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1. Definitions and introduction. Let II = {17, | i e /} be a system of subsets of a normal
topological space R ; i.e. a mapping from the index set / into the set of all subsets of R. The
order of a point x is the number of distinct member sets of U which contain x, and is denoted
by x : U ; the sets U{ are here considered distinct if they have distinct indices. Thus x : il
is the number of indices i for which x e U(; v(U) — max {x : U | x e R} is called the order of
the system 11. If every point has an (open) neighbourhood meeting only finitely many mem-
bers of U, then U is said to be locally finite.

We shall call It a A;-covering of R if x : U 2; k for some positive integer k and all points x.
The covering V = {Vj \ j e J} is said to be a refinement of the covering II if, for each j , there
is an index i = a (j) such that 7., c: U{. Moreover, the refinement V is called finite-to-one,
one-to-one, or strict according as the mapping a : J -> I can be chosen such that a is finite-to-
one, a is one-to-one, or a is one-to-one and V't <=. U{.

Theorem 1 of § 2 shows that if the dimension of R is at most n then every finite open
covering admits a finite open ^-refinement of order at most n + k, and conversely (k = 1,2,. . .);
when k = 1 this is merely the definition of dim R ^ n. The class of all finite open coverings
involved here may be replaced by the class of all locally finite open coverings or by a certain
type of subclass of the latter. Thus, if dim R ^ n, then a locally finite open covering admits a
locally finite open ^-refinement V say, of order at most n + k. We show in Theorem 2 that V
may be chosen as a strict refinement.

In § 3 it is shown that if dim R 2: n then, for any locally finite open (or closed) refinement
II of some suitably chosen finite open covering, there is a member set of U on which the func-
tion x : U assumes at least n +1 distinct values. This is a sharper result than the converse
part of Theorem 1. If in addition R is paracompact then there is some point in each neigh-
bourhood of which x : II assumes at least n +1 values.

The author wishes to acknowledge his indebtedness to Dr A. H. Stone for his valuable
advice and criticism concerning this work.

2. The order of k-coverings. Two systems of subsets £ and (8 are said to be similar
if there is some one-to-one correspondence between their index sets such that any finite sub-
system of ^ has an empty intersection if and only if the corresponding subsystem of <S>
has an empty intersection. Hereafter we identify the index set of a system with a section
of the ordinals 0, 1, ...,i, ... (i < a) for some appropriate ordinal a. Also the underlying
space is always understood to be normal.

LEMMA 1. / / {F{ | i < a} and {Ut \ i < a] are locally finite systems such that Ft is closed,
Ut is open and F{ lies in £/,-, then there exists an open system {(?,• | i < a} such that F( c (?,-,
(?,• c Ut and {Qj \ i < a} is similar to {F( \ i < a}.

For a proof of this see [4].

•f This paper is part of a doctoral thesis presented to the University of Manchester.
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LEMMA 2. (An extension of a theorem due to Dieudonne [2]). If V = {Vt \ i < a} is
a locally finite open k-covering (of a normal space) then there exists an open k-refinement

VO ={Wi\i<a)

of V such that Wi c 7,-.

Proof. Suppose that for all ordinals i < j < jQ, open sets Wt are defined such that

and 3Gj = {Wt, Vh \ i < j , h ̂  j} is a ^-covering.

These conditions hold initially with Xo = V and j0 = 1. In order to define Wf we con-
sider first the set Ht of all points x such that

x:{Wi,Vh\i<j,h>j}<k.

From the induction hypothesis and the fact that X,j is locally finite it follows easily that Hf

is closed and lies in Vjt and so by normality we can define Wj to be an open set such that
Ht <= W» Wt c F,.

Since the systems 3i} and 3ti+1 differ only in their j-th. members it follows that 3£m is at
least a (k - l)-covering. Now if x fails to belong to Hit then x : 3£i+1 ̂  k ; if otherwise, then x
belongs to W} and again x : 36m Si k.

l£j0 is a limit ordinal, then the open sets Wt (i < j0) are defined by the induction hypo-
thesis and it is easily verified that 3£̂  is a ^-covering. Thus the induction is complete and
IP = 3£o is a strict open fc-refinement of V as required.

We proceed to determine the dimension of a space in terms of its open k- coverings for
each fixed value of k. Let {11} denote a class of locally finite open coverings of a space R with
the properties that each finite open covering of R admits a member covering as a refinement
and each finite-to-one open refinement of a member is again a member.

