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Subharmonic eigenvalue orbits in the spectrum
of pulsating Poiseuille flow
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Spectral degeneracies where eigenvalues and eigenvectors simultaneously coalesce, also
known as exceptional points, are a natural consequence of the strong non-normality of the
Orr–Sommerfeld operator describing the evolution of infinitesimal disturbances in parallel
shear flows. While the resonances associated with these points give rise to algebraic
growth, the development of non-modal stability theory exploiting specific perturbation
structures with much larger potential for transient energy growth has led to waning interest
in spectral degeneracies. The appearance of subharmonic eigenvalue orbits, recently
discovered in the periodic spectrum of pulsating Poiseuille flow, can be traced back to the
coalescence of eigenvalues at exceptional points. We present a thorough analysis of the
spectral properties of the linear operator to identify exceptional points and accurately map
the prevalence of subharmonic eigenvalue orbits for a large range of pulsation amplitudes
and frequencies. This information is then combined with solutions of the linear initial
value problem to analyse the impact of the appearance of these orbits on the temporal
evolution of linear disturbances in pulsating Poiseuille flow. The periodic amplification
phases are shown to be heralded by repeated non-normal growth bursts that are intensified
by the formation of subharmonic orbits involving the leading eigenvalues. These bursts
are associated with the change of alignment of the perturbation from the decaying towards
the amplified branch of the subharmonic eigenvalue orbits in a so-called branch transition
process.

Key words: shear-flow instability, channel flow

1. Introduction

Linear stability analysis is a standard tool to assess the stability characteristics
of a flow case by linearising the full nonlinear system of equations and analyse
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the growth or decay of infinitesimal disturbances. In the case of parallel viscous
shear flows with a single inhomogeneous spatial direction the normal mode ansatz
leads to the Orr–Sommerfeld–Squire (OS–SQ) equations that govern the evolution of
three-dimensional, wave-like perturbations (Orr 1907; Sommerfeld 1908; Squire 1933).
The distinction between stable and unstable flows in the time-asymptotic limit is made
by determining whether the eigenvalues of the linearised operator are all contained in
the stable half-plane. Due to the considerable non-normality of the OS operator, a full
description of perturbation growth needs to take into account the details of the initial
condition that can lead to important transient, non-modal energy growth due to the
superposition of non-orthogonal eigendirections even if the system is linearly stable
(Reddy & Henningson 1993; Trefethen et al. 1993; Schmid 2007).

A less well known consequence of the non-normality of the OS operator is the
possibility of spectral degeneracy, i.e. simultaneous coalescence of two or more
eigenstates. Such a degeneracy has been reported in early works by Betchov &
Criminale (1966) in the analysis of inviscid jets and wakes. Soon thereafter, Gaster
(1968) showed why such degeneracies must occur by considering the analyticity of the
eigenvalue expansions for the viscous problem involving the OS operator. Following these
discoveries, a series of studies by Gaster & Jordinson (1975), Jones (1988) and Or (1991)
fleshed out the mathematical structure of the eigenvalue degeneracies and identified some
of their notorious consequences such as the high sensitivity of the eigenvalues close to
the points of coalescence. In seminal work by Gustavsson & Hultgren (1980), an algebraic
growth mechanism based on coalescence of the eigenvalues of the OS operator and the
homogeneous SQ operator was identified. This resonance mechanism was subsequently
studied for the temporal and spatial branches of Blasius boundary layer flows (Koch 1986)
and plane Poiseuille flow (Gustavsson 1986; Shanthini 1989). Although algebraic growth
stemming from spectral degeneracies and near-degeneracies was identified, the specific
shape of the initial disturbance was not considered, which can generate considerably more
growth via non-modal mechanisms that do not depend on spectral degeneracies (Farrell
1988; Butler & Farrell 1992; Reddy & Henningson 1993; Reddy, Schmid & Henningson
1993). These studies of transient growth also concluded that eigenvalue degeneracies are
neither necessary nor sufficient to explain transient energy growth in steady flows (Reddy
& Henningson 1993; Reddy et al. 1993).

