right| \rho^{-n} \leq C^{\prime} .
$$

It remains to estimate

$$
\begin{equation*}
J_{2}=\int_{\mathbb{R} \backslash B^{*}} m_{\Phi} \beta_{2}(x) \mathrm{d} x=\int_{2 \rho \leq\left|x-x_{0}\right| \leq 2} m_{\Phi} \beta_{2}(x) \mathrm{d} x \tag{A.2}
\end{equation*}
$$

(observe that $m_{\Phi} \beta_{2}$ is supported in $B\left(x_{0}, 2\right)$ because supp $\Phi \subset B(0,1)$). If $0<\varepsilon<1$ and $\Phi_{\varepsilon} * \beta_{2}(x) \neq 0$ for some $\left|x-x_{0}\right| \geq 2 \rho$ it is easy to conclude that $\varepsilon \geq\left|x-x_{0}\right| / 2$, which implies

$$
\left|\Phi_{\varepsilon} * \beta_{2}(x)\right| \leq\left|\int \Phi_{\varepsilon}(y) \beta_{2}(x-y) \mathrm{d} y\right| \leq \frac{C\left\|\beta_{2}\right\|_{L^{1}}}{\varepsilon^{n}} \leq \frac{C^{\prime}\left|x-x_{0}\right|^{-n}}{(1+|\log \rho|)}
$$

so

$$
\begin{equation*}
m_{\Phi} \beta_{2}(x) \leq \frac{C^{\prime}}{\left|x-x_{0}\right|^{n}(1+|\log \rho|)} \quad \text { for } \quad\left|x-x_{0}\right| \geq 2 \rho \tag{A.3}
\end{equation*}
$$

It follows from (A.2) and (A.3) that

$$
J_{2} \leq \int_{2 \rho \leq\left|x-x_{0}\right| \leq 2} \frac{C^{\prime}}{\left|x-x_{0}\right|^{n}(1+|\log \rho|)} \mathrm{d} x \leq C^{\prime \prime}
$$

which leads to

$$
\|b a\|_{h^{1}} \leq\left\|\beta_{1}\right\|_{h^{1}}+\left\|\beta_{2}\right\|_{h^{1}} \leq C_{1}+J_{1}+J_{2} \leq C_{2}
$$

Inspection of the proof shows that C_{2} may be estimated by $C\|b\|_{C_{\omega}}$.
Example A.1.2. Suppose that a modulus of continuity $\omega(t)$ satisfies:

$$
\begin{equation*}
\omega(t) / t^{n} \quad \text { is a decreasing function of } t \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\int_{0}^{1} \frac{\omega(t)}{t} \mathrm{~d} t<\infty \tag{A.5}
\end{equation*}
$$

A short and elegant argument shows (cf. [Ta], page 25) that under these conditions $h^{1}\left(\mathbb{R}^{n}\right)$ is stable under multiplication by elements of $C_{\omega}\left(\mathbb{R}^{n}\right)$. On the other hand, (A.5) alone already implies that

$$
\omega(h) \log \frac{1}{h}=\int_{h}^{1} \frac{\omega(h)}{t} \mathrm{~d} t \leq \int_{h}^{1} \frac{\omega(t)}{t} \mathrm{~d} t \leq D, \quad 0<h<1,
$$

which keeping in mind the obvious estimate

$$
\frac{1}{h^{n}} \int_{0}^{h} \omega(t) t^{n-1} \mathrm{~d} t \leq \frac{\omega(h)}{n}
$$

shows that the modulus of continuity ω satisfies (A.1) and Lemma A.1.1 can be applied, proving the mentioned stability of $h^{1}\left(\mathbb{R}^{n}\right)$ under multiplication by elements of $C_{\omega}\left(\mathbb{R}^{n}\right)$.

Consider now a modulus of continuity $\omega(t)$ such that

$$
\omega(t)=\frac{1-n \log t}{\log ^{2} t}, \quad \text { for } 0<t<1 / 2
$$

Since $\omega(t) \geq|\log t|^{-1}$ it follows that $\int_{0}^{1 / 2}(\omega(t) / t) \mathrm{d} t=\infty$ and the Dini condition (A.5) is not satisfied. On the other hand,

$$
\frac{1}{h^{n}} \int_{0}^{h} \omega(t) t^{n-1} \mathrm{~d} t=\left(\log \frac{1}{h}\right)^{-1} \approx\left(1+\log \frac{1}{h}\right)^{-1}, \quad \text { as } h \rightarrow 0
$$

so criterion (A.1) is satisfied. This shows that (A.5) is strictly more stringent than (A.1).