THEOREM 1. dim R ^ nif and only if every covering II admits a k-refinement tl' of order at
mostn+k (iI,U'e{U}, k = 1, 2, ...).

COROLLARY, dim R ^nif and' only if every locally finite open covering of R admits a locally
finite open k-refinement of order at most n +k.

This follows by taking {11} to be the class of all locally finite open coverings of R. As
further examples we may take the class of all star-finite open coverings or the class of all finite
open coverings.

Proof by induction over k. In the initial case, if dim R ^ n, then any locally finite open
covering II = {17,-1 i < a] admits a locally finite open refinement V = {Vj \ j < b} of order
at most n +1 ; for the proof of this see [3] or [4]. For each index j we can choose an index
i = a(j) such that Vj c Ut and, by putting U't = \J{VS\ a(j) = i}, we see that the system
U' = {U'i | i < a} is a one-to-one open refinement of II of order at most n + 1. Thus if II
belongs to {11} so does it'.

Conversely, if Uo is any finite open covering then there exists a refinement V of order at
most n + 1, which is also a member of {U}. The above process of uniting member sets of V
produces a finite open refinement of ll0 of order at most n +1. Hence dim R ^.n and the case
where k = 1 is established. The following lemma gives the inductive step and clearly suffices
to prove the theorem.
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LEMMA 3. A locally finite open covering XX admits a finite-to-one open k-refinement of order
at most p if and only if it admits a finite-to-one open (k +1)-refinement of order at most p + \.

Proof. Let V> = {F< | i < a} be a finite-to-one open fc-refinement of U such that v(V) :£ p.
We consider the following system of which a typical member set is

Fh ...ik={x\xe Vh , ..., Vik only} (^ < ... < »fc < a).

Clearly this system consists of mutually disjoint closed sets and the neighbourhoods
F,- n ... <~^Vik of Ft ... Jjt form a locally finite open system. Hence we may apply Lemma 1 to
give the existence of mutually disjoint open sets 0( ... <A such that

Ftl...tk<zQil...ik<z Vhn... nVik.

We now define a system <S consisting of the mutually disjoint open sets

G{ = I K ^ - ik\ * = h < - . < »*} (* < a).

Since G{ lies in Vt, we see that the systems <S and V taken together form a finite-to-one
open (k +1)-refinement of U of order at most p + 1.

To prove the reverse implication of the lemma let us now take V to be a finite-to-one
open (k + l)-refinement of II of order at most p + 1. By Lemma 2 there exists a strict open
(k + l)-refinement UO = {W{ | i < a} of X). Thus the system

is locally finite and consists of mutually disjoint sets. We now put

W't = Wt-\J{Wion ... nWtj> | i = »0 < ... <»,},

ID' = {TF;. I» < a}

and show that VO' is a suitable open fc-refinement of II.
The subset W\ of Wt is open because tlie set union occurring in its definition is taken over

a subsystem of 3£. Also v{V0') ^Lp since, in defining VO', each point of order # + 1 with
respect to IP has been removed from just one of the member sets of W to which it belongs.
Finally IP' is a ifc-covering ; for if W{ Wik are some k + 1 members of IP containing a

given point x, then x fails to belong to at most one of the sets W'iQ, ..., W'ik by virtue of belong-
ing to at most one member set of 3£. This proves Lemma 3. We remark that " finite-to-one "
may be replaced by " locally finite " throughout the lemma and proof.

Suppose now that <S is a locally finite open A;-covering of an at most n dimensional space.
By Theorem 1 we know that a locally finite open ^-refinement U of order at most n + k exists ;
(in fact X) may be chosen as a finite-to-one refinement). The process of uniting member sets
of X) in order to construct a one-to-one refinement of (8 (as described in the proof of Theorem
1) will in general produce a covering which fails to be a fc-covering. In the next theorem a
strict open fc-refinement of <S of order at most n + k will be constructed without the existence of
the fc-refinement X) being assumed. The necessary connection with the dimension number will
be supplied by the following result which in the form quoted below is due to K. Morita [4].