With the advent of this more general framework for non-modal stability, the interest in
spectral degeneracies of the OS operator has decreased. Meanwhile, the specific case of
eigenvalue coalescence in the OS operator has been put into wider context and connected
to the concept of exceptional points (EPs) (Kato 1976). Exceptional points describe the
simultaneous coalescence of eigenstates (eigenvalues and eigenvectors) that naturally
occur for non-normal parameter dependent operators and are intrinsically linked to the
non-orthogonality of the eigenvector basis. In fact, fluid mechanics is only one of many
fields of physics in which EPs have been identified and play an important role. Especially
in optics as well as quantum and nuclear physics, the effects of EPs have been studied
extensively both theoretically and experimentally (see Heiss (2012) for a recent review of
the topic). One feature of EPs that is of particular interest in the context of this study is
that when eigenvalues are traced along a path in the complex plane that encloses an EP,
these eigenvalues may change place (see e.g. Zhong (2019) and Luitz & Piazza (2019)
for applications in optics and theoretical physics or Mensah et al. (2018) and Ghani &
Polifke (2021) for recent works in theoretical and experimental thermoacoustics). This
phenomenon is often called ‘eigenvalue braiding’ or ‘eigenvalue switching’, which is
not to be confused with a different concept of the same name, more spread in the fluid
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dynamics community, that refers to the switching of the dominant mode between two
distinct eigenpairs as a control parameter is varied (see e.g. Chang, Chen & Straughan
2006). In recent years, the experimental and theoretical study of eigenvalue switching
and other topological phenomena related to the encircling of EPs have gathered much
interest in physics, in particular quantum physics, microwave physics, optics and acoustics
(Dembowski et al. 2001; Lee et al. 2009; Doppler et al. 2016; Özdemir et al. 2019; Ghani
& Polifke 2021). To the authors’ knowledge, no such work has been carried out within
fluid mechanics.

While several studies considered and identified eigenvalue degeneracies for steady flow
configurations, in particular plane Poiseuille flow (Gustavsson 1986; Jones 1988; Shanthini
1989), little is known about the prevalence of EPs and their impact on the evolution in time
of the instantaneous spectrum in unsteady flow cases such as pulsating Poiseuille flow. To
the authors’ knowledge, eigenvalue degeneracies for this flow case are mentioned only
in the pioneering work by Grosch & Salwen (1968), where they are noted in passing, as
well as in a recent study applying the optimally time-dependent (OTD) modes to pulsating
Poiseuille flow (Kern et al. 2021). In the latter, the coalescence of nearby eigenvalue orbits
is conjectured to be the reason for the appearance of subharmonic orbits in the eigenvalue
traces of the reduced operator. When considering the effect of EPs and, more generally,
the instantaneous spectra on the evolution of a linear perturbation, a relevant measure
is the time scale separation between the intrinsic time scales of the perturbations and
the time-dependence of the base flow (Davis 1976). When the temporal variation of the
base flow is sufficiently slow compared with the instabilities that develop on top of it, the
local spectra (in time) are expected to dominate the evolution of the linear perturbation.
The implications of this prediction are particularly interesting in view of the formation of
subharmonic eigenvalue orbits via eigenvalue braiding at EPs.

The aim of this paper is two-fold. The first goal is a detailed analysis of the instantaneous
temporal spectrum of the OS operator applied to pulsating Poiseuille flow. This includes
the identification of eigenvalue degeneracies as EPs that are responsible for the formation
of subharmonic eigenvalue orbits, the exploration of the range of pulsation frequencies
and amplitudes that support such orbits as well as a study of the impact of base flow
pulsations on the maximum non-normal growth potential. In a second part, we consider
the impact of the instantaneous spectral properties of the operator on the evolution of a
linear perturbation over a range of pulsation frequencies and amplitudes and how these are
influenced by the appearance of subharmonic eigenvalue orbits.

