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§ 1. Intr oductio n

Recently, systematic applications of the Scott-Solovay Boolean valued
set theory were done by several authors; Takeuti [25, 26, 27, 28, 29, 30],
Nishimura [13, 14] Jech [8] and Ozawa [15, 16, 17, 18, 19, 20] in analysis
and Smith [23], Eda [2, 3] in algebra. This approach seems to be providing
us with a new and powerful machinery in analysis and algebra. In the
present paper, we shall study Banach space objects in the Scott-Solovay
Boolean valued universe and provide some useful transfer principles from
theorems of Banach spaces to theorems of Banach modules over commu-
tative AW*-algebras. The obtained machinery will be applied to resolve
some problems concerning the module structures of von Neumann
algebras.

Since Sakai [21] succeeded in characterizing von Neumann algebras
by their Banach space structures, the structure of the predual space was
an intrinsic tool for studying von Neumann algebras. However, it was
recognized that there are certain limitations of this tool for the case
with non-trivial center as pointed out by Halpern [5, p. 183]. In this
connection, he stated in [32] that the dual spaces of C*-algebras are too
small to characterize intrinsically the different type of algebras and cited
the following results as evidence: For a C*-algebra A, the set {af\f is
a pure state of A, 0 < a < 1} is weak*-compact if and only if A is CCR,
A has a Hausdorff structure space, and A modulo the closure of the ideal
of elements with continuous trace is commutative (Glimm [33, Theorem
6]): The pure state space of A is equal to the state space of A if and
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only if A is NGCR and the ideal (0) is prime (Tomiyama and Takasaki
[34]). He proposed the investigation of module structures over the cen-
ter as an intrinsic tool instead of Banach space structures. In fact, he
showed that a von Neumann algebra is of type I if and only if it is the
second dual module of some Banach module over the center [5, Theorem
9] and that an AW*-algebra can be embedded in a type I AW*-algebra as
its own bicommutant with the same center if and only if it is the dual
module of some Banach module over the center [6, Theorem 7]. These
results are pertinent generalizations of the well-known facts concern-
ing factors and Banach spaces. Further, he succeeded in characterizing
CCR, GCR and NGCR algebras in terms of the topology of the dual
module over the center of enveloping von Neumann algebras [32]. How-
ever, this approach requires somewhat cumbersome tasks to build a theory
of Banach modules parallel with Banach space theory; see [5] and [32].
Thus, it will be much desirable to obtain more direct methods which
transfer theorems of Banach spaces to theorems of Banach modules. The
purpose of this paper is to establish such transfer principles using the
methods of mathematical logic and Boolean valued set theory.

In Section 2, we present main results concerning module structures
of von Neumann algebras and AW*-algebras without any invoking of
Boolean valued set theory. We shall present the following generaliza-
tions of Halpern's results cited above: Let Z be a commutative AW*-
algebra. A C*-algebra can be embedded in a type I AW*-algebra with
center Z as its own bicommutant if and only if it contains Z in the
center as a unital C*-subalgebra and it is the Z-dual of some normed
Z-module. We call such C*-a]gebras Z-embeddable. A C*-algebra with
center Z is a type I AW*-algebra if and only if it is the second Z-dual
of some normed Z-module. A C*-algebra with center Z is a finite type
I AW*-algebra if and only if it is the Z-dual of itself.

Since the predual of a von Neumann algebra (i.e., a C-embeddable
C*-algebra) is unique in the category of Banach spaces, the problem of
the uniqueness of the Z-preduals of Z-embeddable C*-algebras arises natu-
rally. To resolve this problem we introduce the concept of Kaplansky-
Banach modules following the spirit of Kaplansky's AW*-module [11].
Then we obtain that the Z-preduals of Z-embeddable C*-algebras are
unique in the category of Kaplansky-Banach modules. This suggests
that the precise analogue of a Banach space among Z-modules is a
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Kaplansky-Banach module.

Let B be the complete Boolean algebra of projections in Z. In Sec-

tion 3, we give necessary preliminaries on the Scott-Solovay Boolean

valued universe V{B) of set theory. In Section 4, we construct a functor

from the category of Banach spaces in V(β) to the category of Kaplansky-

Banach modules. In Section 5, we construct its adjoint functor. Even-

tually, we show that these two categories are equivalent. In Section 6,

we examine the subcategory of C*-algebras in V{B) and show that, for a

unital C*-algebra A which contains Z as a unital C*-subalgebra of the

center, the following three conditions are equivalent: (1) A can be em-

bedded in a C*-algebra C in ViB) (in such a manner that A is a C*-

subalgebra of the bounded global section algebra of C). (2) Every element

x of A has the smallest projection e in S such that ex = x. (3) A

can be embedded in a type I AW*-algebra with the center Z as a C*-

subalgebra containing the center Z. This result improves the character-

ization of C*-algebras in V{B) previously obtained by Takeuti [30]. In

Section 7, we study the Z-duals of normed Z-modules. Applying these

transfer principles, we prove in Section 8 the results concerning module

structures of von Neumann algebras and AW*-algebras presented in Sec-

tion 2.

§2. Main results in applications

Let Z be a commutative AW*-algebra; denote by || \\^ the norm of

Z. Let B be the complete Boolean algebra of all projections in Z. Let X

be a unital Z-module. In this paper, every Z-module will be assumed to

be unital. Then X has a linear space structure over C by defining the

scalar multiplication as ax = (aϊ)x for any aeC and xeX. A Z-module

X with norm || || will be called a normed Z-module, if | |α#|| < ||α||oo||#|| for

every aeZ and xeX. If a normed Z-module is a Banach space it will

be called a Banach Z-module

Obviously, a C*-algebra which contains Z as a unital C*-subalgebra

of the center is a Banach Z-module.

Let X, Y be two normod Z-modules. Denote by Hom^ (X, Y) the

space of all bounded Z-linear maps from X into Y. We shall write

X* = Homz (X, Z), We shall call X* the Z-dual of X. An element of X"

will be called a Z-functίonal on X. We say that X and Y are isometri-

cally Z-isomorphic if there exists a surjective bounded Z-linear map Te
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(X, Y) such that || Tx\\ = ||x|| for all x e X and write X ^ Y. We say

that a C*-algebra A which contains Z as a unital C*-subalgebra of the

center is Z-dual if there is a normed Z-module X such that A = X#, Z-

bίdual if there is a normed Z-module X such that A = Xm and Z-self-dual

if A ^ A*.

Our main purpose is to characterize those C*-algebras that are Z-dual,

Z-bidual and Z-self-dual, respectively.

A C*-algebra A will be called Z-embeddable if there is a type I

AW*-algebra L with center Z and a *-monomorphism π: A-^L such

that π(A) = π(A)", where τr(A)" stands for the bicommutant of π(A) in L.

In this case, A is an AW*-algebra which contains Z as a unital AW*-

subalgebra of the center. For the detailed account of Z-embeddable C*-

algebras, we refer the reader to [19].

The first application of our machinery is the following.

THEOREM A. Let Z be a commutative AW*-algebra and let A be a

C*-algebra which contains Z as a unital C*-subalgebra of the center.

Then A is Z-dual if and only if it is Z-embeddable.

The second application of our machinery is the following theorem,

which generalizes [5; Theorem 9] due to Halpern to the case of AW*-

algebras.

THEOREM B. Let Z be a commutative AW*-algebra and let A be a

C*-algebra with center Z. Then A is Z-bίdual if and only if it is a type I

AW*-algebra.

The Z-self-dual C*-algebras with center Z are characterized as fol-

lows.

THEOREM C. Let Z be a commutative AW*-algebra and let A be a

C*-algebra with center Z. Then A is Z-self-dual if and only if it is a

finite type I AW*-algebra.

Theorem A is reduced to Sakai's characterization of von Neumann

algebras [21] for the case Z — C and it was proved for the case that Z

is the center of A, by Halpern [6; Theorem 7]. However, this result is

far from the uniqueness of the predual X even if we restrict X in the

category of Banach Z-modules. What is the proper category for which

the uniqueness holds? Intuitively, the solution is the precise analogue
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of Banach spaces for the scalars Z. One of our motivations in the fol-

lowing sections is to establish this 'precise analogue' using the methods

of mathematical logic. Now, we shall present our solution.

A function || \\z: X-+ Z is called a Z-valued norm on X if it satisfies

the following conditions:

(Nl) ||* + 3>IU<||*IU + ll3ΊU,
(N2) | |α*|U = |α | | | * |U,
(N3) | |* | | , > 0, and \\x\\z = 0 only if x = 0,

for all x, yeX and aeZ, where \a\ stands for the absolute value of a in

Z. A Z-module with a Z-valued norm will be called a Z-normed Z-module.

The Z-valued norm || \\z defines a scalar valued norm || || on X by the

relation ||x|| = ||||#IUIU for all xeX, which will be called the induced

norm from | |. \\z. By the relation | |α*| | = ||||α*|UIL = |||α|||*|UIU < | | a |U |* | |

for all ae Z and xeX, every Z-normed Z-module is a normed Z-module

with its induced norm.

We say that a unital C*-algebra A which contains Z as a unital

C*-subalgebra of the center is Z-scalable if, for any x e A, there is the

largest projection e in Z such that ex = 0. By [1, p. 14, Proposition 6],

every AW*-algebra which contains Z as an AW*-subalgebra of the center

is Z-scalable. Every Z-scalable C*-algebra A is also Z-normed Z-module

(Theorem 6.1). The Z-valued norm is defined by

\\x\\z = i n f { α e Z | x * x < α 2 , a > 0}

for all x e A and its induced norm coincides with its original norm.