A. 2 Commutators

We consider now a bounded smooth function $\psi(\xi), \xi \in \mathbb{R}$, such that

$$
\left|\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \psi(\xi)\right| \leq C_{k} \frac{1}{(1+|\xi|)^{k}}, \quad \xi \in \mathbb{R}, \quad k=0,1,2, \ldots
$$

Then $\psi(\xi)$ is a symbol of order zero and defines the pseudo-differential operator

$$
\psi(D) u(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{e}^{i x \xi} \psi(\xi) \widehat{u}(\xi) \mathrm{d} \xi, \quad u \in \mathcal{S}(\mathbb{R})
$$

In particular, $\psi(D)$ is bounded in $h^{1}(\mathbb{R})$. The Schwartz kernel of $\psi(D)$ is the tempered distribution $k(x-y)$ defined by $\widehat{k}(\xi)=\psi(\xi)$ which is smooth outside the diagonal $x \neq y$. Moreover, $k(x-y)$ may be expressed as

$$
k(x-y)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi} \int \mathrm{e}^{i(x-y) \xi-\varepsilon|\xi|^{2}} \psi(\xi) \mathrm{d} \xi=\lim _{\varepsilon \rightarrow 0} k_{\varepsilon}(x-y)
$$

where the limit holds both in the sense of \mathcal{S}^{\prime} and pointwise for $x \neq y$. Furthermore, the approximating kernels $k_{\varepsilon}(x-y)$ satisfy uniformly in $0<\varepsilon<1$ the pointwise estimates

$$
\begin{equation*}
\left|k_{\varepsilon}(x-y)\right| \leq \frac{C_{j}}{|x-y|^{j}}, \quad j=1,2, \ldots \tag{A.6}
\end{equation*}
$$

which of course also hold for $k(x-y)$ itself when $x \neq y$.
We consider a function $b(x)$ of class $C^{1+\sigma}, 0<\sigma<1$, and wish to prove that the commutator $\left[\psi(D), b \partial_{x}\right]$ is bounded in $h^{1}(\mathbb{R})$. A simple standard computation that includes an integration by parts gives

$$
\left[\psi(D), b \partial_{x}\right] u(x)=\int k^{\prime}(x-y)(b(y)-b(x)) u(y) \mathrm{d} y-\psi(D)\left(b^{\prime} u\right)
$$

where the integral should be interpreted as the pairing

$$
\left\langle<k^{\prime}(x-\cdot)(b(\cdot)-b(x)), u(\cdot)\right\rangle
$$

between a distribution depending on the parameter x and a test function u. Since multiplication by b^{\prime} is bounded in $h^{1}(\mathbb{R})$ with norm controlled by $\left\|b^{\prime}\right\|_{C^{\sigma}}$, we need only worry about the remaining integral term that can be rewritten as

$$
\begin{align*}
T u(x) & =\int(y-x) k^{\prime}(x-y) \frac{b(x)-b(y)}{x-y} u(y) \mathrm{d} y \\
& =\int k_{1}(x-y) \beta(x, y) u(y) \mathrm{d} y \tag{A.7}
\end{align*}
$$

where

$$
\beta(x, y)=\int_{0}^{1} b^{\prime}(\tau x+(1-\tau) y) \mathrm{d} \tau \quad \text { and } \quad k_{1}(x)=-x k^{\prime}(x)
$$

Observe that $\beta \in C^{\sigma}\left(\mathbb{R}^{2}\right)$.
Lemma A.2.1. Assume T is given by (A.7) with kernel

$$
K(x, y)=k_{1}(x-y) \beta(x, y)
$$

Then T is bounded in $h^{1}(\mathbb{R})$.
Proof. It follows that $\widehat{k}_{1}(\xi)=(\xi k(\xi))^{\prime}=\psi(\xi)+\xi \psi^{\prime}(\xi)$. In other words, $\widehat{k}_{1}(\xi)=$ $\psi_{1}(\xi)$ is a symbol of order zero and T has kernel $k_{1}(x-y) \beta(x, y)$. We may write $\beta(x, y)=b^{\prime}(x)+|x-y|^{\sigma} r(x, y)$ with $r(x, y) \in L^{\infty}\left(\mathbb{R}^{2}\right)$ so

$$
\begin{aligned}
T u(x) & =b^{\prime}(x) \psi_{1}(D) u(x)+\int k_{1}(x-y)|x-y|^{\sigma} r(x, y) u(y) \mathrm{d} y \\
& =T_{1} u(x)+T_{2} u(x)
\end{aligned}
$$