The remainder of this paper is structured as follows. In § 2 we introduce the concept
of EPs within the context of eigenvalue decompositions of parameter dependent matrices
that lead to the occurrence of subharmonic eigenvalue orbits in periodic cases. We then
review the geometry and the governing equations of pulsating Poiseuille flow (§ 3). Details
of the numerical methods can be found in Appendix A. The main body of the paper is
divided into two parts. The first is dedicated to the subharmonic eigenvalue orbits in the
local problem, in which we identify them in the spectrum of pulsating Poiseuille flow
(§ 4.1), analyse their prevalence as a function of pulsation frequency and amplitude (§ 4.2)
and discuss limiting cases based on a time scale analysis (§ 4.3). In a final section we
consider the variation of the maximum non-normal growth potential during a pulsation
period (§ 4.4). The second part of the paper, § 5, investigates the impact of the subharmonic
eigenvalue orbits on solutions of the linear initial value problem (IVP). We conduct a
detailed analysis of the effect of EPs and subharmonic eigenvalue orbits on the evolution
of two-dimensional linear perturbations in pulsating Poiseuille flow for varying pulsation
frequencies and amplitudes (§§ 5.1 and 5.2) and relate the results to Floquet theory (§ 5.3).
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After a brief outlook on the effect of variations of the Reynolds number and the streamwise
wavenumber (§ 5.4) and three-dimensional perturbations (§ 5.5), a summary of the results
and concluding remarks are gathered in § 6. An interesting link between the subharmonic
eigenvalue orbits in the spectrum of pulsating Poiseuille flow and those documented using
OTD modes is elucidated in Appendix C.

2. Mathematical background

We follow Kato (1976) in this section describing the mathematical background of
eigenvalue orbits of matrices with parameter dependent elements.

2.1. Parameter dependent matrices
Consider the matrix A ∈ Cn×n, whose elements aij are analytic functions of the parameters
p = ( p1, . . . , pm) ∈ Rm and t ∈ R such that

A( p, t) = A( p, t + T), ∀t ∈ R, (2.1)

where T is the period of the parameter t. To simplify notation we will in the following
sometimes omit the explicit dependence on p and t where it is evident. We are interested
in the parameter dependent eigenstates (λ, ξ) of A given by the relation

Aξi = λiξi, i = 1, . . . , s, (2.2)

where λi ∈ C is the eigenvalue, ξi ∈ Cn is the corresponding (right) eigenvector and 1 ≤
s ≤ n is the number of distinct eigenvalues.

We denote by Λ(A) = {λi}1,...,s the spectrum of A. Due to the periodicity of aij with
respect to t we have

Λ(A( p, t)) = Λ(A( p, t + T)), ∀t ∈ R. (2.3)

Note that the spectrum depends on all the parameters pointwise and is therefore
independent of the smoothness of aij with respect to p and t. In fact, for (2.3) to hold,
aij need not even be a continuous function of the parameters.

2.2. Eigenvalue trajectories and EPs
We now consider the change of the eigenstates as the parameters p and t are varied and in
particular the question of whether the eigenvalue trajectories λi( p, t) form smooth periodic
orbits in the complex plane as t traverses a period for a fixed p. In mathematical terms,
we want to determine whether the analyticity of the coefficients of A with respect to the
parameters carries over to the eigenvalue trajectories. Note that this analyticity combined
with the pointwise dependence of the spectrum on the parameters lets us already conclude
that the eigenvalue trajectories are continuous, i.e. that they will form periodic orbits.

If the matrix A is normal for all p, t ∈ R, then A is always diagonalisable, the eigenbasis
Ξ = [ξ1, . . . , ξs] is orthogonal and of full rank (s = n) and all eigenstates are analytic
functions of p and t (Kato 1976). It immediately follows that the eigenvalue trajectories are
smooth closed curves in the complex plane that inherit the periodicity with respect to t.

In the case of a non-normal matrix A, the situation is more complicated since the
eigenvectors are non-orthogonal. In this context it is possible for two eigenstates to
simultaneously coalesce leading to a degeneracy of the corresponding eigenvalues. At
these points, called EPs (Kato 1976), the matrix is not diagonalisable since the eigenbasis
is incomplete. Exceptional points are distinguished from a similar type of eigenvalue
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Figure 1. Sketch of the Riemann surface of the multivalued function f (z) = √
z projected onto the

three-dimensional space formed by the complex plane and Re( f (z)). The coloured line follows the analytic
continuation of f applied to z0 = exp(2πi t/T) for t ∈ [0, 2T] where i is the imaginary unit and T is the period.
The path of z0 is shown in red on the complex plane. The black dot marks the branch point z = 0 and the dashed
line indicates a branch cut. Note that the Riemann surface is shifted upwards to show the path on the complex
plane.

degeneracy termed diabolic points (known as DP) in which the eigenvalues coalesce
(cross) while the corresponding eigenvectors do not, thus maintaining diagonalisability
(Miller 2017).