Every C*-subalgebra of a type I AW*-algebra with center Z which

contains Z is a Z-scalable C*-algebra and every Z-scalable C*-algebra

has such an embedding in a type I AW*-algebra (Theorem 6.5).

A family {&<} of elements of B is called a partition of unity of B if

bibj = 0 for ί Φ j , and sup* bt = 1. A Z-normed Z-module X will be called

a Kaplansky Z-module if it enjoys the following property:

(Kl) Let {bi} be a partition of unity of B, and {xt} a bounded family

in X; then there exists in X an element x with bfx = 6 A for

all ί.

If btx = 0 for all i, then &* ||#|U = 0 for all ί and hence x = 0. It

follows that the element x of (Kl) is unique, and we shall write x = X^ 6 ^ .

A Kaplansky Z-module X will be called a Kaplansky-Banach Z-module if
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X is a Banach space with respect to the scalar valued norm || || induced

from the Z-valued norm || \\z.

An AW*-algebra which contains Z as a unital AW*-subalgebra of the

center is a Kaplansky-Banach Z-module [1, p. 53, Proposition 2].

In [11], Kaplansky introduced AW*-modules. In this paper, we

shall call them Kaplansky-Hilbert modules. A Z-valued norm || \\z on a

Kaplansky-Hilbert Z-module H is defined by the relation \\x\\z = (x\x}ψ

for all xeH, where <• | -}z is the Z-valued inner product on H. Then we

have I K x I x ) ^ 2 = \\{x\xY^\U = \W\x\\zL for all xeH, by the C*-condition

of the norm on Z. Thus it is easy to see that H is a Kaplansky-Banach

Z-module.

A Z-functional / on a Z-embeddable AW*-algebra A will be called

positive if f(x*x) > 0 for all xe A. A positive Z-functional f on A will be

called normal if, for any uniformly bounded increasing directed family

{αj of positive elements in A, /(sup^αj = sup* /(α*). Denote by A# the

set of all Z-functionals / on a Z-embeddable AW*-algebra A such that

there are four positive normal Z-functionals fu /2, /3, /4 such that / = /Ί — /2

+ i(h — Λ) A bounded Z-linear map ϊ7: X-> Y from a Z-normed Z-module

X to a Z-normed Z-module Y will be called a Z-isometry if ||Tic||̂ - = \\x\\z

for all x e X. We say that X is Z-isometrically Z-isomorphίc to Y if there

is a surjective Z-linear Z-isometry T e Homz(X, Y), and write X~ZY.

Then for any Z-normed Z-modules X and Y, if X = Y then X = z Y (Prop-

osition 7.5).

THEOREM D. Let A be a Z-embeddable C*-algebra. Then A# is a

Kaplansky-Banach Z-module and A is the Z-dual of A#. If A is the Z-dual

of another Kaplansky-Banach Z-module X then X is Z-isometrically Z-

isomorphic to A#.

Thus we have reached the uniqueness of the predual of a Z-embed-

dable C*-algebra. Let A be a von Neumann algebra. Then A is Z-embed-

dable for any AW*-subalgebra Z of the center of A. In fact, we have

the following.

THEOREM E. Let A be a ZQ-embeddable C*-algebra for an AW*-

subalgebra Zo of the center of A. Then A is Z-embeddable for every A W*-

subalgebra of the center with Zo c: Z.

Thus our results will illustrate much the module structures of von

Neumann algebras.
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§ 3. Preliminaries on Boolean valued analysis

Throughout this paper B denotes a complete Boolean algebra. Let

Ω be the Stone representation space of B. Denote by Z the commutative

AW*-algebra C(Ω) of all complex-valued continuous functions on Ω. Then

the set of all projections in Z is a complete Boolean algebra under the

natural ordering of Z which is isomorphic to B. Thus we may assume

that B is the complete Boolean algebra of projections in Z. The symbol 0

signifies both the least element of B and the zero of Z. The symbol 1

signifies both the greatest element of B and the unit of Z For b, c eB,

b V c denotes the supremum, b Λ c or be denotes the infimum, 1 — 6

denotes the complement of b, and b =Φ> c = (1 — b) V c.

For each ordinal a, let

VίB> = {u\u: άom(u) >B and dom(u) c (J

The Scott-Solovay Boolean valued universe V{B) is defined by

αβOn

where On is the class of all ordinals. An element of V{B) will be called

a B-valued set. The language which describes V{B) is the language of

set theory augmented by all B-valued sets as constant symbols and de-

noted by L(V^).

To each statement φ in L{V{B)) we assign a B-valued truth value [φ~\

by the following recursive rules:

(1) J> e v\ = supyedom(t,)Wy) Λ [M = y]),

(4) fa A φ2} = [^,] Λ M ,
(5) [^ V φij = [φij V [^2],

(6)

(7)

If a statement φ is inferred from a statement ψ in the first-order

predicate calculus then [ψ ] < [^]. The basic theorem of the Scott-

Solovay Boolean valued set theory is the following [31, Theorem 13.12,

Theorem 14.25].

THEOREM 3.1 (Scott-Solovay). // φ is a theorem of ZFC, then {φj = 1.
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We say that a statement φ in L(V<B)) holds in V{B\ if [φ\ = 1. From
the above theorem, every theorem of ZFC holds in V(B), and hence every
theorem of mathematics based on ZFC does.

The original universe V of ZFC can be embedded in ViB) by the
following operation v defined by the e -recursion: For each y e V, y =
{x\xey} X {1}. Then we have the following [31, Corollary 13.19].

THEOREM 3.2. If φ(xu •• ,xn) is a bounded formula in L(V(B)) then

for uu , un e V,

Φ(uu - , un) if and only if lφ(ύu , ύjj = 1.

The following theorem is called the maximum principle [31, Theorem
16.2].

THEOREM 3.3. If φ(x) is a formula in L(V{B)) then there is some ue
V{B) such that lφ(uβ = l(3x)φ(x)J.

We say that an element ue V{B), satisfying some property, exists
uniquely if there is another uf e ViB) satisfying the same property then
lu = u'] = 1.

Let {bi} be a partition of unity and let {Ui} be a family of B-valued
sets with a common index set. Then there is a unique element u e V{B)

such that [u = wj > bt for any i. We denote this u by £]« Uibi.
A jB-valued set u e V{B) is called definite if u(x) = 1 for all x e dom (u).

If ue ViB) is definite then J> e u] = 1 for all x e dom (u). The global
section set u(B) of a B-valued set u e V{B) is defined by

uw = {xf\lxeuj = 1},

where xf is some representative from the equivalence class {y e V{B) \ [x =
y\ = 1}. In the sequel, we shall omit the symbol ' in x\ conventionally.
Although {y e V(B) \ [x = yj = 1} is a proper class, we can avoid the use
of a uniform choice function in the selection x ^ x ' by considering in-
stead the subset {ye ViB)\lx = yj = 1 and y is of the least rank with
lx = y\ = 1} (cf. [25, p. 14]). If K e V(B) is nonempty in V^\ i.e., [M # 0]
= 1, then

\μ = a(*> X {1}] = 1.

If u e V^ is definite, then
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u{B) = {2 Uibilfai} is a family in dom(w)

and {bi} is a partition of unity of B).

The following. theorems are useful for manipulation of Boolean values

([31, Theorem 13.13], [25, p. 14]).

THEOREM 3.4. For any formula φ(x) in L(ViB)) and ue ViB\ we have

(1) [(Vx e u)φ(x)} = inf,6dom(ω)(H(x) => ίφ(x)J),

(2) [(3x e u)φ(x)J = swpxedom(uMx) Λ [#*)]) .

THEOREM 3.5. For any formula φ(x) in L(ViB)) and nonempty set u

in V(B), we have:

(1) [(Vx e u)φ{x)J = 1 if and only if, for any x e uiB), lφ(x)J = 1.

(2) [(3x e ύ)φ(x)J = 1 if and only if there is some x e u{B) such that

ίφ(x)J = 1.
// u is definite then:

(3) [(VΛ e ύ)φ(x)] = 1 if for any x e dom(w), lφ(x)J = 1.

Let d be a subset of V(B\ a function /: d-> ViB) is called extensίonal

if [x = yj < [/(x) = /(y)] for all x, y e d. Functions in ViB) are char-

acterized as follows [25, Proposition 4.2, p. 22],

THEOREM 3.6. Let u, v e ViB) be definite. The relation

[/(*) = g(χ)1 = i

for all x e dom (u) sets up a one-to-one correspondence between all functions

f from u to v in V{B\ i.e., [/: u-+υj = l, and all extensίonal functions

g: dom(w)—> viB).

Since our metalanguage manipulating the language L(ViB)) and the

model V{B) is also based on set theory, the situation is sometimes very

confusing. For instance, the symbol C will be used to denote the complex

number field both in the language L(ViB)) and in our metalanguage. To

avoid the confusion, we shall use the following notational convention.

Let F(xu , xn) be an rc-ary function symbol which may be introduced

in L(V(B)) by a definition. Let ul9 , une V(BK By the maximum prin-

ciple, there is a unique u e V{B) such that [u = F(uu , un)J = 1. We

shall denote one of such u by F(uu , un)B and call it the interpretation

of F(uu - , un). The global section set of F(uu , un)B will be denoted

by F(uu , un) ( B ). For example, C is a 0-ary function symbol standing
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for the complex number field, CB is the complex number field in V(B\

and CiB) is the global section set of the complex number field in ViB).