The first operator T_{1} is obviously bounded in h^{1} because it is the composite of $\psi_{1}(D)$ with multiplication by a C^{σ} function. To analyze T_{2} we check-writing $k_{1}=\lim _{\varepsilon \rightarrow 0} k_{1, \varepsilon}$ and using (A.6) for $k_{1, \varepsilon}$-that its Schwartz kernel is a locally integrable distribution given by the integrable function $k_{2}(x, y)=k_{1}(x-y) \mid x-$ $\left.y\right|^{\sigma} r(x, y)$. Hence, $\left|k_{2}(x, y)\right| \leq C_{1}\left|k_{1}(x-y)\right||x-y|^{\sigma}=k_{3}(x-y)$. Observe that $k_{3}(x) \leq$ $C \min \left(|x|^{\sigma-1},|x|^{-2}\right)$ so $k_{3} \in L^{1}(\mathbb{R})$. We will now show that

$$
m_{\Phi} k_{3}(x)=\sup _{0<\varepsilon<1}\left|\Phi_{\varepsilon} * k_{3}(x)\right| \in L^{1}(\mathbb{R})
$$

where $\Phi \geq 0 \in C_{c}^{\infty}([-1 / 2,1 / 2]), \int \Phi d z=1, \Phi_{\varepsilon}(x)=\varepsilon^{-1} \Phi(x / \varepsilon)$. Since $m_{\Phi} k_{3}$ is pointwise majorized by the restricted Hardy-Littlewood maximal function

$$
m k_{3}(x)=\sup _{0<\varepsilon<1} \frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} k_{3}(t) \mathrm{d} t
$$

we start by observing that

$$
\begin{equation*}
\sup _{0<\varepsilon<1} \frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon}|t|^{\sigma-1} \mathrm{~d} t \leq \frac{|x|^{\sigma-1}}{\sigma} \tag{A.8}
\end{equation*}
$$

In doing so we may assume that $x>0$. If $0<\varepsilon \leq x$ we have

$$
\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon}|t|^{\sigma-1} \mathrm{~d} t=\frac{(x+\varepsilon)^{\sigma}-(x-\varepsilon)^{\sigma}}{2 \varepsilon \sigma} \leq \frac{(x+\varepsilon)^{\sigma-1}}{\sigma} \leq \frac{x^{\sigma-1}}{\sigma}
$$

where we have used the elementary inequality

$$
\frac{b^{\sigma}-a^{\sigma}}{b-a} \leq b^{\sigma-1}, \quad 0 \leq a<b, \quad 0<\sigma<1
$$

Similarly, if $0<x<\varepsilon$,

$$
\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon}|t|^{\sigma-1} \mathrm{~d} t=\frac{(x+\varepsilon)^{\sigma}+(x-\varepsilon)^{\sigma}}{2 \varepsilon \sigma} \leq \frac{(x+\varepsilon)^{\sigma-1}}{\sigma} \leq \frac{x^{\sigma-1}}{\sigma} .
$$

This proves (A.8). Thus,

$$
m_{\Phi} k_{3}(x) \leq C m k_{3}(x) \leq C^{\prime}|x|^{\sigma-1}
$$

which shows that $m_{\Phi} k_{3}$ is locally integrable. For large $|x|$ the inequality $k_{3}(x) \leq C|x|^{-2}$ easily implies $m_{\Phi} k_{3}(x) \leq C|x|^{-2}$ and we conclude that $m_{\Phi} k_{3} \in L^{1}$. Finally, we see that

$$
\left|\Phi_{\varepsilon} * T_{2} u(x)\right| \leq \Phi_{\varepsilon} * k_{3} *|u|(x) \leq m_{\Phi} k_{3} *|u|(x)
$$

so $m_{\Phi} T_{2} u(x) \leq m_{\Phi} k_{3} *|u|(x)$, which implies that $\left\|T_{2} u\right\|_{h^{1}} \leq C\|u\|_{L^{1}} \leq C\|u\|_{h^{1}}$. This proves that $T=T_{1}+T_{2}$ is bounded in $h^{1}(\mathbb{R})$.

Summing up, we have proved:
Proposition A.2.2. If $\psi(\xi), \xi \in \mathbb{R}$, is a smooth symbol of order 0 and $b(x) \in C^{1+\sigma}(\mathbb{R})$, $0<\sigma<1$, the commutator

$$
\left[\psi(D), b \partial_{x}\right]
$$

is bounded in $h^{1}(\mathbb{R})$.