It can be shown that there are only a finite number of EPs in a given subset of the
complex plane. If we are not at an EP, the number of eigenvalues s is independent of the
parameters p and t and these depend smoothly on them (Kato 1976). The EPs are therefore
crucial in determining the periodic orbits we are investigating.

The nature of EPs is in fact tightly linked to multivalued complex functions where
solutions of the eigenvalue problem (2.2) as the parameters are varied constitute branches
of analytic functions that have only algebraic singularities (Kato 1976) and the EPs are
the branch points if such singularities exist. To illustrate the properties of multivalued
functions, figure 1 shows a sketch of the real part of f (z) = √

z. We see that following the
trace of the unit circle (red) anticlockwise along the analytical continuation of f (z) around
the branch point at the origin, the argument needs to complete two periods of the unit
circle in order to return to the initial point on the Riemann sheet (blue dot). Note that the
three-dimensional representation of f (z) is a projection (the imaginary part of the function
value is not shown) and that the Riemann sheet is not intersecting itself in C2.

This means that circling an EP and returning to the same point in the complex plane may
involve switching branches of the multivalued analytic function describing the trajectory.
In fact, moving around an EP in the complex plane will lead to a cyclic permutation of
period m of the analytic functions corresponding to the eigenvalues of A such that the
analytic continuations revert to the same point after m revolutions. Note that m ≥ 1, which
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means that branch points must be EPs while the converse is not true since EPs can exist
with m = 1, i.e. one can analytically continue the function around an EP returning to the
same function value without requiring branch cuts (Kato 1976). Moreover, the merging
of periodic orbits does not affect the instantaneous spectrum that is periodic for all t. The
orbit merging therefore only manifests itself by tracking a specific eigenvalue over a period
of t.

In terms of the eigenvalue trajectories λi( p, t) for non-normal matrices A, we conclude
that they also form continuous periodic orbits that are mostly smooth but where the
existence of EPs along the orbit may introduce kinks. At an EP, two (or more) eigenvalue
orbits touch making the definition of the orbit locally ambiguous due to the collapse of
the eigenspace dimensionality. Note that since EPs are rare and isolated, most eigenvalue
trajectories will not cross an EP exactly thus circumventing ambiguity and forming smooth
orbits.

In spite of its analyticity, the presence of EPs inside a closed orbit can lead to topological
changes in the trajectory. If we follow any specific eigenvalue on a trajectory encircling
an EP, we will return to the initial point (the same eigenstate) after m periods. With the
emergence of eigenvalue permutation cycles due to the presence of the EP enclosed by the
eigenvalue trajectory, the periodic orbits no longer necessarily have the same periodicity T
as the parameter t. Instead, subharmonic orbits of period mT (m > 1) can appear formed
by the merging of m eigenvalue orbits into a permutation cycle. The parameters p can
therefore be seen as control parameters in a bifurcation scenario where the critical value
is associated with the crossing of an EP by an eigenvalue orbit. Varying a parameter past
this critical value then leads to a topological change in the trajectories, i.e. the merging or
breakup of the periodic orbits.

3. Pulsating Poiseuille flow

3.1. Base flow
This work focuses on pulsating plane Poiseuille flow which refers to the flow between two
infinite parallel plates induced by a time-periodic and spatially uniform axial pressure
gradient. The resulting base flow has only a purely axial velocity component that is
streamwise and spanwise independent and satisfies the incompressible Navier–Stokes
equations in non-dimensional form that read

∂Ub

∂t
= −(Ub · ∇)Ub − ∇pb + 1

Re
∇2Ub,

∇ · Ub = 0,

⎫⎬
⎭ (3.1)

where Ub = (Ux( y, t), 0, 0)T is the base flow velocity vector, pb is the pressure and
Re = Uch/ν is the Reynolds number based on the centreline velocity Uc, the channel
half-height h and the kinematic viscosity ν, supplemented by no slip boundary conditions
at the channel walls.

