On a Class of Singular Integral Operators With Rough Kernels

Ahmad Al-Salman
Abstract. In this paper, we study the L^{p} mapping properties of a class of singular integral operators with rough kernels belonging to certain block spaces. We prove that our operators are bounded on L^{p} provided that their kernels satisfy a size condition much weaker than that for the classical CalderónZygmund singular integral operators. Moreover, we present an example showing that our size condition is optimal. As a consequence of our results, we substantially improve a previously known result on certain maximal functions.

1 Introduction and Statement of Results

Let \mathbf{R}^{n}, $n \geq 2$ be the n-dimensional Euclidean space and \mathbf{S}^{n-1} be the unit sphere in \mathbf{R}^{n} equipped with the normalized Lebesgue measure $d \sigma$. For nonzero $y \in \mathbf{R}^{n}$, we shall let $y^{\prime}=|y|^{-1} y$. Consider the classical Calderón- Zygmund singular integral operator

$$
\begin{equation*}
\left(T_{\Omega} f\right)(x)=\text { p.v. } \int_{\mathbf{R}^{n}} f(x-y)|y|^{-n} \Omega\left(y^{\prime}\right) d y \tag{1.1}
\end{equation*}
$$

where Ω is a homogeneous function of degree zero on \mathbf{R}^{n} and satisfies $\Omega \in L^{1}\left(\mathbf{S}^{n-1}\right)$ and

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}} \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{1.2}
\end{equation*}
$$

In their celebrated paper [7], Calderón and Zygmund proved that T_{Ω} is bounded on L^{p} for all $1<p<\infty$ provided that $\Omega \in L \log L\left(\mathbf{S}^{n-1}\right)$. It turns out that $\Omega \in$ $L \log L\left(\mathbf{S}^{n-1}\right)$ is the most desirable size condition for the L^{p} boundedness of T_{Ω} to hold. Subsequently, it was proved by Ricci-Weiss [14] and Connett [9] independently that \mathbf{T}_{Ω} is bounded in $L^{p}\left(\mathbf{R}^{n}\right)$ for every Ω in the Hardy space $\mathbf{H}^{1}\left(\mathbf{S}^{n-1}\right)$ and $p \in$ ($1, \infty$).

To improve previously obtained results, Jiang and Lu introduced a special class of block spaces $B_{q}^{\kappa, v}\left(\mathbf{S}^{n-1}\right)$ (see Section 2 for the definition). Jiang and Lu showed that if $\Omega \in B_{q}^{0,0}\left(\mathbf{S}^{n-1}\right), q>1$, then the operator \mathbf{T}_{Ω} is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$. Subsequently, the L^{p} boundedness was proved for all $1<p<\infty[1,2]$. In a more recent paper [3], Al-Qassem, Al-Salman, and Pan showed that the L^{p} boundedness of \mathbf{T}_{Ω} may fail at any p if the condition $\Omega \in B_{q}^{0,0}\left(\mathbf{S}^{n-1}\right)$ is replaced by $\Omega \in B_{q}^{0, \nu}\left(\mathbf{S}^{n-1}\right)$ for any $-1<\nu<0$.

[^0]In [8], Chen and Lin introduced the following maximal function:

$$
\begin{equation*}
\mathcal{M}_{\Omega, K}(f)(x)=\sup _{h \in K}\left|\left(T_{\Omega, h} f\right)(x)\right| \tag{1.3}
\end{equation*}
$$

where K is the class of all functions $h \in L^{2}\left(\mathbf{R}^{+}, r^{-1} d r\right)$ with $\|h\|_{L^{2}\left(\mathbf{R}^{+} r^{-1} d r\right)} \leq 1$ and

$$
\begin{equation*}
\left(T_{\Omega, h} f\right)(x)=\text { p.v. } \int_{\mathbf{R}^{n}} f(x-y)|y|^{-n} \Omega\left(y^{\prime}\right) h(|y|) d y . \tag{1.4}
\end{equation*}
$$

Chen and Lin proved the following result:
Theorem 1.1 ([8]) Suppose that $\Omega \in \mathcal{C}\left(\mathbf{S}^{n-1}\right)$ and satisfies (1.2). Then the operator $\mathcal{M}_{\Omega, K}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for any $p>2 n /(2 n-1)$.