/ / {Xf | i < a}, {Y{ \ i < a) are two locally finite open systems of an at most n dimensional

space, such that Xs c Yit then there exist open systems {U( \ i < a}, {F,-1 i < a} such that

X{ c Uit Ui c Vit V{ c 7,- and the order of the system {V{ - Ut | i < a] is at most n.
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THEOREM 2. 7/(5 = {Gf | i < a}isalocally finite open k-covering of anatmostn dimensional
space R, then (5 admits a strict open k-refinement of order at most n + k.

Proof. Let ̂  = i&i 11 < a} be a strict closed ^-refinement of <S as given by Lemma 2. We
suppose that for all ordinals i <j < j0 open sets Uhi, Vhi (h <a,i< j) have been defined
by induction and that, together with the further definitions

* « = U{Uhi I i <j}, YM = n{FA< I i <j},

X, ={ZM|A<j}, X}}={YM\h<j},

and $j={Fi\i<3},

the following conditions hold :

UM = F M = </> fo raUA>», j ( .}

and Uhi. c 17MI tfM c FM, FAj c F«., FAi- c «» J

whenever i' < i < j ;

a:: X, ^ min (*, a:: &) ( « i ? ) ; (2.j)

a;: j y^ rc+A; (xei?) (3.j)

When j0 = 1 this hypothesis is vacuous. From (l.j) it follows that

X-hj ~ Uh ]_lt Uh J_J C Vh 4_j = Yhi

when j is not a limit ordinal. Hence

Xh} c 7 M , T M c Gh (4.j)

This is also true if j is a limit ordinal, because in that case Uhi' <=• Vhi for all i, i' < j and

moreover
-X"w c Fftl+1 <= Fftt- c FA0 c: Gh for all i < j .

Now ify'o is a limit ordinal then the open sets Uhi, Vhi (h <a,i <j0) are defined and satisfy
(l.j0). From the definitions it is clear that

Xhj c ZM o, YMo c 7 M (7i < j < i 0 ) .

Thus if J*1,,,..., Fj (»x < ... < iT <j0) are the finitely many member sets of &0 containing a

given point x, it follows that for some i0, iT <i0 < j 0 ,

x:XJo^x: Xio ̂  min (k, x : &o) = min (k, x : 5J())

and so (2.j0) holds. Similarly, by using the local-finiteness of t}j0, it is easily shown that (3.j0)
holds and so the induction is complete in the case of a limit ordinal.

We now put j0 = j + 1, thereby fixing j . In the following construction for the sets
Uhj, VM{h < a) the symbol j is sometimes suppressed.

We observe that, by (4.j), the systems 3t3-, V}} satisfy the hypothesis of Morita's theorem
and accordingly take open systems

U={Uhj\h<j}, V={Vhj\h<j}

such that

Z w c Uhj, Uhj c FM, Vhi c Yhj (h

and v{Vhj-Uhi\h<j}^n.
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It remains only to define the sets Ujjt V,, (and the empty sets Uhi, Vhj, h > j). As
preliminaries to this we define

F = {a; | z : U < min (k, x : $j+1)}

and G = {z \ z : V < n + k},

where V = {Fw \ h <j}. We show that

F c Fit F a G, F is closed and G is open (6)

Firstly let z $ Fjt so that x : & = x : $i+1; it follows, by (5) and (2.j), that

z : U ̂  x : 3£j^ min (k, x : &)

and therefore x fails to belong to F.

Secondly let z e F so that, in particular, z :VL <. k. Now, by (5), we have that

* : {VM \h<j}^z: {VM - Uhi \h<j}+x: {Uhi \h<j};

i.e. x : D < n + &. Therefore ^ lies in G as required.
Thirdly, since both the open system U and the closed system $f+1 are locally finite, a given

point z has some small neighbourhood of which any point y satisfies the relations

y : U ̂  x : U and a;: $j+1 ^ y : &+1.

Thus z $ F implies y $ F for all y and therefore F is closed. Similarly it can be shown that G
is open.

Since F lies in both G and Gt we can define Uj} and Fw as open sets such that

F<=Uijt E ^ c F , , , 7, ,cGn<?, (7)

This completes the construction of the sets UM, Vhj (h < a).
From conditions (5) and (7) it is clear that (l.j' + l) holds. From the definitions it also

follows that Xh j+l =. UM, Yh M = Vhi (h ̂  j). Thus

and in particular z : 3£3+1 ^ a;: II for all z. In proving (2.j +1) we may therefore assume that
x : U < min (k, x : $i+1) i.e. x e F. Since x necessarily belongs to Uti and Ff, we have by (2.j)
that

(z : 3EJ+1) - l ^ x : U ^ x : 3 £ ^ min (k, z : ^ ) 2? min (4, a;: 5/+i) - 1 -

This verifies (2.J + 1).

