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1. Introduction

Let G1 and G2 be groups. Let r = abcd ∈ G1 ∗ G2, where a, c ∈ G1, and b, d ∈ G2. Let
G = G1 ∗ G2/〈〈r〉〉, where we denote by 〈〈r〉〉 the normal closure of r. We would like to
classify the cases when the natural mappings G1 → G and G2 → G are embeddings. In
other words, we would like to classify all the triples (G1, G2, r) for which the Freiheitssatz
holds (the classical case when G1 and G2 are both free being due to Magnus [13]).

The Freiheitssatz does not always hold, as the following example shows.

Example 1.1. r = a2b2a−1b−1, |a| = 5 and |b| = 7, where we denote by |x| the order
of the element x in the group G.

If r = a2b2a−1b−1, then we have ba = a2b2 in G, and then ba2 = a2b2a = a2bba =
a2ba2b2. Since ba2 = a2ba2b2, we get ba2 = a2mba2b2m, for every integer m. Since |a| = 5,
we get for m = 5, ba2 = a10ba2b10 = ba2b10. Hence b10 = b7 = 1 so b = 1.

In [7] and [8], Howie showed that the Freiheitssatz holds true for the case r = wn,
where n � 4.

In [1], Duncan and Howie proved the Freiheitssatz for r = w3, when w does not contain
a letter of order 2.

In [9], Howie and Shwartz proved the Freiheitssatz for r = (UaU−1b)3, where U is a
word in G1 ∗ G2, and a and b are letters in G1 ∪ G2.

In [5], Edjvet and Juhasz have a classification of the cases where the Freiheitssatz
holds if r = a2b2a−1b, |a| > 10 and |b| > 10 or r = a2b2a−1b−1.
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In [14,16], Shwartz has a classification for the cases of the Freiheitssatz for length-
four one-relator free products, where the relator r has the specific forms r = a2bad and
r = a2ba−1d.

This paper is the extension of the Freiheitssatz for length-four one-relator free products,
where the relator has the generalized form abcd.

We note here that one of the main applications of our work is for solving equations
over groups. It turns out that the Freiheitssatz holds for (G1, G2, r), where r = abcd if
and only if the equation atbt−1ctdt−1 has a solution over G1 ∗ G2. For more information
on this subject the reader is referred to [2–4,6,10,11].

2. Preliminaries

We will make the following assumptions.
Let G = G1 ∗G2/〈〈r〉〉, where r = abcd, a, c ∈ G1, and b, d ∈ G2. Let A be the subgroup

of G1 generated by a and c, and let B be the subgroup of G2 generated by b and d, and
let RA be Ker(〈a, c|−〉 → A), and let RB be Ker(〈b, d|−〉 → B).

Assumption 2.1. RA contains none of ae, ce, af , cf , ace, acf , a2ce, and RB contains
none of be, de, bf , df , bde, bdf , b2de, where e ∈ {−1, +1} and f ∈ {−2, +2}.

The special cases when RA contains at least one of acf or a2ce or RB contains at least
one of bdf or b2de have been studied in [5,14,16], and the other cases which appear in
Assumption 2.1 are trivial.

Let P = {A4, Z3 ⊕ Z3} and let R = {A4, S4, A5, Z3 ⊕ Z3, Z9, Z12, Z15, Q12}, where
An and Sn denote the alternating and symmetric group of degree n (respectively), Zn

the cyclic group of order n and Q12 the quarternionic group of order 12, where Q12 =
〈a, c|a3c2, a6, acac−1〉.

In this paper we shall prove the following theorems.

Theorem 2.2. Let G = G1 ∗ G2/〈〈r〉〉, and let A and B be the subgroups of G1 and
of G2, respectively, as defined above, and suppose that Assumption 2.1 is satisfied. If
A /∈ P and B /∈ R, or if A /∈ R and B /∈ P , then the Freiheitssatz holds for (G1, G2, r).

