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Abstract

Functional programmers from all horizons strive to use, and sometimes abuse, their favorite

type system in order to capture the invariants of their programs. A widely used tool in that

trade consists in defining finely indexed datatypes. Operationally, these types classify the

programmer’s data, following the ML tradition. Logically, these types enforce the program

invariants in a novel manner. This new programming pattern, by which one programs

over inductive definitions to account for some invariants, lead to the development of a

theory of ornaments (McBride, 2011 Ornamental Algebras, Algebraic Ornaments. Unpublished).

However, ornaments originate as a dependently-typed object and may thus appear rather

daunting to a functional programmer of the non-dependent kind. This article aims at

presenting ornaments from first-principles and, in particular, to declutter their presentation

from syntactic considerations. To do so, we shall give a sufficiently abstract model of indexed

datatypes by means of many-sorted signatures. In this process, we formalize our intuition

that an indexed datatype is the combination of a data-structure and a data-logic. Over this

abstraction of datatypes, we shall recast the definition of ornaments, effectively giving a

model of ornaments. Benefiting both from the operational and abstract nature of many-

sorted signatures, ornaments should appear applicable and, one hopes, of interest beyond the

type-theoretic circles, case in point being languages with generalized abstract datatypes or

refinement types.

1 Introduction

In modern programming languages, datatypes are more than mere data-structures.

With the advent of indexed datatypes in mainstream languages (Freeman &

Pfenning, 1991; Cheney & Hinze, 2003; Sheard & Linger, 2007; Swamy et al., 2011),

programmers have gained the ability to precisely capture the logical invariants of

their programs. A typical example of a definition combining structure and logic is

the datatype of finite sets

data Fin (n :Nat) :Set where

Fin 0 �
Fin (suc n) � f0

| fsuc (k :Fin n)

that, in effect, represents a number between 0 and n− 1. As a data-structure, a finite

set is nothing but a (unary) number. As a data-logic, it captures the invariant that

https://doi.org/10.1017/S0956796816000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000356


2 P.-E. Dagand

this number is bounded by n. Another example is the datatype of vectors

data Vec [A :Set](n :Nat) :Set where

Vec A 0 � nil

Vec A (suc n) � cons (a :A)(vs :Vec An)

that represents lists of a fixed length n. Structurally, vectors are nothing but lists.

However, logically, we have a static guarantee on their length. Using this logical

information, we can for example write a type-safe lookup function for vectors:

vlookup (m :Fin n) (vs :Vec An) : A

vlookup f0 (cons a xs) �→ a

vlookup (fsuc n) (cons a xs) �→ vlookup n xs

Using finely indexed datatypes, the programmer is thus able to express her

invariants, relying on the type checker to enforce them. By following this approach,

one gets a step closer to correct-by-construction software. In our vlookup example

above, we are able to sidestep the logically meaningless case where the index is

beyond the end of the list. In a non-indexed setting, we have to handle these cases

at run-time:

lookup (m :Nat) (xs :List A) : Maybe A

lookup m nil �→ nothing

lookup 0 (cons a xs) �→ just a

lookup (suc n) (cons a xs) �→ lookup n xs

Indexed datatypes exist in many forms. Originally, they were studied in (depen-

dent) type theory under the name of inductive families (Dybjer, 1994). They are

at the heart of proof assistants such as Coq (Coq development team, 2015), and

programming languages such as Agda (Norell, 2007) or Idris (Brady, 2013). The

examples we gave above use the full-power of dependent types, using a stylized

syntax.

Inductive families have percolated in the ML family under the guise of Generalized

Algebraic Datatypes (GADTs). Initially implemented in Omega (Sheard & Linger,

2007), GADTs are now a basic convenience of Haskell (Schrijvers et al., 2009) and

OCaml (Pottier & Régis-Gianas, 2006). For example, the type of finite sets is defined

as follows in the dialect of Haskell supported by GHC:

{-# LANGUAGE GADTs, DataKinds, KindSignatures #-}
data Nat where

Ze :: Nat

Suc :: Nat -> Nat

data Fin :: Nat -> * where

FZe :: Fin (Suc n)

FSuc :: Fin n -> Fin (Suc n)

Refinement types are another form of indexing, which serves as the basis of

languages such as RefinementML (Freeman & Pfenning, 1991) or F� (Swamy et al.,

2011). A refinement type consists of a bare datatype paired with a refinement
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predicate that asserts a (logical) property of the underlying type. In F�, the type of

finite sets is thus expressed as a natural number k that is less than the index n:

type fin (n:nat) = k:nat{k < n}
let fze : n:nat -> fin (n + 1) = fun _ -> 0

let fsuc : n:nat -> fin n -> fin (n+1) = fun _ k -> k + 1

While initially developed in dependent type theory, the concept of ornament

makes sense in these settings too. For ornaments to be widely applicable, we want

to cast them in a single abstract framework, absorbing this diversity once and for

all. As it turns out, the model of indexed datatypes as least fixpoint of many-sorted

signatures (Petersson & Synek, 1989; Morris et al., 2009; Gambino & Kock, 2013)

fits perfectly our purposes. In type theoretic circles, it is known as indexed containers

(Abbott, 2003; Morris & Altenkirch, 2009), or containers for short. In categorical

circles, it is known as polynomial functors (Gambino & Hyland, 2004; Gambino &

Kock, 2013) over locally Cartesian-closed categories. Polynomial functors are known

to be equivalent to containers (Gambino & Kock, 2013).

In this setting, we understand an indexed datatype as the fixpoint of a signature.

The operations of the signature and their respective arities correspond to the

datatype constructors. The sorts of the signature correspond to the indices of

the datatype. The typing captures the indexing discipline of the datatype. For

example, finite sets are understood as the fixpoint of a signature with two operations

corresponding, respectively, to the zero constructor and the successor constructor.

The former takes no argument, its arity is thus 0, while the latter takes one recursive

arguments, its arity is therefore 1. This signature is indexed by the sort of natural

numbers, so as to ensure that the number of constructors is bounded: this is enforced

by the typing discipline. We come back to the nuts and bolts of this definition in

Example 2.5.

By working with many-sorted signatures, we can reason about indexed datatypes

in the abstract, extensionally. This formalism materializes the intuition that indexed

datatypes are a combination of a data-structure and of a data-logic. The choice

of data-structure is forced upon us by dynamic, computational considerations: It

is dictated by the run-time behavior we expect from the programs operating over

the structure. For example, it corresponds to the difference between a list and a

tree: The linear structure of the former allows for fast insertions of elements, while

the branching structure of the latter allows for efficient searches. The world of ML

datatypes is essentially a world of data-structures.

The choice of data-logic is governed by static, logical considerations: We enforce

the invariants of our programs by expressing them at the level of types. By accepting

our program, the type checker guarantees that every potential execution follows

the data-logic. For example, this corresponds to the difference between a natural

number and a finite set. At run-time, a finite set is nothing but a natural number.

The logical information has no impact on the run-time behavior. However, finite

sets – bounded natural numbers – provide more information to the type checker.

This extra-information can then be used to enforce our program’s invariant, as we

did for the vlookup function.
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For a given data-structure, we can combine it with various data-logics. Indeed, a

data-logic captures an invariant suited for a specific use-case. We are likely to enforce

multiple invariants over a single data-structure. For example, starting from binary

trees, we might be interested in representing well-formed red–black trees (Guibas

& Sedgewick, 1978) or well-formed AVL trees (Adelson-Velskii & Landis, 1962).

