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On a Class of Singular Integral Operators
With Rough Kernels

Ahmad Al-Salman

Abstract. In this paper, we study the Lp mapping properties of a class of singular integral operators

with rough kernels belonging to certain block spaces. We prove that our operators are bounded on Lp

provided that their kernels satisfy a size condition much weaker than that for the classical Calderón–

Zygmund singular integral operators. Moreover, we present an example showing that our size condi-

tion is optimal. As a consequence of our results, we substantially improve a previously known result

on certain maximal functions.

1 Introduction and Statement of Results

Let Rn, n ≥ 2 be the n-dimensional Euclidean space and Sn−1 be the unit sphere in

Rn equipped with the normalized Lebesgue measure dσ. For nonzero y ∈ Rn, we

shall let y ′
= |y|−1 y. Consider the classical Calderón- Zygmund singular integral

operator

(1.1) (TΩ f )(x) = p.v.

∫

Rn

f (x − y)|y|−n
Ω(y ′) dy,

where Ω is a homogeneous function of degree zero on Rn and satisfies Ω ∈ L1(Sn−1)

and

(1.2)

∫

Sn−1

Ω(y ′) dσ(y ′) = 0.

In their celebrated paper [7], Calderón and Zygmund proved that TΩ is bounded

on Lp for all 1 < p < ∞ provided that Ω ∈ L log L(Sn−1). It turns out that Ω ∈
L log L(Sn−1) is the most desirable size condition for the Lp boundedness of TΩ to

hold. Subsequently, it was proved by Ricci–Weiss [14] and Connett [9] independently

that TΩ is bounded in Lp(Rn) for every Ω in the Hardy space H1(Sn−1) and p ∈
(1,∞).

To improve previously obtained results, Jiang and Lu introduced a special class of

block spaces Bκ,υq (Sn−1) (see Section 2 for the definition). Jiang and Lu showed that

if Ω ∈ B0,0
q (Sn−1), q > 1, then the operator TΩ is bounded on L2(Rn). Subsequently,

the Lp boundedness was proved for all 1 < p < ∞ [1, 2]. In a more recent paper

[3], Al-Qassem, Al-Salman, and Pan showed that the Lp boundedness of TΩ may

fail at any p if the condition Ω ∈ B0,0
q (Sn−1) is replaced by Ω ∈ B0,ν

q (Sn−1) for any

−1 < ν < 0.
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4 A. Al-Salman

In [8], Chen and Lin introduced the following maximal function:

(1.3) MΩ,K( f )(x) = sup
h∈K

|(TΩ,h f )(x)|,

where K is the class of all functions h ∈ L2(R+, r−1 dr) with ‖h‖L2(R+r−1 dr) ≤ 1 and

(1.4) (TΩ,h f )(x) = p.v.

∫

Rn

f (x − y)|y|−n
Ω(y ′)h(|y|) dy.

Chen and Lin proved the following result:

Theorem 1.1 ([8]) Suppose that Ω ∈ C(Sn−1) and satisfies (1.2). Then the operator

MΩ,K is bounded on Lp(Rn) for any p > 2n/(2n − 1).

It turns out that the condition Ω ∈ C(Sn−1) can be substantially weakened; as seen

in Theorem 1.4 below.

The main purpose of this paper is studying the Lp mapping properties of the oper-

ators TΩ,h in (1.4) with h ∈ L2(R+, r−1 dr) and functions Ω satisfy a condition much

weaker than Ω ∈ B0,0
q (Sn−1). More specifically, we shall show that the operators TΩ,h

in (1.4) do not obey the size condition limitation given by Al-Qassem, Al-Salman,

and Pan for the classical Calderón–Zygmund singular integral operators [3]. In or-

der to state our results, we let SΩ be the operator defined by

(1.5) SΩ( f )(x) =

(

∫ ∞

0

∣

∣

∣

∫

Sn−1

Ω(y ′) f (x − ry ′) dσ(y ′)
∣

∣

∣

2

r−1 dr
)

1
2

.

Clearly, if h ∈ L2(R+, r−1 dr), then |TΩ,h(x)| ≤ ‖h‖L2(R+,r−1 dr)SΩ( f )(x). We have the

following:

Theorem 1.2 Suppose that Ω ∈ B
0,− 1

2
q (Sn−1) and satisfies (1.2). Then

(1.6) ‖SΩ( f )‖p ≤ C p‖ f ‖p for 2 ≤ p <∞.

As a consequence of Theorem 1.2, the observation right after (1.5), and duality,

we immediately obtain the following result:

Corollary 1.3 Suppose that Ω ∈ B
0,− 1

2
q (Sn−1) and satisfies (1.2). Suppose also that

h ∈ L2(R+, dr/r). Then the singular integral operator TΩ,h is bounded on Lp(Rn) for all

1 < p <∞.