Theorem 2.3. Let G = G1 ∗G2/〈〈r〉〉, and let A and B be the subgroups of G1 and of
G2, respectively, as defined above, and suppose that Assumption 2.1 is satisfied. If A /∈ R

and B /∈ R, and assume either R1 = RA and R2 = RB or R1 = RB and R2 = RA, and
xyzw is a cyclic conjugate of abcd, where {x, y, z, w} = {a, b, c, d}, then G is aspherical,
unless one of the following holds.

(1) x3, z3 ∈ R1 and ywyw ∈ R2.

(2) x3, z4 ∈ R1 and ywyw ∈ R2.

(3) x3, z5 ∈ R1 and ywyw ∈ R2.

In each of these cases there exists a non-trivial spherical van Kampen diagram.
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Figure 1. Labelling of a region in a modified relative diagram.

If Theorem 2.2 were false, then there would exist a van Kampen diagram (see Chapter 5
of [12] for undefined terms) over the presentation A∗B/〈〈r〉〉 with boundary label g, where
either g ∈ A − {1} or g ∈ B − {1}. If Theorem 2.3 were false, then there would be a
non-trivial spherical diagram over the presentation for G. Our method of proof in both
cases is to show that no such diagrams exist.

Instead of working with van Kampen diagrams we will use a modified relative diagram
which we now describe. Consider the presentation 〈a, b, c, d, t|RA, RB , atbt−1ctdt−1〉. The
diagram M , say, that we study will have regions given by Figure 1 (up to cyclic permu-
tation and inversion).

Thus the edges are labelled by te, and the corners of the regions are labelled by ae,
be, ce, de, where e ∈ {−1, +1}. Let v0 be a distinguished vertex in the boundary of the
diagram; the non-distinguished vertices will be called inner vertices, and an inner region
is a region all of whose vertices are inner. The labelling is done in such a way as to ensure
that the label l(v), read anticlockwise around each inner vertex v, is a member of RA or
RB ; and reading the labels clockwise around any region will give (atbt−1ctdt−1)e, where
e ∈ {−1, +1}, up to cyclic permutation. If D is a region of M , for x ∈ {a, b, c, d} denote
by vx(D) the vertex of D whose corner is labelled x. If v is a vertex of the region D, then
tD(v) denotes the label of the corner at v in D.

Thus if the Freiheitssatz fails for G, there will be a diagram M as described above
with distinguished vertex v0 such that l(v0) ∈ A − {1} or l(v0) ∈ B − {1} (see [6]); and
if Theorem 2.3 is false, then there exists a spherical M .

To prove that in each case no such diagram M exists we use a curvature argument. If
S is a subdiagram of M containing the vertex v, then ‖v‖s denotes the valency of v in
S; if S = M or if S is clear from the context, we will use ‖v‖. For each region D of M

having m vertices vi, define the curvature K(D) of D by K(D) = (1 − m/2) +
∑

1/‖vi‖.
Let K(M) =

∑
K(D). It is a consequence of the Gauss–Bonnet formula that K(M) = 2.

Our strategy will be to show that this cannot happen, thus obtaining our desired con-
tradiction.
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Lemma 2.4. Suppose that E is a region of M containing the vertex v.

(a) If tE(v) ∈ {a, a−1, c, c−1}, then tD(v) ∈ {a, a−1, c, c−1} for every region D in M

that contains v.

(b) If tE(v) ∈ {b, b−1, d, d−1}, then tD(v) ∈ {b, b−1, d, d−1} for every region D in M

that contains v.

(c) If ‖v‖ = 3 and v 	= v0, then l(v) ∈ {a3, b3, c3, d3}.

(d) If ‖v‖ = 3 and v 	= v0, then ‖u‖ � 4 for every inner vertex u which is adjacent to
v.

Proof.

(a), (b) These follow from the fact that every vertex which is labelled by a or a−1 or
c or c−1 is a source, and every vertex which is labelled by b or b−1 or d or d−1 is a sink.
Hence every inner vertex is labelled by either a word in RA or a word in RB .