Structurally, both are nothing but binary trees. Logically, however, they enforce

incompatible invariants. Ornaments are a device that allows the programmer to

graft data-logics over data-structures. Thanks to their rich algebra, ornaments enable

precise invariants to be expressed, while preserving the structural ties that relate a

datatype to its ornamented self.

We shall therefore present ornaments through the angle of data-logic engineering.

We will see that, intrinsically, ornaments are simply structure-preserving transfor-

mations of datatypes. We shall illustrate how, using ornaments, the programmer

can put his finger on a particular data-structure and engineer data-logics enforcing

domain-specific invariants.

Relation with previous presentations: McBride (2011) has originally introduced or-

naments in type theory, over a specific universe of inductive families. This seminal

paper was focused on an operational account of ornaments, thus the emphasis on

a syntactic approach through the use of universes. This approach was adapted to

other universes by various authors, including Ko and Gibbons (2011) and the present

author (Dagand & McBride, 2012). A purely categorical approach was also taken

by the present author (Dagand & McBride, 2013). The objective was to provide

a categorical semantics to ornaments. This was achieved by relating ornaments to

specific morphisms – the Cartesian morphisms – in the category of polynomial

functors (Gambino & Kock, 2013). Being categorical, this work was focused on

extensional properties of ornaments, and is thus far removed from the programmer’s

concerns.

This article aims at establishing a middle-ground between these two presentations.

On the one hand, we take a step in abstraction compared to the universe-based

approach. Working over signatures allows us to get past the syntactic details and

focus on the essence of ornaments. On the other hand, this model is concrete enough

to appeal to a programmer’s intuition, allowing us to rely on the computational

meaning of various transformations on datatypes. Throughout this article, we shall

focus on the concepts, leaving aside the proofs (in particular, of adequacy of our

model). The interested reader will find these results in the more abstract setting

(Dagand & McBride, 2013).

This article is a first-principles approach to ornaments. We shall motivate and

formalize ornaments through the duality of data-structure and data-logic. Striving for

generality, we first free ourselves from the syntactic peculiarities of datatypes, without

sacrificing the computational aspects. In this framework, we then delineate what

ornaments are, formally and in the abstract. Our contributions are the following:

• We recall a model of indexed datatypes based on many-sorted signatures

(Section 2), expressed in the language of extensional type theory. We provide
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a wealth of examples to develop our understanding of datatypes in terms of

operation, arity, and sorts. While not novel, this model is a key step toward a

more abstract treatment of indexed datatypes and operations on them (such

as ornaments). In particular, it provides a unifying framework in which to

express the many forms of indexing, such as GADTs, refinement types, and

indexed families.

• We then formally pin down the essence of ornaments in terms of structure-

preserving transformations of signatures (Section 3). We shall see that an

ornament is simply a device that lets us explain how to enrich a data-structure

with a given data-logic. We come to grips with this intuition in two steps. First,

we present a naive model of ornaments, mimicking the original definition of

ornaments (McBride, 2011) on signatures. However, this first model is not

mathematically pleasing: It focuses exclusively on transforming signatures,

leaving aside the specific invariant governing the transformation. We refine it

into a second model – expressed in terms of Cartesian morphism of signatures.

Aside from obtaining a more elegant definition, we shall see that ornaments

are in fact a surprisingly simple notion. Coincidentally, it also corresponds to

a widely studied object in category theory.

• Having established a deep connection between ornaments and Cartesian

morphisms, the algebraic properties of Cartesian morphisms turn into potential

software artifacts. We shall hint at a few examples of such a calculus of data-

structures (Section 4). This illustrates some of the categorical structure of

Cartesian morphisms in terms of constructions on ornaments (e.g., composi-

tion). We also cast McBride’s original constructions in terms of operations in

our calculus (e.g., the ornamental algebra).

Formal framework: The models presented in this article are developed in extensional

type theory (Martin-Löf, 1984; Constable, 1986). This formal framework offers

a compromise between an intensional type theory – used by McBride in his

original presentation of ornaments (McBride, 2011) – that forces a laboriously

syntactic presentation; and category theory – used by the present author in his

categorical treatment of ornaments (Dagand & McBride, 2013) – that glances over

the computational meaning of ornaments.

By working in extensional type theory, we can manipulate inductive definitions as

a programming object and treat ornaments as computational artifacts. At the same

time, by working extensionally over signatures, we gain access to an unrestricted,

abstract structure without too much syntactic noise.

The syntax of our type theory is conventional. We denote by Set the type of all

(small) types and Set1 the type of all Set-types (we shall not need the full hierarchy

of types). Π-types are written with a dependent arrow (x : A)→B, Σ-types with

a dependent product (x : A)×B, for A,B : Set where x may occur freely in B.

When x does not occur freely in B, the Π-type degenerates into a simply typed

function space, written A→B, while the Σ-type degenerates into a product type,

written A×B. We require our type theory to contain an empty type, written 0, a

unit type, written 1, a sum type, written A+B, for A,B :Set. The (only) inhabitant
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of the unit type is ∗, the injections into the sum type are injl and injr , while products

are inhabited by pairs (a, b). We rely on an intuitive pattern-matching notation to

represent the eliminators. We write π0 p (respectively, π1 p) to compute the first

(respectively, second) projection of a pair p.

As in ML, unbound variables in type definitions are universally quantified. For

example, we do not explicitly quantify over n : Nat or A : Set in the definition of

vector lookup:

vlookup (m :Fin n) (vs :Vec An) : A

While this dramatically reduces the burden of quantifiers, this does not cover all

the cases where one would want to declare an argument as implicit. Case in point

are higher order type signatures. To indicate that an argument is implicit, we use

the quantifier ∀x. (. . .) – or its annotated variant ∀x :T . (. . .) – as follows:

example (f :∀n.Vec An→ 1) (xs :Vec Ak) (ys :Vec A l) : f xs = f ys

This stylized syntax allows us to focus on the key aspects of our type-theoretic

constructions. This notation aims at striking a balance between formalism and

readability. For a fully formal and mechanized presentation, we refer the reader to

the accompanying Agda development, which is available on the author’s

website.

2 Indexed datatypes = Data-structure + Data-logic

The aim of this section is to provide the reader with the tools to understand indexed

datatypes in terms of structure and logic. To this end, we are going to present

a model of indexed datatypes for which these two components are clearly visible.

Besides, we shall illustrate our model with concrete examples, shedding a more

structural/logical light on them. We have been careful to adopt a model which is

extensional enough to allow abstract reasoning, freeing us from any unnecessary

syntactic details.

Let us recall the definition of many-sorted signatures in type theory, using a

terminology inspired from universal algebra. A signature is parameterized over a

set I : Set of sorts, to account for the “many-sorted” nature of the signature. A

signature consists of

• a family of operations, one set for each sort:

Op :I→ Set

• a family of arities, one set for each operation:

Ar :Op i→ Set

• a typing discipline, assigning a sort to each arity of each operation:

Ty :Ar op → I
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Altogether, the triple of (Op,Ar,Ty) defines a signature. For conciseness, we

organize these triples in a record-like structure of signatures indexed by a given set

of sorts:

Sig (I :Set) : Set1

Sig I �→

⎧⎨
⎩

Op:I→ Set

Ar :Op i→ Set

Ty :Ar op → I

To visually distinguish these components, we write the triple (Op,Ar,Ty) as

Op �TyAr.