By comparing the result in Corollary 1.3 with that given in [3] for the classi-

cal Calderón–Zygmund singular integral operator TΩ, we conclude that the class of

the operators TΩ,h behave quite differently from the class of the classical Calderón–

Zygmund singular integral operators.

Concerning the condition Ω ∈ B
0,− 1

2
q (Sn−1) in Theorem 1.2, we have the follow-

ing:
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Theorem 1.4 There exists an Ω which lies in B
0,− 1

2
−ε

q (Sn−1) for all ε > 0 and satisfies

(1.2) such that the SΩ is not bounded on L2(Rn).

As a consequence of Theorem 1.2, Theorem 1.4, and a duality argument in [8], we

obtain the following improvement of Theorem 1.1:

Corollary 1.5 Suppose that Ω ∈ B
0,− 1

2
q (Sn−1) and satisfies (1.2). Then the operator

MΩ,K is bounded on Lp(Rn) for any p ≥ 2. Moreover, the condition Ω ∈ B
0,− 1

2
q (Sn−1)

is optimal.

Throughout this paper the letter C will stand for a constant that may vary at each

occurrence, but it is independent of the essential variables. Also, we shall use exp(·)
to denote e(·).

2 Main Lemma and Definition of Block Spaces

Lemma 2.1 Suppose that a ≥ 2, q > 1, b ∈ L1(Sn−1) and satisfying (1.2). Suppose

also that {ψ j,a : j ∈ Z} is a sequence of radial functions defined on Rn. If

(i) ψ̂ j is supported in the interval A j,a = {ξ ∈ Rn : 2−a( j+1) ≤ |ξ| ≤ 2−a( j−1)} and

0 ≤ ψ̂ j ≤ 1;

(ii) ‖(
∑

k∈Z
|ψ j,a ∗ f |2)

1
2 ‖p ≤ C p‖ f ‖p for all 1 < p <∞ with constant C p indepen-

dent of a;

(iii) ‖b‖q ≤ 2a and ‖b‖1 ≤ 1.

Then the square function

(2.1) Ea, j( f )(x) =

(

∑

k∈Z

∫ 2a

1

∣

∣

∣

∫

Sn−1

b(y ′)(ψ j+k,a ∗ f )(x−2akry ′) dσ(y ′)
∣

∣

∣

2

r−1 dr
)

1
2

satisfies

(2.2) ‖Ea, j( f )‖p ≤
√

aC p2−α| j|‖ f ‖p

for all 2 ≤ p <∞ with constants C p and α independent of j and the parameter a.

Proof We shall combine the method developed in [5] with some ideas from [4, 8].

We start by estimating ‖Ea, j( f )‖2. By Plancherel’s theorem and Fubini’s theorem, we

have

(2.3) ‖Ea, j( f )‖2
2 ≤

∑

k∈Z

∫

A j,a

| f̂ (ξ)|2Ja,k(ξ) dξ,

where

(2.4) Ja,k(ξ) =

∫ 2a

1

∣

∣

∣

∫

Sn−1

b(y ′) exp
(

−i2ak(ξ · y ′)r
)

dσ(y ′)
∣

∣

∣

2

r−1 dr.
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By the cancellation property of b and (iii), we immediately obtain

(2.5) Ja,k(ξ) ≤ 22aa|2akξ|2;

which when interpolated with the trivial estimate Ja,k(ξ) ≤ a, implies that

(2.6) Ja,k(ξ) ≤ 4a|2akξ| 2
a .

On the other hand, by (iii), it is easy to see that

(2.7)

Ja,k(ξ) ≤ sup
z ′∈Sn−1

∫

Sn−1

|b(y ′)|
∣

∣

∣

∫ 2a

1

exp
(

−i2ak
(

ξ · (y ′ − z ′)r
)

)

r−1 dr
∣

∣

∣
dσ(y ′).

Now, it is straightforward to show that

(2.8)
∣

∣

∣

∫ 2a

1

exp
(

−i2ak
(

ξ ·(y ′−z ′)r
)

)

r−1 dr
∣

∣

∣
≤ a min

{

1,
∣

∣2ak
(

ξ ·(y ′−z ′)
)
∣

∣

−1}

.

This implies that

(2.9)
∣

∣

∣

∫ 2a

1

exp
(

−i2ak
(

ξ · (y ′ − z ′)r
)

)

r−1 dr
∣

∣

∣
≤ a

∣

∣2ak
(

ξ · (y ′ − z ′)
)
∣

∣

− 1

2q ′ .

Therefore, by (2.9), (2.7), Hölder’s inequality, and (iii), we get

(2.10) Ja,k(ξ) ≤ a2aC|2akξ|−
1

2q ′ ;

which when interpolated with the estimate Ja,k(ξ) ≤ a implies that

(2.11) Ja,k(ξ) ≤ 2aC|2akξ|−
1

2aq ′ .