We assume only pulsations at a single base frequency Ω such that the time-periodic
axial pressure gradient can be expanded in a Fourier series

− ∂pb

∂x
=
∑

n

G(n)
x exp(i nΩt), (3.2)

where G(n)
x = 0 for |n| > 1. Any other periodic signal can be analysed by retaining more

terms in the Fourier series. In order to ensure that all physical quantities are real, we set
G(−1)

x = [G(1)
x ]H where [ · ]H denotes complex conjugation.
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Figure 2. Schematic representation of the components of pulsating Poiseuille flow for Q̃ = 0.6 and Wo =
25 over one period (T = 75.4). The complete profile (c) is plane Poiseuille flow (a) superimposed with an
oscillating flat Stokes layer (b).

The resulting axial velocity component has a similar structure and is given by

Ux( y, t) =
∑

n

U(n)
x ( y) exp(i nΩt), (3.3)

where U(n)
x = 0 for |n| > 1 and the remaining terms are given by

U(n)
x (ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(n)
x h2

ν

i
n Wo2

(
cosh(

√
i n Woξ)

cosh(
√

i n Wo)
− 1

)
, |n| = 1,

G(0)
x h2

2ν
(1 − ξ2), n = 0,

(3.4)

where ξ = y/h, i is the imaginary unit, Wo is the Womersley number relating the channel
half-height h to the thickness of the oscillating boundary layer δ = √

ν/Ω defined as

Wo = h
δ

= h
√

Ω/ν (3.5)

and the steady component of the pressure gradient can be related to the corresponding
centreline velocity of plane Poiseuille flow as

Uc = G(0)
x h2

2ν
. (3.6)

Some further details can be found in Von Kerczek (1982) or Pier & Schmid (2017). Based
on the Womersley and Reynolds numbers, the pulsation frequency can be computed as
Ω = Wo2/Re which leads to a pulsation period of T = 2πRe/Wo2. An example of the
variation of the base flow profile for pulsating Poiseuille flow over one pulsation cycle is
shown in figure 2.

A common measure for the oscillation amplitude is the fluctuating mass flow rate Q(t)
which is given by the integral of the velocity over the channel width as

Q(t) =
∑

n

Q(n) exp(i nΩt) =
∫ +h

−h
Ux( y, t) dy. (3.7)
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After some manipulation we obtain the expressions for the components of Q(t) as

Q(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2G(n)
x h3

ν

i γ
n Wo2 , |n| = 1,

2G(0)
x h3

3ν
, n = 0,

(3.8)

with

γ = tanh(
√

i n Wo)√
i n Wo

− 1. (3.9)

Following the notation in Pier & Schmid (2017, 2021) and Kern et al. (2021) to facilitate
comparison, we express Q(t) as

Q(t) = Q(0)
(

1 + Q̃ cos(Ωt)
)

(3.10)

with the oscillation amplitude Q̃ defined as

Q̃ = Q(1)

2Q(0)
(3.11)

where we choose Q(n), Q̃ ∈ R for |n| ≤ 1 without loss of generality.

3.2. Orr–Sommerfeld operator
The classical approach for the stability analysis of the incompressible Navier–Stokes
equations is to consider the linearised operator or Jacobian about a base flow. The
linearised Navier–Stokes equations governing the evolution of an infinitesimal velocity
perturbation u = (u, v, w) with the associated pressure field p and external forcing f on
top of a base flow Ub are given by

∂u
∂t

= −(Ub · ∇)u − (u · ∇)Ub − ∇p + 1
Re

∇2u,

∇ · u = 0,

⎫⎬
⎭ (3.12)

where the same non-dimensionalisation and boundary conditions as for the nonlinear
equations are applied.