The idea that datatypes can be understood as least fixpoint of signatures goes

as far back as Goguen (1975) in a simply typed (i.e., mono-sorted) setting. In the

indexed setting, we merely had to move to many-sorted signatures (Petersson &

Synek, 1989), such as the ones described above. Doing so, we model the index of

the datatype by a sort: A datatype indexed by I is described by a signature in Sig I .

The constructors and their non-recursive arguments are modeled by the family of

operations. The recursive arguments of a constructor are modeled by the arity of

the signature. Finally, the indexing discipline is modeled by the typing discipline of

the signature.

Example 2.1 (Signature: vectors)

From the inductive definition of vectors

data Vec [A :Set](n :Nat) :Set where

Vec A 0 � nil

Vec A (suc n) � cons (a :A)(vs :Vec An)

we can read off its signature as follows. The set of sorts is Nat, i.e., the sorts are

the naturals. The signature of vectors, which we call ΣVec, is therefore an element of

Sig Nat.

At sort 0, there is a single operation, nil. At sort suc n, there is an A-indexed

family of operations, cons a:

OpVec (n :Nat) : Set

OpVec 0 �→ 1
OpVec (suc n) �→ A

Since nil takes no argument, its arity is 0. The operations cons a take one

argument, thus having arity 1:

ArVec (n :Nat) (op :OpVec n) : Set

ArVec 0 ∗ �→ 0
ArVec (suc n) a �→ 1

Being of arity null, the typing of nil is trivial. The typing of cons states that the

recursive argument of a suc n-indexed constructor is n, i.e., a vector of length suc n

has a tail of length n:

TyVec (n :Nat) (op :OpVec n) (ar :ArVec n ar) : Nat

TyVec (suc n) a ∗ �→ n
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We have thus specified the signature of ΣVec � OpVec �TyVecArVec.

Many-sorted signatures offer a convenient, minimalistic language for describing

inductive families. To build the inductive object, we take the least fixpoint of the

(strictly positive) functor they describe. As it turns out, signatures have a rather

straightforward functorial interpretation. Provided a family X :I→ Set, a signature

taken at a given sort i interprets to a choice (i.e., a Σ-type) of an operation op :Op i,

followed by a product (i.e., a Π-type) of arity ar : Ar op of the family X taken at

sort Ty ar:

�(Σ:Sig I)� (X :I→ Set) : I→ Set

�Op �TyAr� X �→ λi. (op :Op i)× ((ar :Ar op)→X (Ty ar))

The resulting endofunctor on I→ Set is strictly positive. It is in fact a polynomial

functor built from a sum over op :Op i of monomials X exponentiated by Ar op.

Remark 2.2

Our notion of signature is very similar to the indexed containers of Altenkirch and

Morris (2009). The only difference stands in our treatment of arities and typing.

Altenkirch and Morris (2009) write a single “arity and typing” function

Ar′ :Op i→ I→ Set

while we chose to separate the two, writing:{
Ar :Op i→ Set

Ty :Ar op → I

These two definition styles are in fact equivalent: the interpretation of either

style yields isomorphic functors. Indeed, for I : Set, we have that I→ Set
∼= (X :

Set)×(X→ I): We can therefore translate the signatures themselves from one style

to the other.

Our style enforces a clear separation between structure (dictated by Ar) and logic

(dictated by Ty): This is a key ingredient in our treatment of structurally equivalent

(but logically incompatible) datatypes.

Given a signature, we have given its functorial interpretation. Being strictly

positive, the interpreted functor admits a least fixpoint (Smyth & Plotkin, 1977). We

can therefore safely define a least fixpoint operator

μ (Σ:Sig I) : I→ Set

μ Σ �→ �Σ� (μ Σ)

with the confidence that this set is well-formed. In fact, it admits an initial algebra

semantics (and, by extension, an induction principle):

�(α :∀ i. �Σ� X i→X i)� :μ Σ i→X i

In order to get acquainted with signatures, let us consider the signature of some

common datatypes. We leave it to the reader to check that taking their least fixpoint

yields the expected datatypes.
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Example 2.3 (Signature: natural numbers)

Natural numbers are defined as

data Nat :Set where

Nat � 0

| suc (n :Nat)

To describe this datatype, we only need mono-sorted signatures: We therefore

work in Sig 1, the class of signatures indexed by the set with a single inhabitant.

Natural numbers offer only two operations, 0 or suc:

OpNat (∗ :1) : Set

OpNat ∗ �→ 1+ 1

The arity of the operation 0 is null, while the arity of the operation suc is one:

ArNat (op :OpNat ∗) : Set

ArNat (injl ∗) �→ 0
ArNat (injr ∗) �→ 1

Because the index is trivial, so is the typing:

TyNat (ar :ArNat op) : 1
TyNat ar �→ ∗

Altogether, we have defined the signature ΣNat � OpNat �TyNatArNat. To check that

we have indeed described the signature functor of natural numbers, we can simply

interpret (by �−�) the signature ΣNat: We obtain a functor isomorphic to the expected

X �→ 1 + X .

Example 2.4 (Signature: lists)

The datatype of lists, specified by

data List [A :Set] :Set where

List A � nil

| cons (a :A)(as :List A)

is strongly similar to the datatype of natural numbers. In fact, seen as a signature,

the only difference stands in the definition of operations: A list offers either an

operation nil (related to the 0 of natural numbers), or an A-indexed family of

cons a operations (which can be projected down to the operation suc of natural

numbers). We obtain the following definition of operations:

OpList (∗ :1) : Set

OpList ∗ �→ 1+A

The remaining part of the signature – arity and typing – need only be updated to

thread an a : A instead of ∗ : 1. Aside from that, the signatures are identical: We

leave it to the reader to give the signature ΣList :Sig 1 in full. In particular, the arities

of both signatures are morally equivalent: As we shall see later, this witnesses an

ornament.
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Example 2.5 (Signature: finite sets)

Beside lists, finite sets are another example of linearly structured datatype. Let us

recall their specification:

data Fin (n :Nat) :Set where

Fin 0 �
Fin (suc n) � f0

| fsuc (k :Fin n)

The signature ΣFin of finite sets thus belongs to Sig Nat. Interestingly, at sort 0,

no operation is available: There is no set of size zero. At sort suc n, there are two

operations, a new element f0 and the inclusion operation fsuc:

OpFin (n :Nat) : Set

OpFin 0 �→ 0
OpFin (suc n) �→ 1+ 1

The arity of f0 is, unsurprisingly, 0. It is structurally related to the operation 0 of

natural numbers. The arity of fsuc is 1, relating it to the operation suc of natural

numbers:

ArFin (n :Nat) (op :OpFin n) : Set

ArFin (suc n) (injl ∗) �→ 0
ArFin (suc n) (injr ∗) �→ 1

Finally, the typing follows our specification, stating that finite sets of size suc n

include finite sets of size n:

TyFin (n :Nat) (op :OpFin n) (ar :ArFin op) : Nat

TyFin (suc n) (injr ∗) ∗ �→ n

Putting it all together, we have defined the signature ΣFin � OpFin �TyFinArFin. Note

that despite the variation in operations and typing, the arities of ΣFin are morally

equivalent to the arities of ΣNat, ΣList, or ΣVec: it is either 0 or 1.