A. 3 Change of variables

Consider a diffeomorphism $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of class C^{1}, with Jacobian F^{\prime} such that for some $K \geq 1$

$$
\begin{equation*}
K^{-1}|x-y| \leq|F(x)-F(y)| \leq K|x-y|, \quad x, y \in \mathbb{R}^{n} \tag{A.9}
\end{equation*}
$$

Write $H=F^{-1}$, denote by H^{\prime} the Jacobian matrix of H, and assume that

$$
\begin{equation*}
\operatorname{det} H^{\prime} \in C_{\omega} \text {, } \tag{A.10}
\end{equation*}
$$

where the modulus of continuity $\omega(t)$ satisfies

$$
\frac{1}{h^{n}} \int_{0}^{h} \omega(t) t^{n-1} \mathrm{~d} t \leq K\left(1+\log \frac{1}{h}\right)^{-1}, \quad 0<h<1
$$

Notice that if F is a diffeomorphism of Hölder class $C^{1+\varepsilon}, \varepsilon>0$, then (A.9) and (A.10) hold.

Proposition A.3.1 (S. Chanillo, [Ch2]). If F satisfies (A.9) and (A.10), the map $h^{1}\left(\mathbb{R}^{n}\right) \ni g \mapsto g \circ F$ is bounded in $h^{1}\left(\mathbb{R}^{n}\right)$.

The main step in the proof of the proposition is
Lemma A.3.2. Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homeomorphism such that for some $K \geq 1$

$$
\begin{equation*}
K^{-1}|x-y| \leq|H(x)-H(y)| \leq K|x-y|, \quad x, y \in \mathbb{R}^{n} . \tag{A.11}
\end{equation*}
$$

Let $\Phi \in C_{c}^{\infty}(B(0,1)), \Phi_{t}(x)=t^{-n} \Phi(x / t), u \in H^{1}\left(\mathbb{R}^{n}\right)$ and set

$$
\begin{aligned}
U(x, t) & =\int \Phi_{t}(H(x)-H(z)) u(z) \mathrm{d} z, \quad 0<t<1, \\
U^{*}(x) & =\sup _{0<t<1}|U(x, t)|
\end{aligned}
$$

Then there exists a constant $C>0$ depending on the dimension n, on K and on Φ but not on u such that

$$
\begin{equation*}
\int U^{*}(x) \mathrm{d} x \leq C\|u\|_{h^{1}} . \tag{A.12}
\end{equation*}
$$

Proof. In view of the atomic decomposition it is enough to prove (A.12) when $u(x)$ is an atom, that we denote by $a(x)$. We must show that if $a(x)$ is an h^{1}-atom and

$$
\begin{aligned}
A(x, t) & =\int \Phi_{t}(H(x)-H(z)) a(z) \mathrm{d} z, \quad 0<t<1, \\
A^{*}(x) & =\sup _{0<t<1}|A(x, t)|,
\end{aligned}
$$

then $\left\|A^{*}\right\|_{L^{1}} \leq C$ with C independent of $a(x)$. Let $a(x)$ be an atom supported in ball $B=B\left(z_{0}, r\right)$ such that $\|a\|_{L^{\infty}} \leq|B|^{-1}$. Note that in view of (A.11) and the hypothesis on Φ

$$
|x-z| \geq K t \Longrightarrow|H(x)-H(z)| \geq t \Longrightarrow \Phi_{t}(H(x)-H(z))=0
$$

for $0<t<1$ so

$$
|A(x, t)| \leq\|a\|_{L^{\infty}}\|\Phi\|_{L^{\infty}} \int_{|z-x|<K t} \frac{1}{t^{n}} \mathrm{~d} z \leq \frac{C}{r^{n}},
$$

showing that

$$
\begin{equation*}
\left|A^{*}(x)\right| \leq \frac{C}{r^{n}} . \tag{A.13}
\end{equation*}
$$

If we write $B^{*}=B\left(z_{0}, 2 r\right)$ we see right away that

$$
\int_{B^{*}} A^{*}(x) \mathrm{d} x \leq C
$$

and we need only concern ourselves with the integral

$$
\int_{\mathbb{R}^{n} \backslash B^{*}} A^{*}(x) \mathrm{d} x .
$$

We first consider the case $0<r<1$ so that $a(x)$ has vanishing mean $\int a(x) \mathrm{d} x=0$. We will initially show that $A(x, t)=0$ if $x \notin B^{*}$ and $2 K t \leq\left|x-z_{0}\right|$. Since $\left|x-z_{0}\right| \geq 2 r$ and $\left|z-z_{0}\right| \leq r$ implies that $\left|z-z_{0}\right| \leq\left|x-z_{0}\right| / 2$ we obtain from the triangular property that $|x-z| \geq\left|x-z_{0}\right| / 2$ if $\left|x-z_{0}\right| \geq 2 r$ and $\left|z-z_{0}\right| \leq r$. Thus, $2 K t \leq\left|x-z_{0}\right| \leq 2|x-z| \leq$ $2 K|H(x)-H(z)|$. This implies that $|H(x)-H(z)| / t \geq 1$ so $\Phi_{t}(H(x)-H(z)) a(z)=0$.