(c) This is immediate from Assumption 2.1.

(d) By the symmetry between a and b and c and d in the rectangular region, we may
assume without loss of generality that l(v) = a3. Let u be a vertex adjacent to v, and
suppose that the edge connecting u to v is on the boundary of the regions D1 and D2.
Then tD1(v) = a, thus tD1(u) = b and tD2(v) = a, thus tD2(u) = d. Thus bd is a subword
of l(u). Since l(u) is mixed in b and d, it follows that ‖u‖ � 4. �

Remark 2.5. Since every inner region in the diagram is a rectangle, considering the
Equation (3.2) in [12, p. 243] we have that p = 4, and then by the equality 1/p + 1/q =
1/2, we get q = 4 as well. Then the number of vertices in the boundary of the diagram
is one. Hence we may assume that we are working in a spherical diagram, and every
vertex in the diagram is an inner vertex.

Let E be a region which satisfies K(E) � K(D), for every D ∈ M .
For x ∈ {a, b, c, d} denote by vx the vertex v such that tE(v) = x.
Without loss of generality we may make the following assumption.

Assumption 2.6.

(a) ‖va‖ � ‖vb‖.

(b) ‖va‖ � ‖vc‖.

(c) ‖vb‖ � ‖vd‖.

Lemma 2.7.

(a) ‖va‖ = 3.

(b) If E is inner, then l(va) = a3.

(c) If E is inner, then ‖vb‖ = 4 or 5, 4 � ‖vd‖ � 11.
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Proof. These observations follow almost immediately from our assumptions, the defi-
nition of the curvature, the fact that K(E) > 0 and Lemma 2.4. For example, if ‖vd‖ > 11,
then K(E) � (1 − 4

2 ) + ( 1
3 + 1

4 + 1
3 + 1

12 ) = 0, a contradiction. �

If Conf(E) = (‖va‖, ‖vb‖, ‖vc‖, ‖vd‖), and E is again our region of maximal curvature,
then it follows from Lemma 2.7 that the possibilities for Conf(E) are

(1) (3, 4, 3, 11) (in this case K(E) = 1
132 );

(2) (3, 5, 3, 7) (in this case K(E) = 1
105 );

(3) (3, 4, 3, 10) (in this case K(E) = 1
60 );

(4) (3, 4, 3, 9) (in this case K(E) = 1
36 );

(5) (3, 5, 3, 6) (in this case K(E) = 1
30 );

(6) (3, 4, 5, 4) (in this case K(E) = 1
30 );

(7) (3, 4, 4, 5) (in this case K(E) = 1
30 );

(8) (3, 4, 3, 8) (in this case K(E) = 1
24 );

(9) (3, 4, 3, 7) (in this case K(E) = 5
84 );

(10) (3, 5, 3, 5) (in this case K(E) = 1
15 );

(11) (3, 4, 3, 6) (in this case K(E) = 1
12 );

(12) (3, 4, 4, 4) (in this case K(E) = 1
12 );

(13) (3, 4, 3, 5) (in this case K(E) = 7
60 ); and

(14) (3, 4, 3, 4) (in this case K(E) = 1
6 ).

For 1 � i � 14 the statement Conf(E) = i′ will mean that Conf(E) is case (i) in the
above list.

3. The idea of the proof

The proofs of Theorems 2.2 and 2.3 are by case-by-case analysis of the 14 possible cases
for Conf(E).

The idea of the proof is to look in every region E which has positive curvature, and
then to show that the average curvature of the diagram is less then 0. We use the
negatively curved neighbouring regions of E to give compensation to E, and to other
neighbouring positively curved regions. The proof involves repetitive calculations in each
of the 14 cases. For this reason we give details of only one case below, and refer the reader
to [15] for a complete account.
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The idea of the proof of one of the 14 cases is as follows.