Example 2.6 (Signature: binary tree)

So far, the arities of our examples – vectors (Example 2.1), natural numbers

(Example 2.3), lists (Example 2.4), and finite sets (Example 2.5) – were either 0
or 1. And indeed, these datatypes share the same linear structure.

Stepping away from linear structures, we now consider binary trees, specified by

data Tree [A :Set] :Set where

Tree A � leaf

| node (lb :Tree A)(a :A)(rb :Tree A)

The family of operations (written OpTree) is essentially the same as OpList for lists:

An operation is either a leaf or an A-indexed family of node a operations. As for

lists, the indexing being trivial, the typing is trivial as well.

The structural difference between trees and, say, lists is revealed by the arities. If

the arity of leaf is null (and could thus be mapped to nil), the arity of the constructor

https://doi.org/10.1017/S0956796816000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000356


The essence of ornaments 11

node a is 2, i.e., 1+ 1:

ArTree (op :OpTree ∗) : Set

ArTree (injl ∗) �→ 0
ArTree (injr a) �→ 1+ 1

This makes the operation node a structurally incompatible with either nil (arity

null) or cons a (arity one). Incompatible arities account for structurally incompatible

datatypes. Again, we leave it to the reader to work out the full signature from these

indications.

Remark 2.7 (Variation on a theme)

The above tree data-structure admits many data-logics. In particular, its type can

be indexed to account for various balancing strategies. One example is the type of

red–black trees (Example 2.8). Another example would be the type of AVL trees. We

leave it to the reader to work out the signature of their favorite brand of balanced

tree. Once again, these signatures will share a similar (binarily branching) structure,

specified by their arity, while the operations and typing vary.

Example 2.8 (Signature: red–black tree)

Red–black trees are indexed over an enumerated type of colors

data Color :Set where

Color � black

| red

and natural numbers, which counts the depth in terms of black nodes.

Red–black trees are built from black leaves (at depth 0), red nodes whose children

are necessarily black nodes of equal depth, and black nodes whose children can be

of any color as long as their depth is equal:

data RBT [A :Set](c :Color)(n :Nat) :Set where
RBT A black 0 � leaf

RBT A black (suc n) � nodeB (cl, cr :Color)(lb :RBT A cl n)(a :A)(rb :RBT A cr n)

RBT A red (suc n) � nodeR (lb :RBT A black (suc n))(a :A)(rb :RBT A black (suc n))

The corresponding signature is thus sorted by the product Color×Nat. The choice

of operations depends on the current color and depth:

• at depth zero, there is only one black leaf (and no red operation),

• at depth suc n, there is an A-indexed family of red nodes,

• at depth suc n, there is an A-indexed family of black nodes for each possible

pair of children’s colors.

In terms of signature, this translates to

OpRBT (cn :Color×Nat) : Set

OpRBT (red, 0) �→ 0
OpRBT (black, 0) �→ 1
OpRBT (red, suc n) �→ A

OpRBT (black, suc n) �→ Color×Color×A
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As for the binary tree (Example 2.6), the leaf has arity 0 while the nodes (red or

black) have arity 2:

ArRBT (cn :Color×Nat) (op :OpRBT cn) : Set

ArRBT (black, 0) ∗ �→ 0
ArRBT (red, suc n) a �→ 1+ 1
ArRBT (black, suc n) (cl, (cr, a)) �→ 1+ 1

Finally, the typing implements the balancing strategy by ensuring that children

of red nodes are black nodes (of same depth) while children of black nodes are of

preceding depth, following the color specified by the operation:

TyRBT (cn :Color×Nat) (op :OpRBT cn) (ar :ArRBT cn op) : Color×Nat

TyRBT (red, suc n) a p �→ (black, suc n)

TyRBT (black, suc n) (cl, (cr, a)) (injl ∗) �→ (cl, n)

TyRBT (black, suc n) (cl, (cr, a)) (injr ∗) �→ (cr, n)

Many-sorted signatures provide a uniform framework to study indexing, abstract-

ing over its many syntactic embodiment. In terms of expressive power, it models

exactly the inductive families of extensional type theory. Indeed, our presentation is

derived from the indexed variant of W-types (Martin-Löf, 1984) of Petersson and

Synek (1989), using insights from Abbott’s work on W-types (Abbott, 2003). GADTs

can also be reduced to inductive families (Hamana & Fiore, 2011). Similarly, Atkey

et al. (2012) have given a categorical model of (algebraic) refinement types, while the

present author has further related the categorical model with polynomial functors

(Dagand & McBride, 2013).

Because of its expressive power, one might be tempted to use the above formalism

of signatures as a basis for implementation. While it certainly is a convenient

mathematical object to deal with, it makes for a rather ineffective object from an

intensional standpoint. The heart of the matter stands in its inherently extensional

nature: To describe a first-order object, such as natural numbers (Example 2.3),

we had to resort to a higher order encoding. This representation is unfit for an

intensional theory (Goguen & Luo, 1993; Dybjer, 1997).

3 Ornaments for domain-specific data-logics

Using the language of signatures, we shall now boil ornaments down to the

notion of “structure-preserving transformations of datatypes”. Our motivation is

to express the logical enrichment of datatypes by domain-specific logics, while

enforcing the stability of the underlying data-structure. In effect, we shall describe a

meta-programming pattern by which one can bake domain-specific invariants into

datatypes.

The crux of this section consists in pinpointing the informal concept of “structure”

of a datatype to the formal notion of arity of a signature. Indeed, the arity of a

signature corresponds exactly to the underlying data-structure of a datatype: It

specifies its recursive skeleton, which we intend to keep invariant. For instance, it

distinguishes the data-structure of List A and Tree A: the former has arity 0 or 1,
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while the latter has arity 0 or 2. Both carry the same payload (elements of type A),

but under distinct structures.

Having the same recursive structures does not forbid having different operations:

Binary trees (Example 2.6) and red–black trees (Example 2.8) share the same binarily

branching structure, even if the latter has more constructors. Invariance of structure

also supports distinct typing disciplines: The datatype of lists (Example 2.4) and

vectors (Example 2.1) share the same linear structure, even if vectors guarantee a

stronger invariant concerning their length.

We will begin our study with a naive model (Section 3.1) constructed from the

operational description of ornaments. This operational bias should help program-

mers come to grips with the abstract framework of signatures. To get to the essence

of ornaments, we then refine this model to an equivalent but conceptually simpler

presentation (Section 3.2) centered around the idea of structural invariance.

3.1 A naive model of ornaments

Our first model attacks the problem through a constructive angle: From a signature,

what information can be inserted that preserves the original structure? Concretely,

from a signature Σ = Op �TyAr indexed by a set I , we shall give the necessary

ingredients to build an (ornamented) signature1 Σ† = Op† �Ty†Ar† indexed by a set

I†, sharing the structure of Σ.