It turns out that the condition $\Omega \in \mathcal{C}\left(\mathbf{S}^{n-1}\right)$ can be substantially weakened; as seen in Theorem 1.4 below.

The main purpose of this paper is studying the L^{p} mapping properties of the operators $T_{\Omega, h}$ in (1.4) with $h \in L^{2}\left(\mathbf{R}^{+}, r^{-1} d r\right)$ and functions Ω satisfy a condition much weaker than $\Omega \in B_{q}^{0,0}\left(\mathbf{S}^{n-1}\right)$. More specifically, we shall show that the operators $T_{\Omega, h}$ in (1.4) do not obey the size condition limitation given by Al-Qassem, Al-Salman, and Pan for the classical Calderón-Zygmund singular integral operators [3]. In order to state our results, we let S_{Ω} be the operator defined by

$$
\begin{equation*}
S_{\Omega}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{\mathbf{S}^{n-1}} \Omega\left(y^{\prime}\right) f\left(x-r y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|^{2} r^{-1} d r\right)^{\frac{1}{2}} \tag{1.5}
\end{equation*}
$$

Clearly, if $h \in L^{2}\left(\mathbf{R}^{+}, r^{-1} d r\right)$, then $\left|T_{\Omega, h}(x)\right| \leq\|h\|_{L^{2}\left(\mathbf{R}^{+}, r^{-1} d r\right)} S_{\Omega}(f)(x)$. We have the following:

Theorem 1.2 Suppose that $\Omega \in B_{q}^{0,-\frac{1}{2}}\left(\mathbf{S}^{n-1}\right)$ and satisfies (1.2). Then

$$
\begin{equation*}
\left\|S_{\Omega}(f)\right\|_{p} \leq C_{p}\|f\|_{p} \quad \text { for } 2 \leq p<\infty \tag{1.6}
\end{equation*}
$$

As a consequence of Theorem 1.2, the observation right after (1.5), and duality, we immediately obtain the following result:

Corollary 1.3 Suppose that $\Omega \in B_{q}^{0,-\frac{1}{2}}\left(\mathbf{S}^{n-1}\right)$ and satisfies (1.2). Suppose also that $h \in L^{2}\left(\mathbf{R}^{+}, d r / r\right)$. Then the singular integral operator $T_{\Omega, h}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for all $1<p<\infty$.

By comparing the result in Corollary 1.3 with that given in [3] for the classical Calderón-Zygmund singular integral operator T_{Ω}, we conclude that the class of the operators $T_{\Omega, h}$ behave quite differently from the class of the classical CalderónZygmund singular integral operators.

Concerning the condition $\Omega \in B_{q}^{0,-\frac{1}{2}}\left(\mathbf{S}^{n-1}\right)$ in Theorem 1.2, we have the following:

Theorem 1.4 There exists an Ω which lies in $B_{q}^{0,-\frac{1}{2}-\varepsilon}\left(\mathbf{S}^{n-1}\right)$ for all $\varepsilon>0$ and satisfies (1.2) such that the S_{Ω} is not bounded on $L^{2}\left(\mathbf{R}^{n}\right)$.

As a consequence of Theorem 1.2, Theorem 1.4, and a duality argument in [8], we obtain the following improvement of Theorem 1.1:

Corollary 1.5 Suppose that $\Omega \in B_{q}^{0,-\frac{1}{2}}\left(\mathbf{S}^{n-1}\right)$ and satisfies (1.2). Then the operator $\mathcal{M}_{\Omega, K}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for any $p \geq 2$. Moreover, the condition $\Omega \in B_{q}^{0,-\frac{1}{2}}\left(\mathbf{S}^{n-1}\right)$ is optimal.