Combining (2.6) and (2.11) along with the support property in (i), (2.3) immediately

implies that

(2.12) ‖Ea, j( f )‖2 ≤
√

aC2−| j|‖ f ‖2.

Next, for p ≥ 2, there exists g ∈ L(p/2) ′ with ‖g‖(p/2) ′ = 1 such that

‖Ea, j( f )‖2
p

=

∫

Rn

∑

k∈Z

∫ 2a

1

∣

∣

∣

∫

Sn−1

b(y ′)(ψ j+k,a ∗ f )(x − 2akry ′) dσ(y ′)
∣

∣

∣

2

r−1 dr|g(x)| dx

≤ ‖b‖1

∑

k∈Z

∫

Rn

|(ψ j+k,a ∗ f )(z)|2
{

sup
k∈Z

∫

2ak<|y|≤2a(k+1)

|b(y)| |g(z + y)| dy

|y|n
}

dz

≤ C
∥

∥

∥

(

∑

k∈Z

|ψ j,a ∗ f |2
)

1
2
∥

∥

∥

2

p

∥

∥

∥

∥

sup
k∈Z

∫

2ak<|y|≤2a(k+1)

|b(y)| |g(z + y)| dy

|y|n
∥

∥

∥

∥

(p/2) ′

;
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which when combined with (ii), (i), and a theorem in [16, p. 477], implies that

(2.13) ‖Ea, j( f )‖p ≤ C
√

a‖ f ‖p.

Hence the proof is complete by (2.12), (2.13), and an interpolation argument.

Now, we recall the definition of block spaces introduced by Jiang and Lu [13]:

Definition 2.2 (1) For x ′
0 ∈ Sn−1 and 0 < θ0 ≤ 2, the set B(x ′

0, θ0) = {x ′ ∈ Sn−1 :

|x ′ − x ′
0| < θ0} is called a cap on Sn−1.

(2) For 1 < q ≤ ∞, a measurable function b is called a q-block on Sn−1 if b is a

function supported on some cap I = B(x ′
0, θ0) with ‖b‖Lq ≤ |I|−

1

q ′ where |I| = σ(I)

and 1/q + 1/q ′
= 1.

(3) Bκ,υq (Sn−1) = {Ω ∈ L1(Sn−1): Ω =
∑∞

µ=1 cµbµ where each cµ is a complex

number; each bµ is a q-block supported on a cap Iµ on Sn−1; and Mκ,υ
q ({cµ}, {Iµ}) =

∑∞
µ=1 |cµ|

(

|1+φκ,υ(|Iµ|)
)

<∞, whereφκ,υ(t) =
∫ 1

t
u−1−κ log

υ

(u−1) du if 0 < t < 1

and φκ,υ(t) = 0 if t ≥ 1}.

Notice that φκ,υ(t) ∼ t−κ logυ(t−1) as t → 0 for κ > 0, υ ∈ R, and φ0,υ(t) ∼
logυ+1(t−1) as t → 0 for υ > −1. Moreover, among many properties of block spaces

[12], we cite the following which are closely related to our work:

B0,0
q ⊂ B

0,− 1
2

q (q > 1);

B0,υ
q2

⊂ B0,υ
q1

(1 < q1 < q2);

Lq(Sn−1) ⊆ B0,υ
q (Sn−1) (for υ > −1);

⋃

q>1

B0,υ
q (Sn−1) 6⊆

⋃

p>1

Lp(Sn−1) for any υ > −1.

3 Proof of Main Results

Proof of Theorem 1.2 Assume that Ω ∈ B
0,− 1

2
q (Sn−1), q > 1. Then Ω =

∑∞
µ=1 cµbµ

where each cµ is a complex number; each bµ is a q-block supported on a cap Iµ on

Sn−1; and

(3.1) M
0,− 1

2
q ({cµ}, {Iµ}) =

∞
∑

µ=1

|cµ|
(

1 + log
1
2 (|Iµ|−1)

)

<∞.

For each block function bµ(·), let b̄µ(x) = bµ(x) −
∫

Sn−1 bµ(u) du. Then it is straight-

forward to show that b̄µ satisfies the cancellation property (1.2) and condition (ii) in

Lemma 2.1. Moreover, Ω =
∑∞

µ=1 cµb̄µ, which immediately implies

(3.2) SΩ f (x) ≤
∞
∑

µ=1

cµSb̄µ
f (x),
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8 A. Al-Salman

where Sb̄µ
is given by (1.5) with Ω is replaced by b̄µ. Thus, by (3.1) and (3.2), it

suffices to prove the following inequality:

(3.3) ‖Sb̄µ
f ‖p ≤

(

1 + log
1
2 (|Iµ|−1)

)