The first requirement arises from sorts: To express the fact that the I†-indices of

Σ† refine the I-indices of Σ, we require a (total) reindexing function

u :I† → I

This function establishes a refinement in the sense that several indices i† :I† can be

mapped to the same index i :I: the I†-indexing is thus more discriminating than the

I-indexing.

On operations, we allow the ornamented signature to extend the operation of Σ

through

extend : (i† :I†)→Op (u i†)→ Set

which lets us describe the extended operations

Op† (i† :I†) : Set

Op† i† �→ (op :Op (u i†))× extend i† op

Having clearly separated the extension from the original operations, we then

trivially define the arity of the ornamented signature by

Ar† (op† :Op† i†) : Set

Ar† op† �→ Ar (π0 op†)

1 To identify the ornamented signature as “decorated”, we mark its components with a superscript −†.
This is nothing but an informal, notational convention.
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14 P.-E. Dagand

guaranteeing, by construction, that Ar† is equal to Ar, i.e., we have

∀ op† :Op† i†.Ar (π0 op†) = Ar† op†

Finally, we can refine the sorts of the recursive arguments, provided that the

refined sort is related to the underlying sort through u. The refinement is given by

a function

refine : (i† :I†)(e :extend i† op)→Ar op → I†

which is subject to the coherence condition:

coh :∀i† :I†. ∀e :extend i† op. ∀ar :Ar op. u (refine i† e ar) = Ty ar

Remark that refine corresponds exactly to the typing discipline of the signature

Σ†, i.e.,

Ty† (i† :I†) (op† :Op† i†) (ar† :Ar† op†) : I†

Ty† i† (op, e) ar† �→ refine i† e ar†

An ornament can thus be seen as the data of a refinement function u, an

extension extend, a typing refinement refine and its associated coherence condition

coh:

COrn (Σ:Sig I) (u :I† → I) : Set1

COrn (Op �TyAr) u �→

⎧⎪⎪⎨
⎪⎪⎩

extend: (i† :I†)→Op (u i†)→ Set

refine : (i† :I†)(e :extend i† op)→Ar op → I†

coh :∀i† :I†. ∀e :extend i† op. ∀ar :Ar op.

u (refine i† e ar) = Ty ar

As for signatures, we write the tuple (extend, refine, coh) with the more lightweight

notation extend�refine, leaving aside the computationally irrelevant coherence proof

coh.

In parallel, we have given their interpretation as an ornamented signature Σ†.

Ornaments thus interpret to signatures:

�(τ :COrn Op �TyAr)�COrn : Sig I†

�extend�refine�COrn �→ (λi†. (op :Op (u i†))× extend i† op) �refine(λ(op, e).Ar op)

Example 3.1 (Ornamenting natural numbers to lists)

Let A : Set. The ornamentation of natural numbers (Example 2.3) to describe

lists (Example 2.4) is an example of a purely extensive ornament: No refinement

is introduced on the indices since they are both trivial. We only extend the suc

operation of natural numbers by asking for an inhabitant of A:

extendList (∗ :1) (op :OpNat ∗) : Set

extendList ∗ (injl ∗) �→ 1
extendList ∗ (injr ∗) �→ A

https://doi.org/10.1017/S0956796816000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000356


The essence of ornaments 15

The typing discipline being the obvious one

refineList (∗ :1) (e :extendList ∗ op) (ar :ArNat op) : 1
refineList ∗ e ar �→ ∗

and the coherence condition trivial.

We easily check that the signature thus described (after interpretation with � −
�COrn) corresponds to the signature of lists, up to type isomorphisms:

��extendList�refineList�COrn� X

= �(λ∗. (op :OpNat ∗)× extendList ∗ op) �refineList (λ(op, e).ArNat op)� X

= λ∗. (op† : (op :OpNat ∗)× extendList ∗ op)× ((ar :ArNat (π0 op†))→X ∗)
= λ∗. (op† : (op :1+ 1)× extendList ∗ op)× ((ar :ArNat (π0 op†))→X ∗)
∼= λ∗. (op :1+A)× ((ar :ArList op)→X ∗)
= λ∗. (op :OpList)× ((ar :ArList op)→X ∗)

Example 3.2 (Ornamenting natural numbers to finite sets)

Natural numbers can also be ornamented to finite sets (Example 2.5). This ornament

both extends the operations of natural numbers and refines their type to Nat.

The extension consists in enforcing that the input index n :Nat is strictly positive

extendFin (n :Nat) (op :OpNat ∗) : Set

extendFin n op �→ (n′ :Nat)×n = suc n′

since no operation is available at index 0.

In the case of the fsuc constructor, we must then specify the indexing discipline

by asking the recursive argument to have sort n− 1. Knowing that n = suc n′, we

define the sort by

refineFin (n :Nat) (op :OpNat ∗) (e :extendFin n op) (ar :ArNat op) : Nat

refineFin n (injr ∗)
(
n′, q

)
∗ �→ n′

Again, we easily check that the signature thus described (after interpretation with

� − �COrn) corresponds to the signature of finite sets, up to type isomorphisms.

Example 3.3

Other examples include various ornamentations of binary trees, either specifying

where data are stored in the structure (at the leaves, at the nodes, or both) but also

various balancing strategies (AVL, red–black, . . . ).

3.2 Ornaments as Cartesian morphisms

The model introduced in the previous section suffers from a very operational bias:

It focuses on describing how to build an ornamented signature. The reason why an

object ornaments another is not yet clear. This bias leads to a definition focused on

signatures, rather than a particular (structural) relation between them.

We would like to formalize our intuition that a signature ornaments another

if they share a similar recursive structure. We are going to massage this initial

model to account for such an invariant. Doing so, we shall obtain an algebraic

characterization of ornaments, more natural and suited to abstract reasoning.
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16 P.-E. Dagand

In Section 2, we gave an interpretation of signatures in terms of functors. One

is then tempted to look for a notion of morphism of signature accounting for

the natural transformations between these functors (Abbott, 2003; Morris, 2007).

In our setting, we are interested in a more specific notion, where the arities of

both signatures are equal. This amounts to having a Cartesian morphism between

the signatures (Abbott et al., 2005; Gambino & Kock, 2013). Let us recall the

definition of Cartesian morphisms and their interpretation as Cartesian natural

transformations.

Definition 3.4 (Cartesian morphism of signature (Gambino & Kock, 2013))

Let Σ† � Op† �Ty†Ar† :Sig I† and Σ � Op �TyAr :Sig I be two signatures, indexed

respectively by I† and I . Let u : I† → I be the function mapping the indices of the

former to the latter.

A Cartesian morphism from Σ† to Σ is given by a morphism on operations σ that

translates the Σ†-operations into Σ-operations

σ :Op† i† →Op (u i†)

together with a proof ρ, stating that the arities of both signatures are equal

through σ

ρ :∀ op† :Op† i†.Ar (σ op†) = Ar† op†

and a proof coh stating that the indexing of Σ† is coherent with respect to the

indexing of Σ through u:

coh :∀ op† :Op† i†. ∀ ar :Ar (σ op†). u (Ty† ar) = Ty ar

For conciseness, we write a Cartesian morphism (σ, ρ, coh) simply as σ, thus

eluding the two proofs, whose computational content is void. The class of Cartesian

morphisms from Σ† to Σ along a reindexing u is written Σ† u
=⇒c Σ.