Throughout this paper the letter C will stand for a constant that may vary at each occurrence, but it is independent of the essential variables. Also, we shall use $\exp (\cdot)$ to denote $e^{(\cdot)}$.

2 Main Lemma and Definition of Block Spaces

Lemma 2.1 Suppose that $a \geq 2, q>1, \mathbf{b} \in L^{1}\left(\mathbf{S}^{n-1}\right)$ and satisfying (1.2). Suppose also that $\left\{\psi_{j, a}: j \in \mathbf{Z}\right\}$ is a sequence of radial functions defined on \mathbf{R}^{n}. If
(i) $\hat{\psi}_{j}$ is supported in the interval $A_{j, a}=\left\{\xi \in \mathbf{R}^{n}: 2^{-a(j+1)} \leq|\xi| \leq 2^{-a(j-1)}\right\}$ and $0 \leq \hat{\psi}_{j} \leq 1 ;$
(ii) $\left\|\left(\sum_{k \in \mathbf{Z}}\left|\psi_{j, a} * f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p} \leq C_{p}\|f\|_{p}$ for all $1<p<\infty$ with constant C_{p} independent of a;
(iii) $\|\mathbf{b}\|_{q} \leq 2^{a}$ and $\|\mathbf{b}\|_{1} \leq 1$.

Then the square function

$$
\begin{equation*}
E_{a, j}(f)(x)=\left(\sum_{k \in \mathbf{Z}} \int_{1}^{2^{a}}\left|\int_{\mathbf{S}^{n-1}} \mathbf{b}\left(y^{\prime}\right)\left(\psi_{j+k, a} * f\right)\left(x-2^{a k} r y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|^{2} r^{-1} d r\right)^{\frac{1}{2}} \tag{2.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left\|E_{a, j}(f)\right\|_{p} \leq \sqrt{a} C_{p} 2^{-\alpha|j|}\|f\|_{p} \tag{2.2}
\end{equation*}
$$

for all $2 \leq p<\infty$ with constants C_{p} and α independent of j and the parameter a.
Proof We shall combine the method developed in [5] with some ideas from [4, 8]. We start by estimating $\left\|E_{a, j}(f)\right\|_{2}$. By Plancherel's theorem and Fubini's theorem, we have

$$
\begin{equation*}
\left\|E_{a, j}(f)\right\|_{2}^{2} \leq \sum_{k \in \mathbf{Z}} \int_{A_{j, a}}|\hat{f}(\xi)|^{2} \mathbf{J}_{a, k}(\xi) d \xi \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{J}_{a, k}(\xi)=\int_{1}^{2^{a}}\left|\int_{\mathbf{S}^{n-1}} \mathbf{b}\left(y^{\prime}\right) \exp \left(-i 2^{a k}\left(\xi \cdot y^{\prime}\right) r\right) d \sigma\left(y^{\prime}\right)\right|^{2} r^{-1} d r \tag{2.4}
\end{equation*}
$$

By the cancellation property of \mathbf{b} and (iii), we immediately obtain

$$
\begin{equation*}
\mathbf{J}_{a, k}(\xi) \leq 2^{2 a} a\left|2^{a k} \xi\right|^{2} \tag{2.5}
\end{equation*}
$$

which when interpolated with the trivial estimate $\mathbf{J}_{a, k}(\xi) \leq a$, implies that

$$
\begin{equation*}
\mathbf{J}_{a, k}(\xi) \leq 4 a\left|2^{a k} \xi\right|^{\frac{2}{a}} \tag{2.6}
\end{equation*}
$$