For any u, v e ViB\ define {u, v}B and (u,v}B as follows: {u9 v}B =

{ύ, v} X {1}, (u, v)B = {{u, u}B, {u, v}B}B. Then [<κ, v}B = (u, u>] = 1 [30.

Theorem 14.14]. For any u, v e ViB\ define (u X v)B e V(B) as follows:

dom ((u X v)B) — {{x, y}B \ <x, y) e dom (u) X dom (v)},

(u X ϋ)B((x, y)B) = ίxeuJAlyeuJ,

for all (x, y) e άom(u) X dom(ι ). Then [(w X ϋ)Λ = w X u] = 1 [23, p. 285].

Let d, e be subsets of V(B). A function /: d X e-^ V(β) is called exίe^-

siomzZ if [x = x l Λ [y = / ] < [/(x, y) = /(*', y;)] for all <*, y>, <^, /> e

d X β.

THEOREM 3.7. Lei u, υ, w e V{B) be definite and let f be an extensional

function from dom(w) X dom(ι ) to dom(^). Then there exists some g e V(B)

such that

lg: u x v -> w\ = 1 and [#«*, y>5) = /(x, y)] = 1,

/or α/Z (x,y) edom(^) X dom(ί ).

Proof Since u and z; are definite, (u X u)B is also definite. Let h

be a function from dom((& X ϋ)B) to dom(κ ) such that h((x,y}B) = f(x,y)

for all (x, y) e dom(u) X dom(u). From Theorem 3.6, we have only to

show that h is extensional. Let <x,y)5, (xf,y'yB be in dom((w X

Then <x, y>, (jxf^yy edom(w) X dom(i ) and hence we have

[<*, yyB = < ,̂ y> j = [x = ^i Λ [y = / ]

Thus /i is extensional. Q.E.D.

Denote by TV the set of all natural numbers and by Q the rational

number field. Then we have [iV = NBJ = 1 and [Q = QBJ = 1. Moreover,

the rational number r in ViB) is f and the correspondence preserves the

usual operation of numbers [25, p. 11]. The situation is much different

for the real number field R and the complex number field C. Denote by

C the bounded part of the global section set C(B) of C in V{B\ i.e.,

C = {aeC^\(lK eR)l\a\B < K] = I},
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where \a\B is the absolute value of a in V(B). Then C has a natural

commutative AW*-algebra structure which is *-isomorphic to Z [17, The-

orem 3.5]. Denote by XH-»X this *-isomorphism from Z onto C. Then

we have the following: Let a eC and u, x,y eZ.

2) [u = α] = 1 if and only if u = αl.

3) [β = x + y] = 1 if and only if u = x + y.

4) [β = xy] = 1 if and only if u = xy.

5) [β = (x)*] = 1 (where * is the complex conjugate) if and only if

u = x* (where * is the involution of Z).

6) [β e RB\ = 1 if and only if u is self-adjoint.
7) [x < y\ = 1 if and only if x < y.

8) lx = y] = SUP{^ e B16x = 6y}.

Thus, in the sequel we shall always identify x eZ with x e C . Under this

identification we have

1) [C* = Z X {1}] = 1,

2) [tf = y] = sup {6 e B \ bx = 6y}, for all x, y e Z.

From the above, we have also [{0, 1}5 = JSX {1}] = 1 and {0, 1}(B) = B.

% 4. Banach spaces in V{B)

Let (X, + , , || IU> be a normed linear space in V(B). Let XiB) be

the global section set of X, i.e.,

χ<*> = {ue V^|[ueX] = l}.

The bounded part X of X{B) is defined by

X={ueXw\(3KeR)l\\u\\B<ϊt} = l}.
AS.

It is easy to see that, X is the set of all xeXiB) such that | |x| |βeZ.

By [16, Lemma 3.1, p. 594], we have [ ί x {1} = X] = 1.

The bounded global section module (X, +, , || \\z} (or simply denoted

by X) of X is defined as follows:

1) For every x, y e X, the sum u of x and y is defined as the unique

element ueX such that [w = x + y] = 1, which is also denoted by x + y.

2) For every x e X and α e Z, the product u of α and x is defined

as the unique element ueX such that [u = α x] = 1, which is also

denoted by α x or αx.

3) For every xeX, ||*|U = ||*IU-
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THEOREM 4.1. Let X be a normed linear space in V(B). Then the

bounded global section module X is a Kaplansky Z-module. Further, X

is a Kaplansky-Banach Z-module if and only if X is a Banach space in

V{B).

Proof. It is easy to see that I is a Z-normed Z-module (see [30,

Proposition 1.1, p. 208], for the similar discussions). Let {6J be a partition

of unity of B, and {xj a bounded family in X. Let x = X^x*^ e V(B).

Then lx = xteX}> bt for all ί and hence xeX(B) and \\x\\B < sup^a^H.

Thus xeX. For any, ί, we have [&< == 1] = 6* and [J t = 0] = l - 6i?

and hence

[&,* = &,*«] > Kb, = 1Λ x = xd V b, = 0]

= ([&< = 1 ] Λ [ * = * J ) V [&,==(>]

= &«V(l-&«)

= 1.

It follows that btx = & Λ for all i. Thus X is a Kaplansky Z-module.

The last part of the assertions follows from [30, Proposition 1.2, p. 208].

Q.E.D.

Let X, Y be two normed linear spaces in V{B). Consider the normed

linear space L(X, Y)B of all bounded linear maps T: X—> Y in ViB).

Denote by L(X, Y)(B) the global section set of L(X, Y)B and by L(X, Y)A

its bounded global section module. Let TeL(X, YYB). Denote by \\T\\B

the operator bound of T in V(i?). Then it is easy to see that

\\T\\B^mί{aeR^\\\Tx\\B^a\\x\\B for all x

Let T<*> be the extensional map T<*>: X^ -+ Y^B) such t h a t lTiB>(x) = T(x)J

= 1 for all xeX{B). Denote by t the restriction of T(B) on X.

Let X, Y be two Z-normed Z-modules. A Z-linear map T: X-> Y is

called Z-bounded if there is some aeZ such t h a t HTΛ IU < a| |x |U f ° r a l l

xeX. The Z-bound \\ T\\z of T7 is defined by

\\T\\z = ir£{aeZ\\\Tx\\z^a\\x\\z for all xeX}.

LEMMA 4.2. Lei X, Y be two Z-normed Z-modules. Then a ZΊίnear

map T: X-+Y is Z-bounded if and only if it is bounded.

Proof. S u p p o s e t h a t T i s Z - b o u n d e d a n d \\Tx\\z < a\\x\\z for aeZ

a n d xeX. T h e n w e h a v e | |5Tr|U ^ l | a | U I | J c | | l so t h a t | | J Γ X | | < | |α |U| :x; | | .
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Thus T is bounded. Conversely, suppose that T is bounded. Let ε > 0

and let xeX. Let y = φ l + \\x\\z). Then ||y||

IU < 1, and by the boundedness of T, we have

\\Tx\\z = (εl + \\x\\z)\\Ty\\z

^\\Ty\\(εl+\\x\\z)

Since ε is arbitrary, we have \\Tx\\z < \\T\\\\x\\z. Thus T is Z-bounded.

Q.E.D.

THEOREM 4.3. Let X, Y be normed linear spaces in V(jβ). For any

TeL{X, Y)Λ, T is a bounded Z-linear map from X into Y. The corre-

spondence T^f sets up a one-to-one correspondence between L(X, Y)Λ

and VLomz(X, Y) satisfying:

(1) (aT + bS)A(x) = af(x) + bS(x), for all T, S e L(X, 7)Λ, a, b e Z

and xeX.

(2) |mU = ||t|U,
for all TeL(X, Y)A. Moreover, for any three normed linear spaces X, Y,

W in V™, and SeL(X, Y)A, TeL(Y, W)A, we have

(3) (TS)A(x) = fS(x),

for all x e X.

Proof. Let TeL(X, Y)\ By the relation \\Tx\\B < HΓIUHΛ IU, t(x) e Ϋ

for all xeX. Thus obviously, t is a Z-bounded Z-linear map from X

into Ϋ and it is bounded by Lemma 4.2. Let S e Homz(X, Ϋ). Then by

[16, Lemma 2.3, p. 593], S is extensional. Thus there is some Te V(B)

such that IT: X-+ Y] = 1 and \Tx = SxJ = 1 for all xeX. By Lemma

4.2, S is Z-bounded. Since [Z X {1} = C J = 1, we can easily check that

ITeUX, Y)BJ - 1. We have

for all xeX. Since [X X {1} = X] = 1, we have

lVxeX(\\Tx\\B<\\S\\z\x\\B)} = 1,

whence T e L(X, Y)Λ. Thus we have shown that for any S e Hom^(X, Y),

there is some TeL(X, Y)Λ such that f = S. By the relation [Xχ{l}

= X] = 1, f = S for T, Sel(X, Y)Λ, then {VxeX(Tx = SΛ)] = 1 SO that

[ T r = S ] = l. Therefore, the correspondence T >-> T is a one-to-one

correspondence between L(X, L)Λ and Hom^(X, Y). The rest of the asser-
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tions can be checked by a straightforward verification. Q.E.D.

§ 5. Construction of Banach spaces in ViB)

Denote by Norm^ the category of normed linear spaces in V{B) and
bounded linear maps T in ViB) with || T\\B e Z: An object is a β-valued
set X such that \X is a normed linear space] = 1, an arrow T: X-> Y
is a β-valued set T such that

\T is a bounded linear transformation from X to Y~\ = 1,

and such that || !Γ||B e Z. The composition of arrows is the function com-
position in V(B\ Then a horn-set of Norm*? is L(X, Y)A for objects X, Y.
Denote by Z-Kaplansky the category of Kaplansky Z-modules and bounded
Z-linear maps. In the preceding section, we have constructed a functor
X^X, T H-> T from NormLS) to Z-Kaplansky. In the following, we con-
struct its adjoint functor. Eventually, it will be shown that this pair
of adjoint functors is an equivalence of these two categories.