Definition 3.5 (Interpretation of a Cartesian morphism)

Following this intuition, the interpretation of Cartesian morphism defines a natural

transformation from �Σ†� (X ◦u) i† to �Σ� X (u i†):

�(σ :Σ† u
=⇒c Σ)� (xs :�Σ†� (X ◦u) i†) : �Σ� X (u i†)

�σ�
(
op†, Xs

)
�→

(
σ op†, Xs

)

Remark 3.6

The equality on arities and the coherence condition are implicitly used in the

definition of the interpretation to match up the type of the recursive arguments

given by Xs. Indeed, the argument Xs has type (ar† :Ar† op†)→(X ◦u) (Ty† ar†). By

ρ, we can transport its argument to Ar (σ op†) while, by coh, we can transport its

result to X (Ty ar). We thus obtain a function (ar :Ar (σ op†))→X (Ty ar), mapping

the Σ-arity to recursive arguments in X .
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Remark 3.7 (Inverse image construction)

In type theory, a function f :A → B can be seen as a predicate over B: The set A

is then understood as a collection of properties of the B-elements and the function

f mapping the A-properties to the B-elements. The inverse image f −1 : B→ Set

collects the A-properties associated to each B-elements. It can be defined with an

inductive family

data [f :A→B]−1 (b :B) :Set where

f −1 (b= f a) � inv (a :A)

or, equivalently, with a Σ-type:

(f :A→B)−1 (b :B) : Set

f −1 b �→ (a :A)× f a = b

Conversely, from a predicate P : B→ Set, we can build a function π0 : (b :

B)×P b→B. These two transformations are inverse to each other: This is the type-

theoretic incarnation of the equivalence between the category Set
B of predicates

over B and the slice category Set/B.

Example 3.8 (Cartesian morphism from natural numbers to lists)

The equivalence between the naive model of ornaments and the Cartesian morphism

is nothing but an instance of that isomorphism. To gain some intuition on

the transformation, let us consider the ornament of natural numbers to lists

(Example 3.1). For A :Set, we have specified its extension as

extendList (op :1+ 1) : Set

extendList (injl ∗) �→ 1
extendList (injr ∗) �→ A

In fact, extendList : 1+ 1→ Set can be understood as the inverse image of the

(equivalent) function

σList (op :1+A) : 1+ 1
σList (injl ∗) �→ injl ∗
σList (injr a) �→ injr ∗

that is

extendList
∼= σList

−1

We are then left to check that the arity of natural numbers matches the arity of

lists through σList and that the typing (which is trivial) is coherent. We have defined

a Cartesian morphism from natural numbers to lists.

This construction generalizes to any ornament. Provided a Cartesian morphism

(σ, ρ, coh) from Σ† to Σ, we obtain an ornament σ −1 �Ty† by taking extend � σ −1,

refine � Ty†, and coh � coh. Conversely, provided an ornament extend�refine of

a signature Σ, we obtain a Cartesian morphism from Σ† � �extend�refine�COrn to

Σ by taking σ � π0. The arity and coherence of both signatures is respected, by

construction.
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While the naive model of ornaments relies on an operational intuition of

ornaments (as “introducing more information”), the Cartesian model puts the

emphasis on the structure-preserving nature of the transformation, through the

condition on arities ρ. The notion of extension is carried by the morphism on

operations σ, which describes how the extra-information of the ornamented signature

is lost by going to the target signature. The notion of typing refinement is captured,

as for the naive model, by the reindexing function u and the coherence condition

coh.

This presentation gives a simple criterion to decide whether a datatype is the

ornament of another: We must be able to relate their operations in such a way that

their arity matches. Hence, all the linear structures – such as List, Fin, Vec, etc. – can

be seen as ornaments of natural numbers: Operations of arity null can be mapped

to the operation 0, while operations of arity 1 can be mapped to the operation suc.

A non-example of ornament are lists and binary trees: we are unable to map the

operations cons a (of arity 1) in the signature of lists to an operation of arity 1

in the signature of binary trees. Conversely, there is no operation of arity 2 in the

signature of lists to which we could map the operation node a of the signature of

binary trees.

Another non-example of ornament are AVL trees and red-black trees. While

both signatures share a binarily branching structure, their indexing disciplines are

incompatible: the former is not a refinement of the latter, nor conversely.

Discussion: These two models of ornaments – naive or Cartesian – are comple-

mentary. The naive model is subject to an operational bias: It is in fact at the

heart of the original presentation of ornaments by McBride (2011). In that original

presentation, Cartesian morphisms appear as a side-result of the construction of

the ornamental algebra (Section 4), the algebra projecting the ornamented type to

its underlying type. As a result, this presentation is better suited to give concrete

examples. Conversely, the categorical model of Dagand and McBride (2013) revolves

around the Cartesian presentation, which is mathematically more convenient but

operationally imprecise. The equivalence between the universe-based presentation of

ornaments and the Cartesian one was formally established in this latter paper.

4 A calculus of data-structure

By characterizing ornaments as structure-preserving transformations, the Cartesian

presentation gives us a semantic criterion for identifying ornaments. Being expressed

in terms of morphisms, it also offers a compositional toolbox. It is in fact a genuine

calculus of data-structure that is open to us. To further stir up the reader’s curiosity,

let us consider a few concrete examples. We voluntarily adopt a descriptive approach,

using our fresh understanding of ornaments to identify ornamental patterns seen

in the wild. For each example we provide, one can easily belabor the definition of

the Cartesian morphism witnessing the existence of an ornament. We shall leave

aside their generalization and theoretical justification, which can be found elsewhere

(Dagand & McBride, 2013) in a categorical setting: finding a satisfactory prescriptive

https://doi.org/10.1017/S0956796816000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000356


The essence of ornaments 19

presentation of ornaments is still subject of active research, a question to which we

shall come back in Section 5.

Ornamental algebra: We can always recover the raw datatype underpinning an

ornamented type. For example, the Cartesian morphism mapping lists to naturals

(Example 3.8) yields a natural transformation

�σList� :∀X. �ΣList� X ∗→ �ΣNat� X ∗

that we can post-compose with the initial algebra of lists at Nat, thus obtaining the

so-called ornamental algebra

forget σList : �ΣList� Nat ∗→Nat

forget σList �→ μ ◦(�σList� Nat)

In effect, this algebra computes the length of a list, i.e., it forgets the extra data

inserted by the ornament.

Vertical and horizontal composition: Like the natural transformations they represent,

Cartesian morphisms support both vertical and horizontal composition. Vertical

composition allows us to fuse two successive ornamentation of a datatype into a

single one. For example, full binary trees (i.e., binary trees storing data at the nodes

and leaves)

data Full [A :Set] :Set where

Full A � leaf (a :A)

| node (lb :Full A)(a :A)(rb :Full A)

are an ornament (through an extension) of node binary trees (i.e., binary trees storing

data at the nodes, as in Example 2.6) while perfect binary trees (i.e., trees for which

all the leaves have the same depth)

data Perfect [A :Set](n :Nat) :Set where

Perfect A 0 � leaf (a :A)

Perfect A (suc n) � node (lb :Perfect A n)(a :A)(rb :Perfect A n)

are an ornament (through a refinement of indices) of full binary trees. By vertical

composition, we deduce that perfect binary trees ornament node binary trees.