On the other hand, by (iii), it is easy to see that

$$
\begin{equation*}
\mathbf{J}_{a, k}(\xi) \leq \sup _{z^{\prime} \in \mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}}\left|\mathbf{b}\left(y^{\prime}\right)\right|\left|\int_{1}^{2^{a}} \exp \left(-i 2^{a k}\left(\xi \cdot\left(y^{\prime}-z^{\prime}\right) r\right)\right) r^{-1} d r\right| d \sigma\left(y^{\prime}\right) \tag{2.7}
\end{equation*}
$$

Now, it is straightforward to show that

$$
\begin{equation*}
\left|\int_{1}^{2^{a}} \exp \left(-i 2^{a k}\left(\xi \cdot\left(y^{\prime}-z^{\prime}\right) r\right)\right) r^{-1} d r\right| \leq a \min \left\{1,\left|2^{a k}\left(\xi \cdot\left(y^{\prime}-z^{\prime}\right)\right)\right|^{-1}\right\} \tag{2.8}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left|\int_{1}^{2^{a}} \exp \left(-i 2^{a k}\left(\xi \cdot\left(y^{\prime}-z^{\prime}\right) r\right)\right) r^{-1} d r\right| \leq a\left|2^{a k}\left(\xi \cdot\left(y^{\prime}-z^{\prime}\right)\right)\right|^{-\frac{1}{2 q^{\prime}}} \tag{2.9}
\end{equation*}
$$

Therefore, by (2.9), (2.7), Hölder's inequality, and (iii), we get

$$
\begin{equation*}
\mathbf{J}_{a, k}(\xi) \leq a 2^{a} C\left|2^{a k} \xi\right|^{-\frac{1}{2 q^{\prime}}} \tag{2.10}
\end{equation*}
$$

which when interpolated with the estimate $\mathbf{J}_{a, k}(\xi) \leq a$ implies that

$$
\begin{equation*}
\mathbf{J}_{a, k}(\xi) \leq 2 a C\left|2^{a k} \xi\right|^{-\frac{1}{2 a q^{\prime}}} \tag{2.11}
\end{equation*}
$$

Combining (2.6) and (2.11) along with the support property in (i), (2.3) immediately implies that

$$
\begin{equation*}
\left\|E_{a, j}(f)\right\|_{2} \leq \sqrt{a} C 2^{-|j|}\|f\|_{2} \tag{2.12}
\end{equation*}
$$

Next, for $p \geq 2$, there exists $g \in L^{(p / 2)^{\prime}}$ with $\|g\|_{(p / 2)^{\prime}}=1$ such that

$$
\begin{aligned}
& \left\|E_{a, j}(f)\right\|_{p}^{2} \\
& \quad=\int_{\mathbf{R}^{n}} \sum_{k \in \mathbf{Z}} \int_{1}^{2^{a}}\left|\int_{\mathbf{S}^{n-1}} \mathbf{b}\left(y^{\prime}\right)\left(\psi_{j+k, a} * f\right)\left(x-2^{a k} r y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|^{2} r^{-1} d r|g(x)| d x \\
& \quad \leq\|\mathbf{b}\|_{1} \sum_{k \in \mathbf{Z}} \int_{\mathbf{R}^{n}}\left|\left(\psi_{j+k, a} * f\right)(z)\right|^{2}\left\{\sup _{k \in \mathbf{Z}} \int_{2^{a k}<|y| \leq 2^{a(k+1)}}|\mathbf{b}(y)||g(z+y)| \frac{d y}{|y|^{n}}\right\} d z \\
& \quad \leq C\left\|\left(\sum_{k \in \mathbf{Z}}\left|\psi_{j, a} * f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}^{2}\left\|\sup _{k \in \mathbf{Z}} \int_{2^{a k}<|y| \leq 2^{a(k+1)}}|\mathbf{b}(y)||g(z+y)| \frac{d y}{|y|^{n}}\right\|_{(p / 2)^{\prime}} ;
\end{aligned}
$$

which when combined with (ii), (i), and a theorem in [16, p. 477], implies that

$$
\begin{equation*}
\left\|E_{a, j}(f)\right\|_{p} \leq C \sqrt{a}\|f\|_{p} \tag{2.13}
\end{equation*}
$$