Assume E is a region which satisfies

(i) Conf(E) = (3, 4, 3, 11); and

(ii) every region D in the diagram satisfies K(D) � K(E).

Lemma 3.1. Every region D, which satisfies K(D) > 0, contains a vertex which has
valency 11.

Proof. Since every positively curved region D should satisfy K(D) � 1
132 , and every

D satisfies K(D) � K(E) = 1
132 , we get K(D) = 1

132 . Then Conf(D) = (3, 4, 3, 11). Then
D contains a vertex which has valency 11.

Hence, if a region D does not contain a vertex which has valency 11, then K(D) � 0.
Let E be any region which satisfies K(E) = 1

132 . Then Conf(E) = (3, 4, 3, 11). Let Ei,
where 1 � i � 10, be the 10 regions other than E that contain the vertex vd. Let vi be
the vertex adjacent to vd in Ei for each 1 � i � 10. �

Lemma 3.2. If one of the Ej has only one vertex which has valency 3, then
∑

K(Ei)+
K(E) � 0.

Proof. Let Ej be the region which satisfies the condition that there is only one vertex
in Ej of valency 3. Since every Ei has a vertex vd which has valency 11, then

K(Ej) � 1
3

+
1
11

+
1
4

+
1
4

− 1 � − 10
132

.

Since every region Ei satisfies K(Ei) � 1
132 , then

K(Ej) +
∑

K(Ei) + K(E) � − 10
132

+
10
132

� 0.

�

Lemma 3.3.
∑

K(Ei) + K(E) � 0.

Proof. Assume K(E) +
∑

K(Ei) > 0. By Lemma 3.2, every Ei contains at least two
vertices of valency 3. By Lemma 2.4 (d), no two adjacent vertices are of valency 3. Thus
if K(E) +

∑
K(Ei) � 0, then every Ei contains two opposite vertices of valency 3. Since

‖vd‖ = 11, 11 vertices adjacent to vd each have valency 3. Since every vi is adjacent to
vd, every vi is labelled by a word of length 3 in a, a−1, c and c−1. Since ‖vi‖ = 3, then
by Lemma 2.4 (a) l(vi) ∈ {a3, c3}. Let v0 be the vertex va. Thus l(v0) = a3. Now v1 is
opposite to v0 in E1, thus l(v1) = c3. Furthermore, vi is opposite to vi−1 for every i � 11,
thus if l(vi−1) = a3, then l(vi) = c3. Since l(v0) = a3, thus l(v2k) = a3. Since v10 = vc, we
have l(v10) = c3, which is a contradiction to l(v2k) = a3. Thus

∑
K(Ei) + K(E) � 0. �

https://doi.org/10.1017/S0013091599001224 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001224


On the Freiheitssatz in certain one-relator free products 699

Now we turn to the proof of the case Conf(E) = (3, 4, 3, 11). By Lemma 3.1, every
positively curved region D contains a vertex which has valency 11. If a region D contains
a vertex which has valency 11, then according to the classification of the configurations,
Conf(D) = (3, 4, 3, 11). In particular, one vertex only in D has valency 11. Then it
is enough to prove that if a region D is positively curved, then the 11 neighbouring
regions Di to D, which contain the vertex which has valency 11 in D, are giving enough
compensation to D, considering that some of the neighbouring regions contain more then
one vertex which has valency 11, and then they should give compensation to regions other
than D as well. Assume a region D1, which is a neighbouring region to D, has two or
more vertices which have valency 11. Then

K(D1) � 1
11

+
1
11

+
1
3

+
1
3

− 1 � − 5
33

.

Since every positively curved region has curvature 1
132 , D1, by itself only, can give com-

pensation to at least 20 regions, which is more than enough. Hence, we may assume that
every neighbouring region Di to D has one vertex only which has valency 11. Then every
Di needs to give compensation to D only. Then by Lemma 3.3,

∑
K(Di) + K(D) � 0,

which proves the Freiheitssatz for the case where Conf(E) = (3, 4, 3, 11). �
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