Horizontal composition lets us combine two ornaments (and, thus, four signatures)

into a single one relating the composition of the underlying signatures. For example,

we have that vectors (Example 2.1) ornaments (through a refinement of indices) lists

(Example 2.4) by enforcing the length invariant. We also have that the Nat-indexed

functor F † � Xn �→ Xn ×Xsuc n +Xsuc n ×Xn ornaments the 1-indexed functor

F � X �→ X ∗×X ∗. By horizontal composition, we deduce that balanced binary

trees

data BST [A :Set](n :Nat) :Set where

BST A 0 � leaf

BST A (suc n) � nodeL (lb :BST A (suc n))(a :A)(rb :BST A n)

BST A (suc n) � nodeR (lb :BST A n)(a :A)(rb :BST A (suc n))
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ornament node binary trees by noticing that the signature of BST amounts to the

composition of the signature of vectors and the functor F † while the signature of

Tree amounts to the composition of the signature of lists and the functor F .

Pullback: Given two ornaments of the same signature, we can combine both

ornamentations into a single signature. This amounts to taking the fibered product

of the two Cartesian morphisms. For example, bounded lists

data BList [A :Set](n :Nat) :Set where

BList A 0 �
BList A (suc n) � nil

BList A (suc n) � cons (a :A)(vs :BList A n)

ornament natural numbers by combining the ornamentation of natural numbers

into lists (Example 3.1) and the ornamentation of natural numbers into finite sets

(Example 3.2). We thus obtain a type of lists indexed by n : Nat and whose length

is at most n (unlike vectors, whose length is precisely n). A typical use-case for

bounded lists is the dependently typed filter on vectors, whose type would be

Vec An→(A→ 2)→BList A n.

Algebraic ornament: Provided a recursive function (presented as a catamorphism)

over an inductive type, the algebraic ornament indexes the datatype by the result of

the function. The canonical example of an algebraic ornament is due to McBride

(2011): Consider a datatype of arithmetic expressions

data Expr :Set where

Expr � const (n :Nat)

Expr � add (d, e :Expr)

for which we have defined its denotation by means of a catamorphism

eval (e :Expr) : Nat

eval e �→ �αeval e�

αeval (xs :�ΣExpr� Nat) : Nat

αeval (’const n) �→ n

αeval (’add m n) �→ m+n

where, by convention, we write ’constr the constructor of the signature functor

corresponding to the datatype constructor constr.

The algebraic ornament enables us to fuse the algebra of the catamorphism as a

static typing discipline for the datatype, thus yielding the type of expressions indexed

by their semantics:

data SemExpr (k :Nat) :Set where

SemExpr k � const (n :Nat)(q :k = n)

SemExpr k � add (m n :Nat)(d :SemExpr m)(e :SemExpr n)(q :k = m+n)

Algebraic ornaments are characterized by a coherence property, stating that the

ornamented type represents exactly the elements of the base type whose denotation

is given by the index. For example, the coherence of algebraic ornaments establishes

the following isomorphism between Expr and SemExpr for any index k :Nat:

SemExpr k ∼= (e :Expr)× eval e = k
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Relational ornament: The existence of catamorphisms arise from the fact that

polynomial functors admit an initial algebra in the category Set, where morphisms

are total functions. In fact, this result can be generalized to the category Rel ,

where morphisms are binary relations (Fumex, 2012). As demonstrated by Ko and

Gibbons (2013), this observation translates into relational ornaments, by which one

bakes recursively defined predicates into a typing discipline.

For example, we can recursively define the relation m<n through a catamor-

phism:

< (m :Nat) (n :Nat) : Set

< m n �→ �α<� m n

α< (xs :�ΣNat� Nat) (n :Nat) : Set

α< ’0 n �→ (k :Nat)×n = suc k
α< (’suc m) n �→ n = suc m

Thanks to relational ornaments, we can integrate this relation as a typing

discipline over natural numbers: This is precisely defining the type of finite sets

(Example 2.5), with the added benefit that we obtain, through the coherence property,

an isomorphism for any index n :Nat between the inductive family and a subset of

the natural numbers

Fin n ∼= (m :Nat)×m<n

Ornaments being compositional, we can combine algebraic and relational or-

naments in a straightforward manner. For example, let us consider the type of

well-sized stack expressions (Chlipala, 2013)

data InstrIO (i :Nat)(o :Nat) :Set where

InstrIO i (suc i) � CONST (k :Nat)

InstrIO (suc (suc i)) i � PLUS

whose index i describes the expected input stack size while the index o describes

the resulting output stack size. We notice that the output index o can be recursively

computed from the input index and the constructors. Therefore, we can see InstrIO

as the ornament of the type

data InstrI (i :Nat) :Set where

InstrI i � CONST (k :Nat)

InstrI (suc (suc i)) � PLUS

by the algebra

size (c : InstrI i) : Nat

size c �→ �αsize� c

αsize (i :Nat) (c :�ΣInstrI� Nat) : Nat

αsize i (’CONST k) �→ suc i

αsize (suc (suc i)) ’PLUS �→ suc i

However, the type InstrI itself can be seen as the ornament of the non-indexed

datatype

data Instr :Set where

Instr � CONST (k :Nat)

| PLUS
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by the relational algebra

valid (c : Instr) (i :Nat) : Set

valid c i �→ �αvalid� c i

αvalid (c :�ΣInstrI� Nat) (i :Nat) : Nat

αvalid (’CONST k) i �→ 1
αvalid ’PLUS 0 �→ 0
αvalid ’PLUS (suc 0) �→ 0
αvalid ’PLUS (suc (suc i)) �→ 1

which ensures that the input index for the PLUS constructor is necessarily of the

form suc (suc i). By composition of ornament, we deduce that the precisely indexed

InstrIO type ornaments the non-indexed Instr datatype.

Reornament: Every ornament induces an ornamental algebra over the ornamented

type while every algebra induces an algebraic ornament. By combining both

constructions, we obtain the algebraic ornament by the ornamental algebra (McBride,

2011), or reornament (Dagand & McBride, 2012) for short, which consists in an

ornamented datatype indexed by its underlying elements. The canonical example of

reornament is the type of vectors (Example 2.1), which can be seen as the algebraic

ornament of lists (seen as ornament of natural numbers, as in Example 3.1) by the

ornamental algebra �σList� that computes the length of a list.

Interestingly, the ornament from which we compute the reornament can be

obtained by any of the compositional means available to us. For example, we

observe that the inductive comparison predicate

data (m :Nat)< (n :Nat) :Set where

m<(suc n) � lt-z-s

m<(suc n) � lt-s-s (q :m<n)

corresponds to the reornament of the type of finite sets Fin n, seen as a (relational)

ornament of Nat: The index m of the inductive predicate m<n corresponds precisely

to the integer underpinning the inhabitants of the type Fin n.