Lastly, let x$ Vi}; together with (3.j) this imph'es that

z : X)i+1 = z: V ^z :V}j ^n+k.

O n t h e o t h e r h a n d , if xe Vit, t h e n zeG a n d c o n s e q u e n t l y

x : X)j+1 ^ 1 +x : X> ^ w + i .

In either case (3.j + 1) holds and the induction is complete.

Open systems 3£0, X}a exist satisfying (2.a), (3.a) and (4.a) ; (2.a) implies that £„ is a
A;-covering because ^0 (= 5) w a s chosen as a A-refinement of <S at the outset; (3.a) and (4.a)
imply that 3£0 and X)a are strict ^-refinements of V}a and (S respectively, each having order at
most n+k. Thus either ^-refinement serves to prove the theorem.
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3. The values assumed by the functions x: V. Let dim R S: n. From the corollary
to Theorem 1 we deduce that for each k there exists a locally finite open covering U of which
every locally finite open ^-refinement has order at least n + k. In view of Lemma 3 it is clear
that one fixed covering 11 serves for all values of k. Now let V be any locally finite open
refinement of 11 and consider the values which the function x : V may assume. If k denotes
the least such value, then the greatest value is at least n+k. We generalise this by showing
that on some member set of V at least n +1 distinct values are assumed. Moreover 11 may be
chosen as a finite open covering and a similar property holds for locally finite closed refinements
of 11. These results are corollaries to the proof of the following

THEOREM 3. / / R is a paracompact space of dimension at least n, then there exists a finite
open covering 110 such that for every locally finite open or closed refinement tt there is some point in
every neighbourhood of which x : 11 assumes at least n + \ distinct values.

We take Uo = {Uj \ j < b} to be a finite open covering of which every finite open (or
closed) refinement has order at least n +1. The case of the closed refinements and that of the
open refinements are considered separately as the methods of proof differ. For brevity we
shall write Xj = X(i n ... n l i m and Xr = Xit n ... i~>X,m, where {X{ \ i < a) is any system
of subsets, / is any finite set of ordinals ix, ..., im < a and | / | = m.

We mention a result allied to Theorem 3 which is given in [1]. In our terminology it
states that if R is a compact metric space of dimension at least n then, for any finite open or
closed refinement {Xt \ i < a} of the covering Uo (chosen as above), there exist subsets /„, . . . , /„
such that <f> cz Xj0 <=. ... cz Xj , the inclusions being proper.

Proof of Theorem 3 (closed case). Suppose that £ = {F{ \ i < a} is a locally finite closed
refinement of ll0 such that each point x admits a neighbourhood U(x) in which the required
order property fails. By paracompactness the open covering {U(x) \ xeR} has a locally
finite open refinement and by Lemma 2 there exists a further strict closed refinement K. Thus
K has the property that

x: $ =mi(K),..., oi mn(K) (xeKeK), (8)

where m1 > ... > mn are some n positive integers chosen for each K.
Proceeding by induction we suppose that for each integer r < s ^ n + 1 a finite system

{<?„• | j < b} of mutually disjoint open sets has been constructed such that

\ (9)
and z e G ^ = \J{Grj \r = 0, ..., s-1 ; j <b}, J w

whenever x : $ S: ms ̂ (K) {x e K e K).

We initiate the construction by putting Goj = <j>(j < b). Let §s be the system of which a
typical member set FsI consists of all points x such that

s e J V - G U , (10)

xeK and ma(K) = \I\ for some Z e K , (11)

where / is any finite set of indices ilt ... im < a. We assert that

^s is a locally finite system of mutually disjoint closed sets (12)

Firstly, by (10), §s inherits the local-finiteness property of ^. Next let x $ F3l; if (10) fails,
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then (R - JF'/)W(T3_1 is an open neighbourhood of x ; if (11) fails then, by the local-finiteness of
the closed covering K, we can find a neighbourhood P(x) meeting only those members of K
which contain x. Thus, whenever y is a point of P, Ksy implies KB x and consequently
condition (11) fails. In either case there is some neighbourhood of x disj oint from Faj and hence
the latter is closed.