THEOREM 5.1. Let {X, +, , || \\z) be a Z-normed Z-module. For any
x eX, define x e V{B) by

= {y\yeX},

Then [x c; XJ = 1 for all x e X and the correspondence x »-> x is bίjective
in the sense that x = y if and only if [x = yj = 1 for all x, y e X. Define
Xe V<*> by

X={x\xeX}x{l}.

Then there is a unique normed linear space structure (X, + , , || |U> on
X in V(B) such that

lx + y = (x + y)r] = 1, [d x = (α x ) 1 = 1 and l\\x\\B = \\x\\zJ = 1,
for all x,yeX and aeZ.

Proof. Let xeX. Since dom (x) = dom (X), we have

[ί£Z] = iVyex(ye

= inf (S(y)

yex

= 1.

https://doi.org/10.1017/S0027763000001793 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001793


BOOLEAN VALUED INTERPRETATION OF BANACH SPACE THEORY 15

Thus [x cz XJ = 1 for all xeX. Consider the function (x, y} H* \\x — y\\z

from dom(X) X dom(X) to Z. Then it is obviously extensional, and hence

from Theorem 3.7 there is a function d e V{B) such that [d: X X X-+ CB~\

= 1 and [d(ί, y) = \\x — y\\zJ = 1 for all x,yeX. By the properties of

the Z-valued norm, it is easy to see that [d is a semi-metric on XJ = 1.

By interpreting the property of a semi-metric that

{VzeX(d(x, z) = 0& d(y, z) = 0)} & d(x,y) = 0,

we have

inf [d(ί, έ) = 0 & d(y, z) = 0] = [d(ί, ί) = 0] ,

for all ϊ j e l . Thus we have

lx = yJ = {VzeX(zex<=>ze y)]

= inf {d(x, z) = 0 φ d(5>, έ) = 0]

y) = 0]

for all ϊ j e l . Thus, if x = y then ||a; —y|U = 0 so that ac = y. It

follows that the correspondence x >-*• x is bijective. Let x, x', y, y' e X.

Then

||(* + y) - (x' + /)|U = ||(« - *') + (y - y')\\z

It follows that

[x = -ί'Λy = y'l = [II* - *ΊU = 0Λ||y - / |U = 0]

= [ | |*-* /IU + lly-/IU = 0]

< [||(* + y)- (χf + y')h = 0]

= [(* + y)~ = (χf + /)~]

Consequently, the function <x, y) ^(x + y)~ from dom(X) X dom(X) to

dom(X) is extensional so that from Theorem 3.7 there is a function + in

such that [+ : X X X-* X] = 1 and [x + y = (x + y)~] = 1 for all

e X Let α, α'eZ and x, x'eX. Then

\\a'-x' - a-x\\z < \a'\\\x' - x\\z + \a - a'\\\x\\z.
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It follows from the similar manipulations that

[α = α'Λx = x'] < [(α' x')~ = (a x)~J .

Consequently, the function <α,x> •-• (a x)~ from Z χ d o m ( X ) to dom(X)

is extensional so that there is a function in V(B) such that [ : CB X X

-> X] = 1 and {a-x = (a-x)~] = 1 for all α e Z and x eX. Let x, x' eX.
Then

INU-||*ΊUI<II*-*ΊU,
and hence we have

[* = * Ί <£[**== II*ΊU].

Consequently, the function x t-> ||x||^ from dom(X) to Z is extensional, so

that there is a function || ||B in ViB) such that l\\ \\B: X-+C] = I and

[||x|U = II^IU] = 1 for all xeX. Now it is a matter of straightforward

verification that the structure (X, + , , || |U) * s a normed linear space

in V(B) and that it is uniquely determined. Q.E.D.

Let X be a Z-normed Z-module. The normed linear space X con-

structed by Theorem 5.1 will be called the Boolean embedding of X into

THEOREM 5.2. Let X be a Z-normed Z-module and let X be the Boolean

embedding of X into ViB). Then the relation \Jx{x) = x] = 1 for all xeX

sets up a Z-linear Z-isometry Jx from X into (X) Λ . Further, Jx is surjective

if and only if X is a Kaplansky Z-module.

Proof. By Theorem 5.1, x = y if and only if [x = y} = 1 for all x,

y eX, and hence the relation \JΣ(x) = x] = 1 for all x e X defines an injec-

tion Jx from X into X(B\ For any xeX, we have [||Jx(x)|U = II#IU =

| | x | y = 1 by Theorem 5.1, so that \\Jx(x)\\BeZ, and hence J z (x)e(X) Λ .

Now it is easy to check that Jx is a Z-linear Z-isometry from X into

(X)Λ. If Jx is surjective then X^Z(X)A and hence X is a Kaplansky

Z-module by Theorem 4.1. Conversely, suppose that X is a Kaplansky

Z-module. Let x e (X)Λ. Since X = {x\xeX}X {1}, there is a family {xj in

X and a partition {&<} of unity with a common index set such that [x = x J

> ft* or equivalently [&<* = (6<x<)'"] = 1 for all i. Since x e (X)Λ, there

is some KeR such that [||x|U < K] = 1 and hence [piX^IU < i ί ] = 1

for all ί. It follows that {^xj is a bounded family in X. Since X is a
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Kaplansky Z-module, there is some y eX such that bty = b{Xi for all ί.
We have btJx(y) = Jz(bty) = Jz(biXt) and hence lbtJx(y) = (&Λ)~ = b&J
= 1 for all i. Consequently, we have [c/χ(;y) = x] = 1. Thus, J x is
surjective. Q.E.D.

We shall call J x the embedding map of X

THEOREM 5.3. Let X be a Z-normed Z-module and let Y be a normed
linear space in ViB). For every T e Hom^X, Y), there is a unique S e
L(Xy Y)A such that T=SoJx.

Proof. Let T e Hom^X, Y). Since [ Y X {1} = Y] = 1, we can assume

without any loss of generality that dom(Y) = Y. By the bijective corre-

spondence x H-> x, we can define T': dom(X) -> dom(Y) by T'x = Tx for

all * e X Let x,yeX. Then || Γx - Ty\\z < || ΓHHx - y|U so that

= iTx = TyJ

= IT'x = ry] .

It follows that Tf is extensional so that there is some S e V(B) such that
IS: X-> Y] = 1 and {Tx = Sx] = 1 for all x e X Since [X X {1} = X]
= 1, such an S is unique in V(B). By the similar arguments as in the proof
of Theorem 4.3, we have S e L(X, Y)Λ. By the relation [Tx = Sx] = 1
for all x 6 X, we obtain that T = S o Jz. Q.E.D.

THEOREM 5.4. Let X, Y be two Z-normed Z-modules and let Te

Hom^X, Y). Then there is a unique f e ViB) such that f e L(X, Y)Λ,

[ f ( x ) = (Tx)~J = 1 for all xeX and \\f\\B -

Proof. The assertion follows from the similar arguments as in the
proof of Theorem 5.3. Q.E.D.

Let X, Y be two Z-normed Z-modules and let TeHom^X, Y). The
bounded linear map f: X-> Y in V(B) obtained by Theorem 5.4 will be
called the Boolean embedding of T into ViB).

Denote by Z-Norm the category of Z-normed Z-modules and bounded
Z-linear maps. Then Z-Kaplansky is a full subcategory of Z-Norm. Now
we can summarize the functorial properties of the Boolean embedding
as follows.
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THEOREM 5.5. The Boolean embedding E: X >^> X, E: T *-* f is a

functor from Z-Norm to Normif) such that

(1) E(aT + bS) = aE(T) + bE(S),

(2) p(Γ)iu = ||Γ|U,
for all a, beZ and T, S e*Aomz(X, Y) and X, Ye Z-Norm. The functor

E is a left adjoint functor of the functor R: X*-*X, R: T*-> f from Normif >

to Z-Norm constructed in Section 4. The corresponding natural trans-

formation 1 -^ RE on Z-Norm is {Jx \ X e Z-Norm} obtained in Theorem

5.2. // we restrict E to Z-Kaplansky then this adjoint pair establishes

an equivalence between Z-Kaplansky and NormSf'.

Proof. Immediate consequences from our results in Sections 4 and 5;

see [12, Theorem IV. 1.2, p. 81; Theorem IV. 4.1, p. 91] for the consequences

from category theory. Q.E.D.

By the above theorem, the correspondence RE: X^(X)A, RE: T >->

(T)Λ is a functor from Z-Norm to Z-Kaplansky and the embedding map

Jx is a universal arrow from X to this functor RE. Thus we have the

following corollary.

COROLLARY 5.6. Let X be a Z-normed Z-module. Then the Kaplansky

Z-module (X)A is a unique Kaplansky Z-module up to Z-isometrίc Z-ίsomor-

phism such that, for any Kaplansky Z-module Y, every 77eHom z((X)Λ, Y)

is obtained from a unique S eHomz(X, Y) by the relation T = SoJx. The

correspondence S ^ S o J j is a Z-ίsometrίc Z-ίsomorphism from Ή.om.z(X, Y)

onto Homz(XΛ, Y).

For any normed linear space X, denote by UB(X) the unit ball of X.