Reindexing: Ornaments can also solely refine the indexing strategy of an inductive

family. Given an inductive family indexed by a type I and a function refining its

index (i.e., a function of type I† → I), we obtain an inductive family indexed by I†

through reindexing. For example, we might be interested in the subset of arithmetic

expressions whose denotation is a strictly positive number

data SemExpr+ (k :Nat∗) :Set where

SemExpr+ k � const (n :Nat)(q : toNat k = n)

| add (m n :Nat∗)(d :SemExpr+ m)(e :SemExpr+ n)

(q : toNat k = toNat m+ toNat n)

where toNat :Nat∗ →Nat is the embedding function from the strictly positive subset

of natural numbers to natural numbers. SemExpr+ is in fact merely a reindexing of

the inductive family SemExpr along the function toNat.
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Derivative: While we have focused our presentation on the combinatorics of or-

naments, some operations on datatypes also carry on to operations on ornaments.

For example, the derivative of a data-type – from which one obtains the Zipper

(Huet, 1997) – behaves functorially over ornaments (Dagand & McBride, 2013):

If a datatype ornaments another, then its derivative ornaments the derivative of

the latter. For example, we have that red–black trees (Example 2.8) ornament node

binary trees (Example 2.6). We therefore deduce that the derivative of red–black tree

data ∂RBT [A :Set][RBT :Color→ Set] :Set where

∂RBT black red � ∂nodeRL (lb :RBT black)(a :A)

∂RBT black red � ∂nodeRR (a :A)(rb :RBT black)

∂RBT c black � ∂nodeBL (lb :RBT c)(a :A)

∂RBT c black � ∂nodeBR (a :A)(rb :RBT c)

ornaments the derivative of binary tree

data ∂Tree [A :Set][Tree :Set] :Set where

∂Tree � ∂nodeL (lb :Tree)(a :A)

| ∂nodeR (a :A)(rb :Tree)

Numerical representations. A mostly untapped source of ornaments is the realm

of numerical representations (Knuth, 1981): The work of Okasaki (1998) and

Hinze (1998) suggests that numerical representations form an interesting class of

ornaments, from which one would build data-structures from numerical systems,

taking advantage of their structural ties to determine their algorithmic complexity.

Ko (2014) gave an extensive treatment of binomial heaps, which correspond to a

binary representation system. To the best of my knowledge, a systematic treatment

of numerical representation through the lenses of ornaments remains to be done.

5 Past, present, and future of ornaments

The categorical presentation of Dagand and McBride (2013) generalizes the present

article, working in any locally Cartesian-closed category (Seely, 1983) and manip-

ulating polynomial functors (Gambino & Kock, 2013). It also carefully establishes

several equivalences between the type theoretic notions and their categorical models.

For pedagogical purposes, the present article is exclusively developed in type theory

(which morally corresponds to the internal language of a locally Cartesian-closed

category). This allows us to bridge the gap between an operational understanding

of ornaments and their mathematical structure, thus appealing to programmers.

The purely categorical presentation (Dagand & McBride, 2013) provides the proofs

which we have left out in this article. In particular, the adequacy of our model of

ornaments and the validity of their algebra are taken for granted here.

In effect, this article provides a middle-ground between the type theoretic presen-

tation of McBride (2011) and the categorical presentation of Dagand and McBride

(2013). The type theoretic presentation, further extended by Ko and Gibbons

(2011) and Dagand and McBride (2012), benefits from its intensionality: it is
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computationally effective. However, its syntactic nature impedes conceptual clarity.

Case in point: each of the aforementioned articles start by introducing a customized

universe of ornaments. Indeed, ornaments are tightly coupled with the underlying

universe of datatypes. Our more extensional presentation allows us to give a crisp

definition of ornaments as structure-preserving transformations, independently of

the actual presentation of datatypes.

Nonetheless, the importance of the type theoretic approach should not be

underestimated: Its syntactic nature allows us to experiment with the challenge

of offering ornaments in a programming environment. In this context, much of the

prescriptive treatment of ornaments remain to be done. While we have observed

many incarnations of the algebra of ornaments in Section 4, we lack a high-

level language to build these artifacts. Currently, we are lead to directly (and

tediously) manipulate signatures and their algebras. For instance, we had to manually

write algebras to obtain algebraic or relational ornaments, which would hardly be

acceptable in a user-friendly environment.

Ornaments also aspire to be a key component in the non-dependent programmer’s

toolbox. The work of William et al. (2014) puts ornaments in practice in the context

of a purely functional subset of the OCaml language, taking a pragmatic stance.

It explores various applications of ornaments, ranging from code transformation to

semi-automated refactoring. While pragmatism imposes several restrictions on how

ornaments can be presented to the users, the theoretical framework developed in

this article provides a blueprint through which to study and compare the restrictions

that arise in practice.

Moving upward on the dependency spectrum, ornaments would also be well-suited

to functional languages offering GADTs. Datatypes being meta-theoretical objects in

those systems, this raises some interesting questions in terms of implementation: in

line with the work of William et al., a purely syntactic treatment would be necessary.

Beyond datatypes, programmers are also interested in transporting functions across

ornaments: having implemented the addition of natural numbers and presented lists

as ornaments of numbers, one would like to be able to “derive” the concatenation

of lists from addition. If the theoretical aspects have been partially treated from a

semantic standpoint (Dagand & McBride, 2012), a more syntactic (and practical)

treatment is still in its infancy (Williams et al., 2014).

Overall, ornaments offer a controlled form of meta-programming over datatypes.

Using the algebra of ornaments, we can build and combine datatypes in a com-

positional manner. The first promise of ornaments is thus to free the programmer

from most of the burden of defining domain-specific data-logics over general-

purpose data-structures. In this context, it makes sense to restrict ourselves to

structure-preserving transformations: because they preserve the recursive structure

of datatypes, we can relate the functions defined recursively over such datatypes.

This observation is at the heart of numerical representations, in which the complexity

of, say, merging two data-structures boils down to the complexity of adding two

numbers in the corresponding numerical system. The second promise of ornaments

is that we can help programmers in adapting library-provided functions to account

for their domain-specific invariants while preserving their computational behavior.
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Ornaments are still at an early stage of development: We have yet to fulfill the

above promises in a user-friendly environment while much of the applications and

algebraic structure of ornaments remain to be discovered and exploited.

6 Conclusion

In this article, we have distilled the essence of ornaments. To do so, we first gave

a model of indexed datatypes based on many-sorted signatures. Adopting a more

semantic approach allowed us to embrace the many forms of indexing, ranging from

GADTs to inductive families. In this framework, we have characterized ornaments

as structure-preserving transformations of datatypes.

The formalism of many-sorted signatures benefits from being a type theoretic

object, yet being sufficiently abstract for our purposes. By its roots in type theory, it

is effective and makes for an interesting experimental platform. Its abstract nature

allows us to reason extensionally, which was a key ingredient in obtaining a simple

model of ornaments.

By relating ornaments to Cartesian morphisms, we have shed a new light on

the previous works in type theory. Our emphasis on the extensional property of

ornaments – preserving the recursive structure – gives a simple, easily verifiable

criterion for ornaments. We can for instance easily determine whether a datatype is

the ornament of another. Because Cartesian morphisms are a standard mathematical

object, we also benefit from a large body of mathematical results, which then

translate to interesting computational artifacts.

Throughout this article, our objective has been to reach a wider audience, beyond

type theoretic or category theoretic circles. In the process, we have stripped the

presentation of ornaments from its type theoretic specificities. The language of

many-sorted signatures provides a lingua franca to model the indexed datatypes of

a large variety of programming languages. They would also guide the translation of

the concepts of ornaments back to these languages.
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