Now let us suppose that for some distinct pair / , / ' the sets FsI and Fti>, have a common
point x; thus, by (10), x e Ft n i > . If there is a (proper) inclusion relation between
I and / ' , say I c I', then, x : § > | / | ; the latter is also true when there is no inclusion rela-
tion. From (10) and (11) we have that, for some particular K containing x, ms{K) — \I \ and
x $ G,.v Now by (8), x : $ assumes one of the values m^K), ..., mn(K) and, by (9) the first
« - l values are excluded. Thus x : $ ̂  ms(K) and we have a contradiction from the fact that
ms(K) = \I\ and \I\<x: $. This establishes (12).

Since ^ is a refinement of Uo, we can choose j = j(I) such that

FsI e= Fj <= U, (j < b)

and from (12) it follows that the sets \J{FsI | j(I) = j} (j < b) are mutually disjoint and closed.
By Lemma 1, we can find a system of mutually disjoint open sets {(?„•} such that

U{FsI\j(I) =j}cG$ Jc U, (j<b),

and it only remains to show that the induction hypothesis holds for this system.
Let x : ^ sS ms(K)> {xe K e K). We may assume that x does not belong to Gs^ as other-

wise x belongs to Ga and there is nothing further to prove. Thus x : § = ms(K) because the
other possible values are now excluded by (9). Taking Fj to be the intersection of all members
of ^ containing x, it is easy to see that, by conditions (10) and (11), a; belongs to FaI. Conse-
quently x belongs to Gs as required.

From (8) and (9) it follows that Gn is the whole space. Thus the systems {Grj | j < b}
(r = 1, 2, ..., n) of mutually disjoint sets form a finite open refinement of II0 of order at most n
and this is contrary to the choice of Uo. This proves the closed case of Theorem 3.

With paracompactness omitted from the hypothesis the following weaker result is possible.

COROLLARY, dim R>.n implies that for every locally finite closed refinement $ofU0 there is
some member set on which x : £ assumes at least n + 1 values.

For if ^ is a refinement for which this is not true, then we can identify ^ with K in the above
proof and derive a contradiction without reference to paracompactness.

The next lemma is designed to show that, if the open case of Theorem 3 is false, then it is
false for some locally finite covering by open jPo-sets.

LEMMA 4. If "K is a locally finite closed covering and U = {U( \ i < a} is a locally finite
open covering loith the property that x : U = m^K), ..., or mn(K) whenever x e K e K, then there
exists a one-to-one refinement X> of U by open Fa-sets having the same order property as l\.

Proof. We put

J = {(K,I)\ \I\±m1{K)1...,mn{K)},

where K e K and / is any finite set iv ...,im < a. The order property of 11 is now equivalent
to

c \J{Ut\iiI; i<a) for all (K,I)eS (13)
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We shall prove the lemma by constructing a suitable refinement V for which the member sets
satisfy the same collection of inclusion relations. The construction consists mainly of establish-
ing a countable sequence of open systems Dj, = {Vvi \ i < a} (p = 0,1, ...) such that

VPi c VP+1 {, VP+1 i c Vt (K a) 1
and KnVpI <= \J{VV+1 i\i$I; i < a} J

for all (K,I)eJ.
By putting Vo( = $ (i < a) and taking a strict open refinement V1 of II we obtain (14.0).

We define V2 by a transfinite process which, when iterated, will define Vv.
We assume that open sets 7 s i (i < j < j0) have been defined such that

and tfnPtf

for all (K, I) e J.

Since Flt- lies in U(, (15.0) is given by (13). In order to see how to define V2!, we consider
all points which would cause an inclusion relation of (15.j +1) to fail if V2j were the empty set.
Formally this is the set #,- of all points a; such that for some element (K, I) of J>"

xeKnVu (16)

and x$[J{V2i,Uh\i<j,h>j; i,h$I} (17)

It is easily shown that Hi is closed. Moreover Hj lies in ZJ}; for if a; satisfies (16) and (17) for
some (K, I), then, by (15.j), x belongs to some member of the system