Hence, $A(x, t)=0$ if $\left|x-z_{0}\right| \geq 2 r$ and $t \leq\left|x-z_{0}\right| /(2 K)$ and when we estimate $A^{*}(x)$ on $\mathbb{R}^{n} \backslash B^{*}$ we may take the supremum of $|A(x, t)|$ for t in the range $\left|x-z_{0}\right| /(2 K) \leq$ $t<1$. We may write

$$
\begin{aligned}
|A(x, t)| & =\mid \int\left(\Phi_{t}(H(x)-H(z))-\Phi_{t}\left(H(x)-H\left(z_{0}\right)\right) a(z) \mathrm{d} z \mid\right. \\
& \leq \frac{C\|a\|_{L^{\infty}}}{t^{n+1}} \int_{B\left(z_{0}, r\right)}\left|H(z)-H\left(z_{0}\right)\right| \mathrm{d} z \\
& \leq \frac{C r}{\left|x-z_{0}\right|^{n+1}}
\end{aligned}
$$

to conclude that

$$
A^{*}(x) \leq \frac{C r}{\left|x-z_{0}\right|^{n+1}} \quad \text { for } \quad x \notin B^{*}
$$

and

$$
\int_{B^{*}} A^{*}(x) \mathrm{d} x \leq C .
$$

Assume now that $r \geq 1$. Then, for $\left|z-z_{0}\right| \leq r$ and $\left|x-z_{0}\right| \geq(K+1) r$ we have $|x-z| \geq(K+1) r-r=K r$ so

$$
|H(x)-H(z)| \geq r \geq 1 \quad \text { and } \quad \Phi_{t}(H(x)-H(z))=0 .
$$

This shows that $\operatorname{supp} A(x, t) \subset B\left(z_{0},(K+1) r\right)$ and also supp $A^{*} \subset B\left(z_{0},(K+1) r\right)$. Hence, we get

$$
\left\|A^{*}\right\|_{L^{1}} \leq\left\|A^{*}\right\|_{L^{\infty}}\left|\operatorname{supp} A^{*}\right| \leq C,
$$

where we have used (A.13).
Proof of Proposition A.3.1. Let $g \in h^{1}\left(\mathbb{R}^{n}\right)$. Choose some test function $0 \leq \Phi \in$ $C_{c}^{\infty}(B(0,1))$ with $\int \Phi(x) \mathrm{d} x=1$ and set $v=g \circ F$. We must show that $v^{*}(x)=$ $\sup _{0<t<1}\left|\Phi_{t} *[g \circ F](x)\right|$ satisfies $\left\|v^{*}\right\|_{L^{1}} \leq C\|g\|_{h^{1}}$. Since

$$
\int v^{*}(y) \mathrm{d} y=\int v^{*} \circ H(x)\left|\operatorname{det} H^{\prime}(x)\right| \mathrm{d} x \leq C\left\|v^{*} \circ H\right\|_{L^{1}}
$$

it is enough to estimate

$$
\left\|v^{*} \circ H\right\|_{L^{1}}=\int \sup _{0<t<1}\left|\int \Phi_{t}(H(x)-z) g(F(z)) \mathrm{d} z\right| \mathrm{d} x
$$

which after the change of variables $z=H(y)$ may be written as

$$
I=\int \sup _{0<t<1}\left|\int \Phi_{t}(H(x)-H(y)) g(y)\right| \operatorname{det} H^{\prime}(y)|\mathrm{d} y| \mathrm{d} x
$$

because $H=F^{-1}$. Notice that $u(y)= \pm g(y) \operatorname{det} H^{\prime}(y) \in h^{1}\left(\mathbb{R}^{n}\right)$ by Lemma A.1.1 and (A.10); furthermore, $\|u\|_{h^{1}} \leq C\|g\|_{h^{1}}$. Using Lemma A.3.2 we get $I \leq C\|u\|_{h^{1}} \leq$ $C^{\prime}\|g\|_{h^{1}}$, as we wished to prove.