C p‖ f ‖p

for all 2 ≤ p < ∞ with constant C p independent of µ. However, this follows by

applying Lemma 2.1. We argue as follows:

Given b̄µ, let a = 2 if |Iµ| ≥ 2q ′

e−2q ′

and a = log 2|Iµ|−
1

q ′ if |Iµ| < 2q ′

e−2q ′

. By an

elementary procedure [4], choose a collection of C∞ functions {ω j,a} j∈Z on (0,∞)

with the properties: supp(ω j,a) ⊆ [2−a( j+1), 2−a( j−1)], 0 ≤ ω j,a ≤ 1,
∑

j∈Z
ω j,a(u) =

1, and | dsω j,a

dus (u)| ≤ Csu
−s with constants Cs independent of a. Therefore,

(3.4) Sb̄µ
( f )(x)

≤
(

∑

k∈Z

∫ 2a

1

∣

∣

∣

∑

j∈Z

∫

Sn−1

b̄µ(y ′)(ψ j+k,a ∗ f )(x − 2akry ′) dσ(y ′)
∣

∣

∣

2

r−1 dr
)

1
2

≤
∑

j∈Z

Ea, j( f )(x),

where Ea, j is the operator given in (2.1) with b is replaced by b̄µ. Moreover, by

the properties of {ω j,a} j∈Z, it follows that condition (iii) holds by Littlewood–Paley

theory with Lp constants independent of the parameter a (for details see [4], [15]).

Hence, by Lemma 2.1 and (3.4), we obtain (3.3). This completes the proof.

Now, we prove Theorem 1.4.

Proof of Theorem 1.4 By Plancherel’s theorem, it is easy to see that SΩ is bounded

on L2 if the multiplier

mΩ(ξ) =

∫ ∞

0

∣

∣

∣

∫

Sn−1

exp(−irξ · y ′)Ω(y ′) dσ(y ′)
∣

∣

∣

2

r−1 dr

is uniformly bounded. By the cancellation property of Ω and a simple limiting pro-

cess, it can be easily seen that

mΩ(ξ) =

∫

Sn−1

∫

Sn−1

Ω(y ′)Ω(z ′)

{

log |ξ ′ · (y ′ − z ′)|−1 − i
π

2
sgn

(

ξ ′ · (y ′ − z ′)
)

}

dσ(y ′) dσ(z ′).

By restricting Ω to be real, we obtain

R(mΩ)(ξ) =

∫

Sn−1

∫

Sn−1

Ω(y ′)Ω(z ′) log |ξ ′ · (y ′ − z ′)|−1 dσ(y ′) dσ(z ′),

where R(mΩ) denotes the real part of mΩ. Therefore, to prove the result of Theo-

rem 1.4, it suffices to construct a real Ω ∈ B
0,−1/2−ε
q (Sn−1) for all ε > 0 and satisfies
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(1.2) such that R(mΩ) is not an L∞ function. For sake of simplicity, we shall con-

struct Ω on S1 and assuming q = ∞. Also, we shall work on the interval [−1, 1] and

follow the similar ideas developed in ([4]).

For k ∈ N, let Ik =
[

1/(k+1), 1/k
)

and let CΩ =
∑∞

k=3(k+1)−1(log k)−
3
2 . Define

Ω on [−1, 1] by

(3.5) Ω(u) =

∞
∑

k=3

k(log k)−
3
2χIk

−CΩχ[−1,0],

where χIk
is the characteristic function of the interval Ik. Then, clearly

Ω ∈ B0,−1/2−ε
∞ ([−1, 1])

for all ε > 0. Moreover, the following holds:

(3.6)

∫ 1

−1

Ω(u) du = 0.

On the other hand, by noticing that the sum
∑∞

k=3 k(log k)−
3
2 (1 + log

1
2 (|Ik|−1)) is

divergent, one can easily verify that Ω /∈ B0,−1/2
∞ .

Finally, we show that |R(mΩ)(ξ)| = ∞, i.e.,

(3.7)

∫∫

[−1,1]2

Ω(u)Ω(v) log |u − v|−1 du dv = ∞.

To this end, we break the integral over [−1, 1]2 into two terms: the first is the integral

over [−1, 1]2\[0, 1]2 and the second one is the integral over [0, 1]2. Since the integral

over [−1, 1]2 \ [0, 1]2 is clearly finite, we conclude that (3.7) holds if and only if the

integral over [0, 1]2 is infinite. But, the latter is indeed infinite. To see this, notice

that

∫∫

[0,1]2

Ω(u)Ω(v) log |u − v|−1 du dv

≥ C

∞
∑

k=3

k(log k)−
3
2

{

∞
∑

j=k+1

j(log j)−
3
2

∫

Dk

∫

D j

log |u − v|−1 du dv
}

≥
∞
∑

k=3

(k + 1)−1(log k)−1
= ∞.

This completes the proof.
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