For parallel shear flows with a single inhomogeneous spatial direction such as pulsating
Poiseuille flow, we can carry out a local stability analysis by Fourier transforming
the problem in the streamwise direction yielding the wavenumber α. The linearised
equations (3.12) for a two-dimensional perturbation can then be written solely in terms
of the wall-normal velocity v̂( y, t) as

M∂v̂

∂t
=
(

−i αUxM − i αU′′
x − 1

Re
M2

)
v̂, (3.13)

where ( · )′ denotes analytical differentiation in the inhomogeneous direction and
the operator M = k2 − D2 is given in terms of D, the differential operator in the
inhomogeneous direction.
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This is the OS equation that can be conveniently recast in matrix form as

∂v̂

∂t
= Lv̂ with L := M−1LOS, (3.14)

where LOS is the well known OS operator acting on the inhomogeneous direction ( y).
Note that up to this point no assumption about the temporal behaviour of the perturbations
is made.

The channel walls are no slip which leads to the Dirichlet boundary conditions at the
wall given by

v̂ = Dv̂ = 0, at y = ±1. (3.15)

Note that three-dimensional perturbations can be studied in an analogous fashion via a
Fourier transform in the spanwise direction and the inclusion of the evolution equation for
the wall-normal vorticity with the appropriate boundary conditions. The resulting coupled
OS–SQ equations have the same mathematical properties relevant to the analysis or EPs
as the OS equation alone while being more expensive to solve. For this reason, as well
as in an effort to reduce the parameter space of this study, we restrict our attention to
the two-dimensional case. The differences to expect in the three-dimensional case, in
particular with respect to the solution of the linear IVP, are discussed in the results section.

Assuming constant reference values for the steady centreline velocity Uc and the channel
half-height h as well as the streamwise wavenumber α, the operator L can be expressed as
an analytical function of the real parameters Re (or ν) encoding the relative importance of
inertial and viscous effects, Wo (or δ) governing the relative importance of unsteady and
viscous effects, Q̃ describing the pulsation amplitude and time t. We can write

L = f (Re, Wo, Q̃, t) with Re, Wo, Q̃, t ∈ R
+ (3.16)

and we have
L(t + T) = L(t), ∀t ∈ R

+. (3.17)

When the OS equation (3.14) is integrated in time starting from an initial condition v̂0
at t = t0 we obtain a linear IVP

∂v̂

∂t
= Lv̂, v̂(t0) = v̂0, t ∈ [t0, ∞), (3.18)

which leads to a solution which will experience transient, aperiodic behaviour before
settling into a periodic motion as t → ∞.

The remainder of this paper concerns the numerical analysis of the operator L as well as
the solution of the IVP (3.18). Details on the choice of spatial and temporal discretisations
can be found in Appendix A. This process leads to a discretised linear operator L that
retains the parameter dependence of its continuous counterpart, in particular the analytic
and periodic dependence on time.

4. Exceptional points and subharmonic eigenvalue orbits

The properties described in § 2 then directly apply to the operator L. In particular, due
to the strong non-normality of the OS operator (Trefethen et al. 1993) as well as the
fact that we consider several independent parameters, we can expect the appearance of
EPs in the temporal eigenvalue spectrum as we traverse the parameter space, in spite of
the fact that earlier studies of plane Poiseuille flow failed to identify degeneracies in the
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temporal problem (Koch 1986; Shanthini 1989). In contrast to these studies that did not
consider pulsations, we set Re = 7500 and α = 1, which is slightly beyond the limit of
linear stability of steady Poiseuille flow (Recrit = 5772.22 at α = 1.02 (Orszag 1971))
and focus on the variation of the pulsation frequency and amplitude and compare the
results with the steady case. This choice reduces the parameter space to a manageable
size, facilitates comparisons with the works of Pier & Schmid (2017) and Kern et al.
(2021), that consider the same Reynolds number and streamwise wavenumber, while
exhibiting interesting interactions between the pulsations and the intrinsic instability waves
of Poiseuille flow. Section 5.4 revisits the choice of streamwise wavenumber and Reynolds
number underlining the relevance and robustness of the results presented below.