For a normed linear space X in V{B\ UB(Z)β will stand for the unit ball

of X in V(B). In this case, denote by UB(X)(5) the global section set of

ΌB(X)B, i.e., UB(X)<*> = {xe V™\ [x e UB(X)J = 1}. The following theo-

rem shows that the concept of the unit ball is preserved by the Boolean

embedding.

THEOREM 5.7. (1) For any normed linear space X in ViB\ \JB(XYB)

= UB(X).

(2) For any Kaplansky Z-module X, JX(UB(X)) = UB(X)(5).

Proof. (1) Let x e UB(X) (2?). Then ||x|U < 1 and hence xeX Since

| | * | | = IHWUIL < 1, we have x e U B ( ί ) . Let x e UB(X). Then xeXiB)

and Hsu* < | | x | | l < 1, so that x e U B ( I ) ( f i ) .
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(2) From Theorem 5.2, Jx is a Z-isometric Z-isomorphism from X

onto (X)Λ and hence JX(UB(X)) = UB((1)Λ). From (1), we have JX(UB(X))

= \JB(XYB\ Q.E.D.

THEOREM 5.8. Let X be a Kaplansky Z-module and let φ(x) be a

formula in L(V(B)). Then we have:

(1) [(Vx e UB(X)B)φ(x)J = lif and only if for all u e U B ( X ) , tφ(u)J = 1.

(2) [(3x e XJB(X)B)φ(x)J = 1 if and only if there is some u e UB(Z)

such that lφ(ύ)J = 1.

Proof. Immediate consequences from Theorem 5.7 and Theorem 3.5.

Q.E.D.

§ 6. Boolean embeddings of C*-algebras

Consider a unital C*-algebra A in ViB) and its bounded global section

module A. By the property [(Vα e C)(Vx e A)(alA)x = x(alA)J = 1 and

the identification C ~ Z, we have (αl^)x = x(αl^) for all aeZ and x e i ,

where 1̂  is the unit of A in ViB). Let 1* be the unit of Z. Then by

the identification C = Z, l z is the numeral one in F ( f i ) . By the property

[(Vx € A)lzx = xj = 1, we have 1^1A = 14. Thus the set of all elements
of the form alA for a e Z will be identified with Z and hence we can see
that A contains Z as a unital C*-subalgebra of the center.

Let x e A and b e {0, 1}(JB) = JB. Then [6 = 0 V 6 = 1] = 1. Suppose
bx = 0. Then {bx = 0] = 1 and, by the property {bx = 0 Λ b = 1 => x = 0]

= 1, we have 6 = [6 = 1] < [a = 0]. Thus if 6x = 0 then b < {x = 0].

Further, if 6 = [x = 0], we have 6 = {x = 0] < [6x = 0], and 1 - b =

ίb = 0] < [6x = 0], and hence [fex = 0] = 1, that is bx = 0. Thus

[x = 0] is the maximum element of the set {b e B \ bx = 0}.

We say that a unital C*-algebra A which contains Z as a unital C*-

subalgebra of the center is Z-scalable if, for any x e A , there is the

largest projection e in Z such that ex = 0. It should be noted that e is

the largest projection in Z such that ex = 0 if and only if 1 — e is the

smallest projection in Z such that (1 — e)x = x. In the case that Z is

the center of A such a projection 1 — e is usually called the central

cover of x. For the above observations, the bounded global section module

of a C*-algebra in V(B) is Z-scalable. By [1, p. 14, Proposition 6], every

AW*-algebra which contains Z as an AW*-subalgebra of the center is

Z-scalable.
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From now onward, let A be a unital C*-algebra which contains Z

as a unital C*-subalgebra of the center. Then A has a natural Z-module

structure.

THEOREM 6.1. Let A be a unital C*-algebra which contains Z in the

center as a unital C*subalgebra. For any xeA, define \\x\\z by

\\x\\z = inf{αeZ|x*x<α 2, a> 0}.

Then \\x\\z > 0 and || \\z has the following properties:

(1) | | | | x |U|U<| |x | | ,

(2) | | x + ; y | U < | | x | U + ||j>|U,
(3) | | α x | U - | α | | | x | U ,

(4) \\xy\\z <\\x\\z\\y\\z,
(5) ||x*x|U = | |x | |L

for all x, y e A. Moreover, if A is Z-scalable, it satisfies the following

properties:

(6) || | |*|U|U = ||*||,
(7) \\x\\z = 0 only if x = 0,

for all x e A, and hence || \\z is a Z-valued norm on A.

Proof. Since Z is a commutative AW*-algebra, the infimum in the

definition of \\x\\z always exists and obviously \\x\\z > 0.

(1) By the relation x*x < ||x*x||l = ||x||2l, we have ||x|U < | |x| | l so

that | | | | x |UIL<| |x | | .

(2) By a faithful ^-representation, we can assume that A is a C*-

algebra of bounded operators on a Hubert space H. Since Z is in the

center of A, we have A c= Z', where ' stands for the commutant in L(H).

Since Z" is an abelian von Neumann algebra, there is a localizable

measure space (T, μ) and a *-isomorphism λ from Z" onto L°°(Γ, μ). Let

ξ, η 6 H. The linear functional λ(a) H-> (aξ \ rf) on L°°(Γ, μ) is bounded and

completely additive on projections, and thus by the Radon-Nikodym

theorem there is a μ-integrable function F(ξ, η) uniquely in L\Γ, μ)

such that

ί
J Γ

i(a)(r)F(ξ,η)(r)μ(dr),

for all a e Z'f. Then it is easy to check that the map <£, η) «-> F(f, 9)

from Hx H to L\Γ. μ) has the following properties: For any x e Zr and

a, be Z", a n d ξ,η,ζe H,
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(Fl) F(aξ + bη, ζ) = λ(a)F{ξ, ζ) + λ(b)F(v, Q,

(F2) F(ξ9η)* = F(η,ξ),

(F3) F(ξ, ?) > 0 and F(ξ, ξ) = 0 only if ξ = 0,

(F4) F(xξ, η) = F(£, **?).

Let G(f) = F(£, f)1/2 for all feff. Then G(ξ) e U(Γ, μ) and the map ξ e

ίΓt->G(f) has the following properties [15, Lemma 4.1]: For any a e Z"

and ξ, ηeH,

(Gl) G(ξ +η)< G(ξ) + G(rjl

(G2) G(α?) = μ(α)|G(f).

Now we shall claim the following: For any x j e Z',

(G3) x*x < y*y if and only if G(xξ) < G(yξ) for all ξeH.

If x*x < y*y then <αx*xf|f> < <αj*yf |f> for all a € Z" with α > 0 and

f e H, and hence F(jc*acf, ξ) < F(y*yξ, ξ) so that G(xξ) < G(yξ) by (F4).

Conversely, if G(xξ) < G(yξ) then it is easy to see that (x*xξ \ξ) <

(y*yξ\ξ)- Thus property (G3) is concluded. To prove (2), let x j e A

and α, b e Z be such that x*x < α2, y*y < b2 and α, 6 > 0. Then by prop-

erties (G1MG3), we have, for all ξeH,

G((x + y)ξ) < G(xξ) + G(yξ) < G(aξ) + G(bξ)

= λ(a)G(ξ) + λ(b)G(ξ) = Λ(α

so that (x + y)*(x + y) < (a + b)\ It follows that ||x + y\\z < \\x\\z + \\y\\z.

(3) Let x = bxxx + 62x2 with xί9 x2e A and 61? b2e B such that 6^2 = 0.

Let α, α1? α2 be positive elements of Z such that x*x < α2, xf xλ < a\ and

x*%2 < tti Then

b2x*x2 < bxa\ + b2a\ = {bxax + b2a2f,

so that ||Λ;|U < M i + &2«2? and hence ||x||^ < ί?i||XilU + ^II^IU by taking

the inίima of ax and a2 in Z. On the other hand, we have

fx2 = x*x + (1 — bι)xfx1

< α2 + (1 + bί)al

It follows that H^HI < α2 + (1 - &,)a? so that H^Hi < | |x | | | + (1 -

Thus, by multiplying the both sides by bu b^x^fz < 6i | |x | | | and hence

δill^ilU < 61IIΛ2IU. Similarly, ί?2||x2|U < b2\\x\\z and thus bx\\xx\\z + b2\\x2\\z

< ||x|U Therefore, we have shown \\x\\z = feillxJU + b2\\x2\\z. By induc-

tion, for any pairwise orthogonal projections 61? b2, , bne B and xί9
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x2, - -, xne A, we have ||Σ?=i&ΛlU = Σί-i&ίlWU Now we shall prove

the general case. Let aeZ and xe A. Let ε be an arbitrary positive

number. Since Z is generated by projections [1, p. 45, Proposition 1],

there is an element a! e Z of the form a! = Σ?=i <*A with ate C and bteB

such that ||a — a'H*, < ε. Obviously, we can assume that 6/s are pairwise

orthogonal. Thus we have

\\a'x\\z= \\£>bi("iX)

By the triangular inequality |α| — \a'\ < \a — a!\ and (1), we have

IHαlll*, - \a'\\\x\\z\\» < \\\a\ - \a'\U\\\x\\z\U

<\\a-a'U\x\\
<ε\\x\\.

By (1) and (2) we have

T h u s w e h a v e

ll i |α* |U - | α | | | Λ | U | U = | | | | α x | U - \\a'x\\x + \a'\\\x\\E - \a\\\x\\x

< \\\\ax\\x - \\a'x\\x\U + \\\a'\\\x\\x -

Therefore, we have proved \\ax\\z =

(4) Let x, y e A and let ax and α2 be positive element of Z such that

x*x < a\ and y*y < a\. Then we have

(χy)*(χy) = y*(

It follows that \\xy\\z < «A and hence \\xy\\x < \\x\\x\\y\\x

(5) Let xe A and a e Z with a > 0. Since Z is in the center of A,

x*x < α2 iff (x*x)*(x*x) < (α2)2. Thus the conclusion follows from the

order isomorphic property of a •-» α2 for the positive elements of Z.