Hence the proof is complete by (2.12), (2.13), and an interpolation argument.
Now, we recall the definition of block spaces introduced by Jiang and Lu [13]:
Definition 2.2 (1) For $x_{0}^{\prime} \in \mathbf{S}^{n-1}$ and $0<\theta_{0} \leq 2$, the set $B\left(x_{0}^{\prime}, \theta_{0}\right)=\left\{x^{\prime} \in \mathbf{S}^{n-1}\right.$: $\left.\left|x^{\prime}-x_{0}^{\prime}\right|<\theta_{0}\right\}$ is called a cap on \mathbf{S}^{n-1}.
(2) For $1<q \leq \infty$, a measurable function b is called a q-block on \mathbf{S}^{n-1} if b is a function supported on some cap $I=B\left(x_{0}^{\prime}, \theta_{0}\right)$ with $\|b\|_{L^{q}} \leq|I|^{-\frac{1}{q^{\prime}}}$ where $|I|=\sigma(I)$ and $1 / q+1 / q^{\prime}=1$.
(3) $B_{q}^{\kappa, v}\left(\mathbf{S}^{n-1}\right)=\left\{\Omega \in L^{1}\left(\mathbf{S}^{n-1}\right): \Omega=\sum_{\mu=1}^{\infty} c_{\mu} b_{\mu}\right.$ where each c_{μ} is a complex number; each b_{μ} is a q-block supported on a cap I_{μ} on \mathbf{S}^{n-1}; and $M_{q}^{\kappa, v}\left(\left\{c_{\mu}\right\},\left\{I_{\mu}\right\}\right)=$ $\sum_{\mu=1}^{\infty}\left|c_{\mu}\right|\left(\mid 1+\phi_{\kappa, v}\left(\left|I_{\mu}\right|\right)\right)<\infty$, where $\phi_{\kappa, v}(t)=\int_{t}^{1} u^{-1-\kappa} \log ^{v}\left(u^{-1}\right) d u$ if $0<t<1$ and $\phi_{\kappa, v}(t)=0$ if $\left.t \geq 1\right\}$.

Notice that $\phi_{\kappa, v}(t) \sim t^{-\kappa} \log ^{v}\left(t^{-1}\right)$ as $t \rightarrow 0$ for $\kappa>0, v \in \mathbf{R}$, and $\phi_{0, v}(t) \sim$ $\log ^{v+1}\left(t^{-1}\right)$ as $t \rightarrow 0$ for $v>-1$. Moreover, among many properties of block spaces [12], we cite the following which are closely related to our work:

$$
\begin{aligned}
B_{q}^{0,0} & \subset B_{q}^{0,-\frac{1}{2}} \quad(q>1) ; \\
B_{q_{2}}^{0, v} & \subset B_{q_{1}}^{0, v} \quad\left(1<q_{1}<q_{2}\right) ; \\
L^{q}\left(\mathbf{S}^{n-1}\right) & \subseteq B_{q}^{0, v}\left(\mathbf{S}^{n-1}\right) \quad(\text { for } v>-1) ; \\
\bigcup_{q>1} B_{q}^{0, v}\left(\mathbf{S}^{n-1}\right) & \nsubseteq \bigcup_{p>1} L^{p}\left(\mathbf{S}^{n-1}\right) \quad \text { for any } v>-1 .
\end{aligned}
$$