4.1. Identification of EPs and merging of eigenvalue orbits in the periodic OS spectrum
Before considering the evolution equation for the linearised problem, we first focus on the
OS operator L itself to investigate whether EPs and subharmonic eigenvalue orbits occur
in its spectrum.

For almost all parameter combinations p = (Re, Wo, Q̃), the eigenvalues do not exactly
cross an EP during the pulsation (t ∈ [0, T]) and their orbits therefore form continuous
closed loops. The eigenvalue tracking is achieved using an a posteriori correlation analysis
of subsequent eigenpairs using the function eigenshuffle (D’Errico 2021) while traversing
the pulsation period in small steps. Unless stated otherwise, a time step of �t = T/500 was
used which was found to be sufficient for the accurate tracking of the leading eigenvalues
(in this work, the 50 leading eigenvalues were tracked containing a considerable part of
the eigenvalues of the S-branch that do not join subharmonic orbits in the considered
parameter range) and was reduced only in the close vicinity of EPs. In order to have
consistent indexing of the spectra (and thus orbits) at different values of Q̃, the orbits are
identified by tracking the eigenvalues in the same way while varying Q̃ from 0 to the target
amplitude and keeping the time constant at t = 0. Other indexing choices are possible but
do not affect the results.

In order to find an EP, we begin with the steady OS spectrum, which corresponds
to the periodic spectrum for Q̃ = 0, and slowly increase the pulsation amplitude while
monitoring the changes in the eigenvalue orbits. The EP can then be found as the point in
the complex plane where two separate eigenvalue orbits touch during the period.

Figure 3 shows this process for two specific eigenvalues of the OS spectrum, marked A
and B, together with the steady spectrum for reference. In order not to clutter the figure,
only the orbits pertaining to these two eigenvalues are shown as the control parameter Q̃ is
increased. In figure 3(a) we see the evolution of the orbits starting with orbits at the base
flow frequency around the steady value for Q̃ = 0.05. These orbits progressively come
closer to each other, coalesce at the EP (red cross) for Q̃crit ≈ 0.1341 and subsequently
form a subharmonic permutation cycle of period 2 that persists up until Q̃ = 0.15. The
merging of the loops is more clear in the close-up figure 3(b) where we see that while for
Q̃ < Q̃crit all orbits form simple loops, once the amplitude passes Q̃crit, the beginning of
the orbit of eigenvalue A (full line, circle) connects to the orbit of eigenvalue B (dashed
line, square) and vice versa. Note that to resolve the details of the orbit in the vicinity of
the EP close to the critical amplitude, the local time step has to be decreased 200-fold to
�t = T/105.

To ascertain that we are dealing with an EP and not a diabolical point, we compute
the angle θ (in radians) between the eigenvectors ξA and ξB along each orbit, respectively,
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Figure 3. Variation of the periodic orbits of two eigenvalues and the angle between the corresponding
eigenvectors as the pulsation amplitude Q̃ is increased for the OS spectrum at Re = 7500, Wo = 25. (a) Orbits
corresponding to the eigenvalue A (full line) and B (dotted line) together with the steady OS spectrum (black
dots). The EP where the orbits first touch and subsequently merge is marked by a red cross. (b) Close-up of (a)
around the EP highlighting the merging of the orbits. The coloured circles and squares indicate the beginning
of the corresponding cycle (t/T = 0) relative to A and B, respectively. (c) Angle θ (in radians) between the
eigenvectors along the orbit showing the coalescence at the EP. The coloured dots indicate the time step used
for regular runs that do not aim to locate the EPs precisely.

which is given by

cos θ = 〈ξA, ξB〉E

‖ξA‖‖ξB‖ , with ‖ξi‖ =
√

〈ξi, ξi〉E, (4.1)
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where the inner product 〈 · , · 〉E is the energy norm that arises naturally from the OS–SQ
equations (Schmid 2007) and reads

〈ξA, ξB〉E = 1
2k2

∫ 1

−1
ξH

A MξB dy, (4.2)

where ( · )H denotes complex conjugation and M is the discretised version of the mass
matrix M.