(6) From (1) it suffices to show that x*x < | |x | | | for all xeA. Let

x e A and let Γ be the maximal ideal space of the commutative C*-

algebra C*(Z U {x*x}) generated by Z and x*x. By the Gelfand transform,

C*(Z U {X*Λ;}) is *-isomorphic to C(Γ), and we shall simply write a(T) for
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the value at ϊ e Γ of the Gelfand transform of a e C*(Z U {x*x}). Obviously,

it suffices to show that, for any ϊ e Γ and positive number α, if x*x(ϊ) > a

then \\x\\%(T) >a. Let a > 0 and set S = {r 6 Γ|x*x(r) > «}• By Z-scala-

bility of A, there is a projection c e β such that

c = max{6eB |&[***- αl] + = 0},

where [ ]+ stands for the positive part. Let U = {T 6 Γ | c(r) = 1}. If r e S

then [x*x - al]+(γ) Φ 0, hence c(γ) = 0 so that 7 e Γ\U. It follows that

S g Γ\Ϊ7. On the other hand, let α e Z be such that α > 0 and x*x < a2

and let

d = max{6 e B\ b[a2 - al]+ = 0}.

By the relation x*x < a2, we have [x*x — al]+ < [a2 — al]+ so that d < c.

Now let Ω be the maximal ideal space of Z and consider the Gelfand

transform of Z. Then Ω is a Stonean space in which the closure of

every open set is clopen. Let V = {ω e Ω | d(ω) = 1}. By taking comple-

ment, we have

1 - d = min{6 6 B\ b[a2 - al]+ - [a2 - aΐ\+},

and hence Ω \ V is the smallest clopen subset of Ω such that {ω 6 Ω \ a\ω)

>a}<^Ω\V. It follows that Ω\V is the closure of {ω e Ω \ a\ω) > a},

which is clopen since Ω is Stonean. Thus we have Ω\V c: {ω e Ω\a\ω)

> a}, and hence a(l — d) < a2. By the relation d < c, we have a(l — c)

< a2. Thus we have shown that, for any aeZ with a > 0 and x*x < α2, we

have V ^ ( l — c) < a. Since ^"#"(1 — c) e Z, we conclude that Λ/ΊX(1 — c)

< ||x|U. Thus \\x\\2

z(r) > a for all T e Γ\U, but S <^ Γ\U, and therefore we

have proved that \\x\\2

z(ϊ) > a for all γ e Γ with x*x(r) > α. Q.E.D.

Let A be a Z-scalable C*-algebra. From Theorem 6.1, A is a Z-

normed Z-module. Thus we can construct the Boolean embedding A of

A by Theorem 5.1. A normed *-algebra A will be called a pre-C*-algebra

if ||x*x|| = ||x||2 for all xe A. Obviously, the metric completion of a pre-

C*-algebra is a C*-algebra.

THEOREM 6.2. Lei A be a Z-scalable C*-algebra. Then the Boolean

embedding A of A is a unital pre-C*-algebra in V(B\ where the product

operation X and the involution * satisfy that [ x X y = (xy)~J = 1 and

[(£)* = (**)-] = 1 for all x,yeA.
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Proof. By Theorem 5.1, A is a normed linear space in Vim. Let

x, χ/, y> / € A. Then

ii a ? - * y ιu < ιι*ιι*ιiy - y i u + I I / I U I I * - * Ί U .

By the similar argument as in the proof of Theorem 5.1, the function

<ί, y} ι-> (x x j>)~ from dom(A) X dom(A) to dom(A) is extensional, so that

there is a function X in V{B) such that [ X : A χ A - > A ] = l and [ x X y

= (xy)~J = 1 for all x, y e A. Similarly, there is a function * in V(B) such

that [*: A-+A] = 1 and [(5)* = (s*)~] = 1 for all xeA. With these

operations, it is easy to see that A is a *-algebra with unit ϊ . By

Theorem 6.1, it is easy to see that A is a pre-C*-algebra. Q.E.D.

A Z-scalable C*-algebra A is called a unital Z-C*-algebra if its

Z-normed Z-module structure is a Kaplansky-Banach Z-module, i.e., it

satisfies condition (Kl). From [1, p. 53, Proposition 2], every AW*-algebra

which contains Z as a unital AW*-subalgebra of the center is a unital

Z-C*-algebra.

Let (A, + , , X, *, || |U> be a unital C*-algebra in V{B\ The

bounded global section algebra {A, + , , X, || IU, II ll> (or simply denoted

by A) of A is defined as follows:

1) The partial structure {A, + , , || ||̂ > is the bounded global section

module of the Banach space structure <A, + , , || IU> in V{B\

2) For every pair x, y e A, the product u of x and y is defined as

the unique element ueA such that [u — x X yj = 1, which is also denoted

by x X y or xy.

3) For every x € A, the adjoint u of x is defined as the unique
element u eA such that \u = x*J — 1, which is also denoted by x*.

4) For every xeA, the scalar valued norm ||x|| is defined by ||x|| =

llll*IWc

THEOREM 6.3. Let A be a unital C*-algebra in V(B\ Then the bounded
global section algebra A is a unital Z-C*-algebra. Conversely, for any
unital Z~C*-algebra A, the Boolean embedding A is a unital C*-algebra
in ViB) such that (Ά)A is Z-linearly *-isomorphic to A.

Proof. The first part of the assertion can be checked easily. The

second part follows from Theorem 5.2 and Theorem 6.2: For the similar

result, compare with [30, Theorem 1.1, p. 214] and [20, Theorem 2].

Q.E.D.
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General descriptions of non-unital C*-algebras in V{B) are obtained in

[30].

PROPOSITION 6.4. Let A be a Z-scalable C*-algebra. The Boolean

embedding A has the following properties:

(1) For any xe A, x is a self-adjoint {partial isometry, unitary, projec-

tion) element if and only if \x is a self-adjoint (partial isometry, unitary,

projection) element} = 1.

(2) For any x,yeA, x < y if and only if [x < yj = 1.

Further, if A is a unital Z~C*-algebra then we have the following:

(3) For every self-adjoint (positive) x e\JB(A)B in V{B), there is a

self-adjoint (positive) y e UB(A) such that [x = yj = 1.

(4) For every projection (partial isometry, unitary) x e l in V<B) there

is a projection (partial isometry, unitary) y e A such that [x = y\ = 1.

Proof. Immediate consequences from Theorem 6.2; assertions (3) and

(4) follows from Theorem 5.7. Q.E.D.

Now we have the following characterization of Z-scalable C*-algebra.

THEOREM 6.5. Let A be a C*-algebra which contains Z as a unital

C*-subalgebra of the center. Then the following conditions (l)-(7) are all

equivalent.

(1) A is Z-scalable.

(2) There is an AW*-algebra L of type I with center Z and a *-

monomorphίsm π: A-^L such that Z = π(Z) cz π(A) <Ξ L.

(3) For any x e A, there is a projection P of norm one from A onto

Z such that x*x < P(x*x).

(4) For any xeA, x*x < \\x\\%.

(5) For any xeA, \\x\\ < \\\\x\\Σ\l.

(6) For any xeA, \\x\\z = 0 only if x = 0, and hence || \\z is a Z-

valued norm on A.

(7) For any bounded family {xj in A and partition of unity {bt} in

B with a common index set I, the relation bty = btXi for all i el holds

for at most one element y e A (if such a y exists).

Proof. (1) =Φ (2): Suppose that A is Z-scalable. By Theorem 6.2, the

Boolean embedding A of A is a pre-C*-algebra in ViB) and hence there

is a C*-algebra C in Vm which is the metric completion in ViB) of A.

By Theorem 5.2 it is easy to see that there is a Z-linear *-monomorphism
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h: A —• C such that h(x) = * for all x e A By the theory of C*-algebras,

[There is a Hubert space H and a *-monomorphism 7: C-+L(H)J = 1.

Then [II; |U = 1] = 1 so that j eL(C, L(H))A and it is easy to check that

j : C->L(H)A is a Z-linear *-monomorphism (cf. Theorem 4.3). From

[17, Theorem 4.1] H is a Kaplansky-Hilbert module over Z and L(H)A is

identical with the AW*-algebra End^(iϊ) of type I with the center Z.

Now it is obvious that the composition π = j o h is a Z-linear *-monomor-

phism from A to End^(iϊ). By Z-linearity and the property ττ(l) = 1, it

is obvious that π(Z) = Z.

(2)=>(3): Suppose (2). Then we can assume without any loss of

generality that A itself is an AW*-algebra of type I. Since every AW*-

algebra is a Z-C*-algebra, from Theorem 6.3 we can assume that A is the

bounded global section algebra C of a unital C*-algebra C in ViB). Let

x 6 A = C. By the Hahn-Banach theorem of states of C*-algebras, [There

is a positive linear functional / on C such that \\f\\B = 1, /(I) = 1 and

that x*x< 11***112,1 =/(***)1] = 1. Then it is easy to see that f is a

positive Z-linear map from C to Z such that /(I) = 1 and that x*x <

f (***)1. Thus, by setting P( y) = f ( y)l for all y e C, P is a projection

from C onto the center Z of C such that **x < P(***). In order to see
/\

that P is of norm one, let y eC. Then we have

Thus P is of norm one.