Now Uj fails to be a member set or not according as / happens to contain j or not, and by (17)
x cannot belong to any member set other than the jth. Hence / does not contain j and x
belongs to Uj as required. We define V\t to be an open set such that Hj <=. F2>, ^a c ^Ji
and proceed to verify (15.j + 1). Let x e K n Fxj, (K, I) e ^ ; if x $ Hj then (17) is not true
and it follows that x belongs to

(18)

On the other hand if x e Hj, then / does not contain j (as shown above) and x belongs to F2J-.
Hence again a; belongs to (18), and thus (15.j +1) holds. The induction is easily completed in
the case where j0 is a limit ordinal by using the local-finiteness of U. Thus we have an open
system D2 satisfying (14.1). By repeating the construction we obtain open systems Vp

satisfying conditions (14.^). Since the system V1 was chosen as a refinement of II all the
subsequent systems are refinements too. We now define

7< = U { P , * b = l,2,. . .} (»<«) , V={Vi\i<a}

and observe that Vt is an open .Fa-set. It is simply verified that the order property of U
expressed in (13) also holds for the refinement V of U and the lemma is proved.

Let (5 be a covering of a space B. We denote [J{Q | x e 0 e (8} by st (x, (S); <S is called a
delta-refinement of a covering 11 if the covering {st (x, (S) | x e R} is a refinement of il. It is
known that a locally finite open covering (of a normal space) admits an open delta-refinement.
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Proof of Theorem 3 (open case). Suppose that U is a locally finite open refinement of Uo

admitting neighbourhoods U(x) (x e R) in each of which there occur points of at most n
distinct orders with respect to U. By paracompactness the covering {U(x) \ x e R} admits a
locally finite open refinement and, by Lemma 2, there exists a further one-to-one closed
refinement K such that {Int (K) | K e K} is also a covering. Since x : U assumes at most n
values on any one member of K, U admits, according to Lemma 4, a one-to-one refinement
X> = {F,-1 i < a} having the same order property as U. Taking <S to be an open delta-refine-
ment of {Int (K) | K e K} we see that

the function y : V> assumes at most n values on the set st (x, (5) (a; e R) (19)

Since V{ is an open .Fo-set we can find a continuous real-valued function/(i; x) which is
positive on Vt and zero on R - Vt. Let/(ix ... im ; x) denote the sum of f(ix; x), ...,f(im ; x).
We define a system VO of which the typical member Wj = Wjt ...jm consists of all points x
such that

xeVhn... nVim (20)

y : V - m for some yest(a;, <S), (21)

f(ix... im ; x) <f(j1 ...jm ; x) for all (tx... im) * J (22)

where J is any finite s e t ^ j m < a.

Firstly, let the members of V containing a given point x be F,- , ... Vj ; then x belongs

to W^ jm because (20) and (21) are valid (with y = x) and (22) follows from the fact that the

functions f(j ; x) (j = j l t ...,jm), and only these functions, are positive. Hence ED is a cover-
ing and refines X).

Secondly, let a; be a point of Wj ; by restricting attention to some small neighbourhood of
x we see that condition (22) involves in effect only the finitely many functions f(i; z) that are
not everywhere zero. Hence condition (22) is valid for all points in some smaller neighbour-
hood P{x) say. Now choose a point y and a member set G of (S as given by (21) ; it is not diffi-
cult to see that the common part of P, G, V, , ..., Vj is a neighbourhood of x lying in Wj.

Thirdly, let x belong to Wj , ...,Wj . Condition (22) implies that x belongs to at most one

set of the form W^ ,,jm for each value of m and condition (21) implies that st (x, (S) contains

points of orders | ^ | , ..., | Jv |. Hence these orders are distinct and by (19) are at most n

in number. Thus we have that VO is an open refinement of Uo of order at most n.
Finally, by the process of uniting member sets of HP, as described in the proof of Theorem

1, we produce a finite open refinement of ll0 of order at most n, and this is contrary to the
choice of ll0.

COROLLARY. IfR is a normal space of dimension at least n (not necessarily paracompact), then
for any locally finite open refinement U of Uo there is some member set of 11 on which x : U assumes
at least n + \ values.

For if not, then we can choose some member Ux of U as a neighbourhood of a; and identify
the system {U(x) \ x e R} of the above proof with the covering {Ux | x e R} ; since the latter
admits some subsystem of II as a locally finite open refinement the above argument may be
applied without reference to paracompactness.
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