3 Proof of Main Results

Proof of Theorem 1.2 Assume that $\Omega \in B_{q}^{0,-\frac{1}{2}}\left(\mathbf{S}^{n-1}\right), q>1$. Then $\Omega=\sum_{\mu=1}^{\infty} c_{\mu} b_{\mu}$ where each c_{μ} is a complex number; each b_{μ} is a q-block supported on a cap I_{μ} on \mathbf{S}^{n-1}; and

$$
\begin{equation*}
M_{q}^{0,-\frac{1}{2}}\left(\left\{c_{\mu}\right\},\left\{I_{\mu}\right\}\right)=\sum_{\mu=1}^{\infty}\left|c_{\mu}\right|\left(1+\log ^{\frac{1}{2}}\left(\left|I_{\mu}\right|^{-1}\right)\right)<\infty \tag{3.1}
\end{equation*}
$$

For each block function $b_{\mu}(\cdot)$, let $\bar{b}_{\mu}(x)=b_{\mu}(x)-\int_{\mathbf{S}^{n-1}} b_{\mu}(u) d u$. Then it is straightforward to show that \bar{b}_{μ} satisfies the cancellation property (1.2) and condition (ii) in Lemma 2.1. Moreover, $\Omega=\sum_{\mu=1}^{\infty} c_{\mu} \bar{b}_{\mu}$, which immediately implies

$$
\begin{equation*}
S_{\Omega} f(x) \leq \sum_{\mu=1}^{\infty} c_{\mu} S_{\bar{b}_{\mu}} f(x) \tag{3.2}
\end{equation*}
$$

where $S_{\bar{b}_{\mu}}$ is given by (1.5) with Ω is replaced by \bar{b}_{μ}. Thus, by (3.1) and (3.2), it suffices to prove the following inequality:

$$
\begin{equation*}
\left\|S_{\bar{b}_{\mu}} f\right\|_{p} \leq\left(1+\log ^{\frac{1}{2}}\left(\left|I_{\mu}\right|^{-1}\right)\right) C_{p}\|f\|_{p} \tag{3.3}
\end{equation*}
$$

for all $2 \leq p<\infty$ with constant C_{p} independent of μ. However, this follows by applying Lemma 2.1. We argue as follows:

Given \bar{b}_{μ}, let $a=2$ if $\left|I_{\mu}\right| \geq 2^{q^{\prime}} e^{-2 q^{\prime}}$ and $a=\log 2\left|I_{\mu}\right|^{-\frac{1}{q^{\prime}}}$ if $\left|I_{\mu}\right|<2^{q^{\prime}} e^{-2 q^{\prime}}$. By an elementary procedure [4], choose a collection of \mathcal{C}^{∞} functions $\left\{\omega_{j, a}\right\}_{j \in \mathbf{Z}}$ on $(0, \infty)$ with the properties: $\operatorname{supp}\left(\omega_{j, a}\right) \subseteq\left[2^{-a(j+1)}, 2^{-a(j-1)}\right], 0 \leq \omega_{j, a} \leq 1, \sum_{j \in \mathbf{Z}} \omega_{j, a}(u)=$ 1 , and $\left|\frac{d^{s} \omega_{j, a}}{d u^{s}}(u)\right| \leq C_{s} u^{-s}$ with constants C_{s} independent of a. Therefore,

$$
\begin{align*}
& S_{\bar{b}_{\mu}}(f)(x) \tag{3.4}\\
& \quad \leq\left(\sum_{k \in \mathbf{Z}} \int_{1}^{2^{a}}\left|\sum_{j \in \mathbf{Z}} \int_{\mathbf{S}^{n-1}} \bar{b}_{\mu}\left(y^{\prime}\right)\left(\psi_{j+k, a} * f\right)\left(x-2^{a k} r y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|^{2} r^{-1} d r\right)^{\frac{1}{2}} \\
& \quad \leq \sum_{j \in \mathbf{Z}} E_{a, j}(f)(x)
\end{align*}
$$

where $E_{a, j}$ is the operator given in (2.1) with \mathbf{b} is replaced by \bar{b}_{μ}. Moreover, by the properties of $\left\{\omega_{j, a}\right\}_{j \in \mathbf{Z}}$, it follows that condition (iii) holds by Littlewood-Paley theory with L^{p} constants independent of the parameter a (for details see [4], [15]). Hence, by Lemma 2.1 and (3.4), we obtain (3.3). This completes the proof.