(3) :φ (4): Let x e A and aeZ satisfy x*x < a2 and a > 0. Let P be

a projection of norm one from A onto Z such that *** < P(x*x). Then,

by the Tomiyama theorem [24, p. 131, Theorem 3.4], P is a positive linear

map and hence we have x*x < P(x**) < P(aF) = α2. Since P(**x) e Z,

we have **x < P(**x) < \\x\\%.

(4) >̂ (5) and (5) =φ (6) are obvious.

(6)=M7): This is obvious. For if bty = 0 for all i, then 6€||y|U =
H&î lU = 0 so that ||^||z = 0, and hence y = 0 from assumption (6).

(7)=>(1): Let xeA. Suppose (7). Let {6«} be a maximal pairwise
orthogonal family of projections in B such that btx = 0 for all i. Let
c = sup{6J. Then {&<} U {1 — c} is a partition of unity in J3 and ex sat-
isfies bi(cx) = 0 for all i and (1 — c)(cx) = 0. By assumption (7), we have
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ex = 0. If d e B satisfies dx = 0 then (1 — c)d = 0 by maximality of {bJ
so that d = cd. Thus c = max{6 6 JB| bx = 0}. Q.E.D.

An example of a C*-algebra which contains Z as a unital C*-sub-
algebra of the center but is not Z-scalable is obtained as follows. Suppose
that B is the complete Boolean algebra of regular open subsets of the
unit interval [0, 1] and Z = C(Ω) where Ω is the Stone representation
space of B. Let A be the commutative W*-algebra l°°(Ω) of bounded
functions on β. Then A contains Z as a unital C*-subalgebra. Since Z
has no minimal projections, for any minimal projection e of l°°(Ω), there
is no largest projection b eB such that be = 0. Thus A is not Z-scalalbe.
From a similar consideration, it is easy to see that, from any C*-algebra
A which contains Z as a unital C*-subalgebra of the center, the universal
atomic representation π of A always produces a C*-algebra π{A)ff which
is not Z-scalable, provided that B is not totally atomic (cf. [24, p. 176]).

Theorem 6.1 generalizes Takeuti's result [30, p. 212, Proposition 3]
in weakening his assumptions. Our proofs of statements (2) and (3) of
Theorem 6.1 are alternative proofs of the corresponding statements in
his result and the proofs of Theorem 6.1 (6) and Theorem 6.5 [(7) => (1)]
will compensate for his omission of a proof of the statement x*x < \\x\\%
for all xeA.

§ 7 Dual modules of Banach modules

For a normed linear space X in ViB\ denote by X* the dual space
of X in V(*\ i.e., X* - L(X, C)B.

LEMMA 7.1. For any normed linear space X in V(B\ (X*)Λ = (X)*.

Proof. It follows from Theorem 4.3 that L(X, C)Λ is Z-isometrically
Z-isomorphic to Homz(X, <?). Since 0 = Z, we have

(X*)Λ = L(X, C)Λ £ Hom^(X, Z) = (X) f. Q.E.D.

Let X be a normed Z-module. For any / e l * we can define a Z-
module action by af(x) = a(f(x)), for all a € Z and x e X. Then X* is a
Z-module.

LEMMA 7.2. Let X be a normed Z-module. For any / e X * define \\f\\z

by

| | | |x| |<l, xeX}.
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Then X* is a Kaplansky-Banach Z-module with Z-υalued norm

Further, we have

for all feX\ where \\f\\ = sup{||/(x)|U 11|*|| < 1, xeX}.

Proof. Since ||/(x)|U < \\f\\ for all xeX with | |*| | < 1, the supremum

\\f\\z always exists. It is a matter of routine verification to check that

|| |U is a Z-valued norm and ||||/|UIU = ||/|| for all / e l l To check con-

dition (Kl), let {bi} be a partition of unity in B and {ft} a bounded family

in X*. Let / b e a function from X to Z such that f(x) = Σtbtft(x) for

all xeX. Then ||/|| < supίH/J and hence it is easy to see t h a t / e X # .

Thus (Kl) holds. Since \\\\f\\z\U = 11/11 for all feX*it follows from a stand-

ard argument that X* is a Banach space. Thus X# is a Kaplansky-

Banach Z-module with Z-valued norm || \\z. Q.E.D.

LEMMA 7.3. Let X be a Z-normed Z-module. Then for any / e l *

II/IU = inf{α eZ\ \f(x)\ < a\\x\\E, a > 0, xeX}.

Proof. Since ||x|| < 1 if and only if \\x\\z < 1 for all xeX, the asser-

tion follows from a standard argument. Q.E.D.

LEMMA 7.4. Let X be a Z-normed Z-module. For any x e X, we have

Proof. Let X be the Boolean embedding of X into V(B). Let xeX.

Then by the Hahn-Banach theorem

[ 3 / e P ( / ( ί ) = \\x\\BA II/IU = 1)] = 1.

Thus by Lemma 7.1, there is some / e l 1 such that f(x) = \\x\\B and ||/|| = 1.

For any / e l f if ||/|| < 1 then \\f\\z < I and \f(x)\ < \\x\\z. Therefore the

assertion follows. Q.E.D.

PROPOSITION 7.5. Let X, Y be two Z-normed Z-modules. Every iso-

metric Z'isomorphism T: X-> Y is Z-isometric.

Proof. Let xeX. Since the correspondence / ^ / o f is an isometric
Z-isomorphism from Y* onto X* we have from Lemma 7.4,

| | < l , /e F*}

< l , geX*}

Q.E.D.
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By the above result, in the sequel, we shall not distinguish the
relation X = z Y from X = Y for Z-normed Z-modules X, Y.

LEMMA 7.6. Let X* be the Z-dual of a normed Z-module X. Then

there is a Z-normed Z-module Y such that X* is Z-isometrically Z-ίsomor~

phίc to YK

Proof (cf. [5, p. 188]). Let Xf be the reduced module X/K with the

norm \\x + K\\ = inf {\\x + k\\\ke K}, where K = Π {kernel of f\feX% It

is standard to show that X* is Z-isometrically Z-isomorphic to X/# under
the correspondence / *-> / ; where fix + K) = f(x) for all x e X. By replac-
ing X by Xr if necessary, we can assume that K = {0}. For each xeX,
the function / π-» f(x) defines an element Fx of Xm. The correspondence
x f-> Fx is a Z-isomorphism of X onto a submodule Y of the Z-module Xu

with \\FJ < \\x\\. Then Y is a Z-normed Z-module. Setting f\x) = f(Fx)
for all /e y* and xeX, we obtain a Z-functional /' of X It then follows
that

F J | ^ l , FxeY)

| | ^ l , xeX}

By Lemma 7.3, for any F e Xu with | |F| | < 1,

Consequently,

HΠU > sup{|F(/0| I |[F|| < 1, FeX«}
>sup{ |/(FJ | | | |^ | |<l, FxeY}

= ιι/ιu,
whence H/̂ U = ||/||^. Therefore, the correspondence / ^ f is a Z-isometric
Z-isomorphism from F# onto Z#. Q.E.D.

§ 8. Proofs of Theorems A-E

In this section, we shall prove Theorems A-E presented in Section 2,
using those results obtained in the preceding sections.

THEOREM A. Let Z be a commutative AW*-algebra and let A be a

C*-algebra which contains Z as a unital C*-subalgebra of the center.
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Then A is Z-dual if and only if it is Z-embeddable.

Proof. Suppose that A is Z-embeddable. Then A can be identified

with a Z-von Neumann algebra on a faithful Kaplansky-Hilbert Z-module

H. By [19, Theorem 2.3], there is a von Neumann algebra A on a Hubert

space H in V{B\ such that (A)Λ ̂  A. Since A is a von Neumann algebra

in V{B\ there is a Banach space Y in V{B) such that A is isometrically

isomorphic to Y*. By Theorem 5.5 and Lemma 7.1, A is Z-isometrically

Z-isomorphic to the Z-dual (Ϋ)* of the Kaplansky-Banach Z-module Ϋ.

Conversely, suppose that A is the Z-dual of a normed Z-module. Then

by Lemma 7.6, we may assume that A is the Z-dual X* of a Z-normed

Z-module X. Then A is the dual of a normed linear space X in V(β).

Thus A is a Banach space in V{B) and, by Theorem 6.2, A is a C*-algebra

which is a dual space in V{B\ and hence it can be regarded as a von

Neumann algebra in V(B). By [19, Theorem 2.3], (A)Λ is a Z-von

Neumann algebra so that it is Z-embeddable. Since A is a Z-dual, it

follows from Lemma 7.2 that it is a Kaplansky-Banach module. By

Theorem 5.2, A ^ (A)Λ, and hence A is Z-embeddable. Q.E.D.

THEOREM B. Let Z be a commutative AW*-algebra and let A be a

C*-algebra with center Z. Then A is Z-bίdual if and only if it is a type

I AW*-algebra.

Proof. Suppose that A is a type I AW*-algebra. Then by [19, The-

orem 2.3, Theorem 3.1], there is a type I factor A in V{B) such that A

is Z-linearly ^-isomorphic to (A)Λ. Since every type I factor is the second

dual of some Banach space, there is some Banach space X in ViB) such

that [A s X**J = 1. Thus we have A s (A)Λ ̂  (X**)Λ ^ (X)** by Lemma

7.1, and hence A is the second Z-dual of a normed Z-module X. Con-

versely, suppose that A is the second Z-dual Xm of a normed Z-module

X. By Lemma 7.6, we may assume that X is a Z-normed Z-module. Let

A and X be their Boolean embeddings. Since A = Xm, it follows from

Theorem 5.4 and Lemma 7.1 that [A ^ X**] = 1. Thus by Theorem 6.2,

A is a W*-algebra in V{B\ Since the center of A is Z, A is a W*-factor

in ViB) by [19, Theorem 2.3]. Since every second dual C*-algebra has a

minimal projection, A is a type I factor. By [19, Theorem 3.1], (A)A is

a type I AW*-algebra. Since A ^ Xm, A is a Kaplansky-Banach Z-module,

it follows from Theorem 5.2 that A ^ (A)Λ. Therefore A is a type I

AW*-algebra. Q.E.D.
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THEOREM C. Let Z be a commutative AW*-algebra and let A be a

C*-algebra with center Z. Then A is Z-self-dual if and only if it is a

finite type I AW*-algebra.

Proof. Suppose that A is a finite type I AW*~algebra. Then by [20,

Theorem 5, Theorem 7], there is a finite type I factor A in V(B) such

that A is Z-linearly *-isomorphic to (A)Λ. Since every finite type I factor

is self-dual, we have [A ^ (A)*] = 1. Thus we have A ^ (A)Λ ^ ((A)*)Λ

^ ((A)Λ)# ^ AK It follows that A is Z-self-dual. Conversely, suppose

that A is Z-self-dual. Then A is Z-bidual and hence A is a type I

AW*-algebra. Thus by [19, Theorem 2.3] there is a type I AW*-factor A

in V{B) such that A ^ (A)\ Since A is Z-self-dual, we have [A ^ (A)*]

= 1. It follows that [A is finite] = 1. By [20, Theorem 7], we can

conclude that A is finite. Q.E.D.

LEMMA 8.1. Let A be a unital Z-C*-algebra and let D be a non-empty

increasing directed subset of UB(Ά)B in V(B\ Let D c: A be such that

D = {x e AI [x e D] = 1}. Then we have the following:

(1) D is an increasing directed subset of UB(A).

(2) // u = sup D then [S = sup D] = 1.

(3) // [α = supD] = 1 then there is some velJB(A) such that v =

sup D cmd that [u = 5] = 1.

Proo/. Let Λ; e D(B\ i.e., [ x e f l ] = 1. Since D(B) c UB(1) ( B ), it follows

from Theorem 5.7, that there is some y eUB(A) such that [x = yj = 1.

Then obviously y e ΰ . From Theorem 5.7, we can conclude that the

correspondence x ι-> x is a bijection from D to Z)(fi) such that x < y if

and only if [x < y\ = 1. Thus it is easy to see that D is an increasing

directed subset of UB(A) and hence (1) holds. Now it is a matter of

routine verification that (2) and (3) follows from the order preserving

nature of the bijective correspondence x \-+ x. Q.E.D.

LEMMA 8.2. Let A be a unital Z-C*-algebra and let D be a non-empty

increasing directed subset of UB(A). Let D e ViB) be such that D = {x | x e D}

X {1}. Then we have the following:

(1) [JD is an increasing directed subset of UB(A)J = 1.

(2) If u = sup D then \u = sup j5] = 1.

(3) If \u = sup DJ = 1 then there is some ι eUB(A) such that v =

sup D and that [u = vj = 1.
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Proof. Obviously, [D c: UB(ΛΪ)J| = 1. Since D is an increasing
directed set, for any x,yeD, there is some z eD such that x < z, 3/ < z.
From Proposition 6.4, we have

inf sup [ x <

It follows that

l(Vx,yeD)(3zeD)x<zΛy<zJ = 1,

and hence it is easy to see that D is an increasing directed subset of
\JB(A)B in ViB). Thus (1) holds. Suppose that u = sup D. Then u e UB(A)
and obviously w is an upper bound of D. Let xeUB(l) ( B ) be an upper
bound of D in ViB). By Theorem 5.7, there is some yeUB(A) such that
[# = y] = 1. It is easily seen that y is an upper bound of D so that
u < y. It follows that [β < x] = 1 and hence [β = sup DJ = 1. Thus
(2) holds. Suppose that {u = sup DJ = 1. Then \u € UB(A) J = 1. From
Theorem 5.7, there is some ueUB(A) such that [u = supD] = 1. For
any xeD, we have [x < vj = 1 so that # < v, and hence 1; is an upper
bound of D. Let xeUB(i) be an upper bound of D. Then jc is an
upper bound of D in V(B) and hence [S < xj = 1 so that u < x. It fol-
lows that v = sup D. Thus (3) holds. Q.E.D.

LEMMA 8.3. Let A be an Z-embeddable C*-algebra. For any normal
positive Z-functional f on A, f is a normal positive linear functional on A
in ViB\ Every normal positive linear functional on A in V{B) which is
Z-bounded arises in this way.

Proof. Let / be a normal positive Z-functional on A. Then it is
easy to see that / is a positive linear functional on A in ViB). To see
that f is normal in V(B), let D be a non-empty increasing directed subset
of the unit ball of A in V(B). Let D be such that D = {p e A \ [p e DJ = 1}.
Then by Lemma 8.1, D is a non-empty increasing directed subset of the
unit ball of A and [(sup D)~ = sup DJ = 1. By the normality of /, we
have /(sup D) = sup {f(p) \p e D}. It is easy to see that

[sup {ftp) I p e D} = sup {/</>) |p e D}~] = 1.

It follows that

If (sup D) = sup {f (p) \p 6 D}] = 1.

Thus / is normal in V(B). Conversely let g be a normal positive linear

https://doi.org/10.1017/S0027763000001793 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001793


BOOLEAN VALUED INTERPRETATION OP BANACH SPACE THEORY 33

functional on A in V(B) such that | |^ | | β eZ. Then there is a positive Z-

functional f on Ά such that \_g = /] = 1. Let D be an increasing directed

subset of the unit ball of A and let D be such that D = {x\xeD} X {1}.

By Lemma 8.2, D is an increasing directed subset of the unit ball of A

in V(B) and that [(sup Z))~ = sup DJ = 1. Since f is normal in V(B\ we

have [/(supi5) = sup{f(x)\xeD}J = 1. It is easy to see that /(supZ))

is an upper bound of the set f(D) = {f(x) | x e D}. Let u be an upper

bound of/(D). Then for any xef(D), [x < S] = 1 and hence [sup{/(x)|x

eD} < ύj = 1. By the preceding arguments, we have [/((supD)~) < ύj

= 1. Thus we have /(sup D) < u. It follows that sup f(D) = /(sup D)

so that / is normal. Q.E.D.

THEOREM D. Let A be a Z-embeddable C*-algebra. Then A# is a

Kaplansky-Banach Z-module and A is the Z-dual of A%. If A is the Z-

dual of another Kaplansky-Banach Z-module X then X is Z-isometrically

Z-isomorphic to A#.

Proof. Let A be a Z-embeddable C*-algebra. Obviously, A# is a

Z-submodule of A#. Consider their Boolean embeddings (A#)~ and (A#)~.

Then [(A#)~ is a linear subspace of (A#)~] = 1 and [(A*)~ = (A)*J = 1.

By Lemma 8.3, (Aft)~ is the linear space generated by all normal positive

linear functionals on A in V(B\ By a certain theorem of W*-algebras,

we have [(A#)~ = (A)*] = 1. Now we shall show that ((A#)~)Λ ^ A#. Let

/e((A#)~)Λ. Then / is a linear combination of normal positive linear

functionals in V{B\ By Lemma 8.3, there are four normal positive Z-

functionals fu /2, /3, /4 such that [/ = #] = 1, where g = (f, - /2) + i(/3 - /4).

It follows that the correspondence / >-> / from A# to ((A#)~)Λ is surjective

and hence from Theorem 5.2, ((A*)~)Λ ^ At. Thus Aft is a Kaplansky-

Banach module and A is the Z-dual of A#. Suppose that A is the dual

of another Kaplansky-Banach Z-module X Then we have [A is the

dual of XJ = 1. By the uniqueness theorem of preduals of W*-algebras,

we have [X is isometrically isomorphic to A*] = 1. Since I is a

Kaplansky-Banach Z-module, the following relations holds:

Thus X is Z-isometrically Z-isomorphic to A#. Q.E.D.

THEOREM E. Let A be α Z-embeddαble C*-αlgebrα for an AW*-sub-

algebra Z of the center of A. Then A is Z-embeddable for every AW*-
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subalgebra of the center with Zo <Ξ Z.

Proof. Let A be a Z0-embeddable C*-algebra for an AW*-subalgebra

Zo of the center of A. Let Z be an AW*-subalgebra of the center of A

such that Zo <Ξ Z. By the assumption, we can assume that A is an

AW*-subalgebra of a type I AW*-algebra L with center Zo. Let Z/ be

the commutant of Z in L. Since Z is an AW*-subalgebra of L which

contains the center of L, it follows from [19, Theorem 3.1] that Z' is of

the same type as Z and hence Zr is a type I AW*-algebra. Since Z is

commutative, the center of Z' is Z. Since Z is contained in the center

of A, we have A'Γ\Z' = A' and that (A/ Π Z')' Π Z' = A" Π Z' = A Π Z'

= A so that the bicommutant of A in Zf is A. Thus A is Z-embeddable.

Q.E.D.

COROLLARY 8.4. Let A be a von Neumann algebra. Then A is Z-

embeddable for any AW*-subalgebra Z of the center of A.

Proof. Since every von Neumann algebra is C-embeddable AW*-

algebra, the assertion follows immediately from Theorem E. Q.E.D.
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