Now, we prove Theorem 1.4.
Proof of Theorem 1.4 By Plancherel's theorem, it is easy to see that S_{Ω} is bounded on L^{2} if the multiplier

$$
m_{\Omega}(\xi)=\int_{0}^{\infty}\left|\int_{S^{n-1}} \exp \left(-i r \xi \cdot y^{\prime}\right) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|^{2} r^{-1} d r
$$

is uniformly bounded. By the cancellation property of Ω and a simple limiting process, it can be easily seen that

$$
\begin{aligned}
m_{\Omega}(\xi)= & \int_{\mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} \Omega\left(y^{\prime}\right) \overline{\Omega\left(z^{\prime}\right)} \\
& \left\{\log \left|\xi^{\prime} \cdot\left(y^{\prime}-z^{\prime}\right)\right|^{-1}-i \frac{\pi}{2} \operatorname{sgn}\left(\xi^{\prime} \cdot\left(y^{\prime}-z^{\prime}\right)\right)\right\} d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)
\end{aligned}
$$

By restricting Ω to be real, we obtain

$$
\mathcal{R}\left(m_{\Omega}\right)(\xi)=\int_{\mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} \Omega\left(y^{\prime}\right) \Omega\left(z^{\prime}\right) \log \left|\xi^{\prime} \cdot\left(y^{\prime}-z^{\prime}\right)\right|^{-1} d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)
$$

where $\mathcal{R}\left(m_{\Omega}\right)$ denotes the real part of m_{Ω}. Therefore, to prove the result of Theorem 1.4, it suffices to construct a real $\Omega \in B_{q}^{0,-1 / 2-\varepsilon}\left(\mathbf{S}^{n-1}\right)$ for all $\varepsilon>0$ and satisfies
(1.2) such that $\mathcal{R}\left(m_{\Omega}\right)$ is not an L^{∞} function. For sake of simplicity, we shall construct Ω on \mathbf{S}^{1} and assuming $q=\infty$. Also, we shall work on the interval $[-1,1]$ and follow the similar ideas developed in ([4]).

For $k \in \mathbf{N}$, let $I_{k}=[1 /(k+1), 1 / k)$ and let $C_{\Omega}=\sum_{k=3}^{\infty}(k+1)^{-1}(\log k)^{-\frac{3}{2}}$. Define Ω on $[-1,1]$ by

$$
\begin{equation*}
\Omega(u)=\sum_{k=3}^{\infty} k(\log k)^{-\frac{3}{2}} \chi_{I_{k}}-C_{\Omega} \chi_{[-1,0]} \tag{3.5}
\end{equation*}
$$

where $\chi_{I_{k}}$ is the characteristic function of the interval I_{k}. Then, clearly

$$
\Omega \in B_{\infty}^{0,-1 / 2-\varepsilon}([-1,1])
$$

for all $\varepsilon>0$. Moreover, the following holds:

$$
\begin{equation*}
\int_{-1}^{1} \Omega(u) d u=0 \tag{3.6}
\end{equation*}
$$

On the other hand, by noticing that the sum $\sum_{k=3}^{\infty} k(\log k)^{-\frac{3}{2}}\left(1+\log ^{\frac{1}{2}}\left(\left|I_{k}\right|^{-1}\right)\right)$ is divergent, one can easily verify that $\Omega \notin B_{\infty}^{0,-1 / 2}$.

Finally, we show that $\left|\mathcal{R}\left(m_{\Omega}\right)(\xi)\right|=\infty$, i.e.,

$$
\begin{equation*}
\iint_{[-1,1]^{2}} \Omega(u) \Omega(v) \log |u-v|^{-1} d u d v=\infty \tag{3.7}
\end{equation*}
$$

To this end, we break the integral over $[-1,1]^{2}$ into two terms: the first is the integral over $[-1,1]^{2} \backslash[0,1]^{2}$ and the second one is the integral over $[0,1]^{2}$. Since the integral over $[-1,1]^{2} \backslash[0,1]^{2}$ is clearly finite, we conclude that (3.7) holds if and only if the integral over $[0,1]^{2}$ is infinite. But, the latter is indeed infinite. To see this, notice that

$$
\begin{aligned}
\iint_{[0,1]^{2}} \Omega(u) & \Omega(v) \log |u-v|^{-1} d u d v \\
& \geq C \sum_{k=3}^{\infty} k(\log k)^{-\frac{3}{2}}\left\{\sum_{j=k+1}^{\infty} j(\log j)^{-\frac{3}{2}} \int_{D_{k}} \int_{D_{j}} \log |u-v|^{-1} d u d v\right\} \\
& \geq \sum_{k=3}^{\infty}(k+1)^{-1}(\log k)^{-1}=\infty
\end{aligned}
$$

This completes the proof.

References

[1] A. Al-Hasan and D. Fan, A singular integral operator related to block spaces. Hokkaido Math. J. 28(1999), 285-299.
[2] H. Al-Qassem and Y. Pan, L^{p} estimates for singular integrals with kernels belonging to certain block spaces. Rev. Mat. Iberoamericana (18) 3(2002) 701-730.
[3] H. Al-Qassem, A. Al-Salman and Y. Pan, Singular integrals associated to homogeneous mappings with rough kernels. Hokkaido Math. J. 33(2004), 551-569.
[4] H. Al-Qassem and A. Al-Salman, A note on Marcinkiewicz integral operators. J. Math. Anal. Appl. 282(2003) 698-710.
[5] A. Al-Salman and Y. Pan, Singular integrals with rough kernels in $L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$. J. London. Math. Soc. (2) 66(2002), 153-174.
[6] A. Al-Salman and H. Al-Qassem, Integral operators of Marcinkiewicz type. J. Integral Equations Appl. (4) 14(2002).
[7] A. Calderón and A. Zygmund, On existence of certain singular integrals. Acta. Math. 88(1952), 85-129.
[8] L. Chen and H. Lin, A maximal operator related to a class of singular integrals. Illinois J. Math. (1) 34(1990), 120-126.
[9] W. C. Connett, Singular integrals near L^{1}. In: Harmonic analysis in Euclidean spaces. Proc. Sympos. Pure Math. 35, Amer. Math. Soc., Providence, RI, 1979, pp. 163-165.
[10] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84(1986), 541-561.
[11] D. Fan and Y. Pan, Singular integrals with rough kernels supported by subvarieties. Amer. J. Math. 119(1997), 799-839.
[12] M. Keitoku and E. Sato, Block spaces on the unit sphere in \mathbf{R}^{n}. Proc. Amer. Math. Soc. 119(1993), 453-455.
[13] S. Lu, M. Taibleson and G. Weiss, Spaces Generated by Blocks. Beijing Normal University Press, 1989, Beijing.
[14] F. Ricci and G. Weiss, A characterization of $\mathbf{H}^{1}\left(\mathbf{S}^{n-1}\right)$. In: Harmonic analysis in Euclidean spaces. Proc. Sympos. Pure Math. 35, Amer. Math. Soc., Providence, RI, 1979, pp. 289-294.
[15] E. M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton New Jersey, 1970.
[16] , Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton, New Jersey, 1993.

Department of Mathematics
Yarmouk University
Irbid
Jordan
email: alsalman@yu.edu.jo

[^0]: Received by the editors December 30, 2003.
 AMS subject classification: Primary: 42B20; secondary: 42B15, 42B25.
 Keywords: Singular integrals, Rough kernels, Square functions, Maximal functions, Block spaces.
 (c) Canadian Mathematical Society 2006.