Following the angle θ along the orbit as shown in figure 3(c), we observe that as we
come closer to Q̃crit, the angle θ progressively decreases close to the EP to then abruptly
vanish exactly at the EP indicating the coalescence of both eigenvalue and eigenvector
typical for EPs. Once passed Q̃crit, the angle increases again to values similar to before
the coalescence. The abruptness of the coalescence is an indication of the well known
sensitivity of the eigenstates close to an EP (Or 1991; Heiss 2012). This has the practical
advantage that the orbits can be traced with comparatively large steps in t since the
variation of the eigenstates is slow unless an orbit passes very close to an EP where
a refinement is advisable in order to resolve the details of the orbit. Furthermore, the
amplitude range for which the orbit variation is extreme is a narrow band around Q̃crit.
The coloured dots in figure 3(c) indicate the time step �t = T/500 used in this work
with which the location of the EP cannot be determined accurately but at the same time
unambiguous eigenvalue tracking is ensured since the eigenvalues are extremely unlikely
come too close to the point of coalescence.

4.2. Variation of the subharmonic orbits with the pulsation frequency and amplitude
The next step in understanding the subharmonic eigenvalue orbits is to analyse their
prevalence in the parameter space. We consider the parameter ranges Wo ∈ [0.1, 150] and
Q̃ ∈ [0, 0.6], track the eigenvalue loops over a period and count the number of eigenvalues
that form permutation cycles. Due to the symmetry in the base flow, the OS operator
has both symmetric (varicose) and antisymmetric (sinuous) eigenpairs. Since EPs require
coalescence of eigenstates, they can only occur within their respective symmetry groups.
For the remainder of the analysis, we will present symmetric and antisymmetric modes
separately. For completeness, the link between the subharmonic eigenvalue orbits in the
spectrum of the OS operator and their appearance in the spectrum of the reduced operator
obtained using the OTD modes is described in Appendix A.

The appearance of subharmonic orbits as a function of Wo and Q̃ is presented in
figure 4. Figure 4(a) gives an overview over the total number of subharmonic orbits in the
considered parameter range and figure 4(b,c) highlight the length of subharmonic orbits
that involve the dominant symmetric and antisymmetric eigenvalues, which are the only
eigenvalues that exhibit positive growth rates across a pulsation cycle. Their location in
the steady spectrum is shown in the inset in figure 4(a) for reference. We denote by m
the length of a given subharmonic orbit (i.e. the number of eigenvalues it contains) and
by ksub the number of subharmonic permutation cycles (m > 1) that exists for a specific
parameter setting.

We see that for a broad range of pulsation frequencies (5 ≤ Wo ≤ 90), subharmonic
eigenvalue orbits are very common as the pulsation amplitude increases, starting as early as
Q̃ = 0.07 at Wo = 18. Beyond this range, the subharmonic cycles appear at progressively
higher amplitudes until, both for very low (Wo = 0.1) and very high (Wo = 150) pulsation
frequencies, no subharmonic eigenvalue orbits are detected at all in the considered
amplitude range. Based on the distributions in figure 4, it is to be expected that the range of
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Figure 4. Plots of the appearance of subharmonic eigenvalue orbits as functions of Wo and Q̃ (in steps
of 0.01) at Re = 7500. The red line in all plots indicates the limit ksub ≥ 1 (if any) for each considered
Womersley number (red dots). The dashed line indicates the neutral curve based on Floquet stability analysis.
(a) Total number of distinct subharmonic orbits. The inset shows a sketch of the steady full OS spectrum. The
eigenvalues marked in blue never form subharmonic orbits in the considered parameter range. Note that the
eigenvalues along the P-branch come in pairs in close proximity that cannot be distinguished in this plot. For
the numbered parameter combinations marked with yellow squares in (a) the full eigenvalue orbits are shown
in the corresponding row in figure 5. (b) Subharmonic orbits including the dominant symmetric eigenvalue
(marked red in the inset spectrum) coloured by the period m (in multiples of the base period T). (c) Same as
(b) but for the dominant antisymmetric eigenvalue (marked red in the inset spectrum).

pulsation frequencies that support subharmonic eigenvalue orbits will continue to widen
as the pulsation amplitude is increased beyond Q̃ = 0.6. Following the classification of
the eigenvalues into the three branches A, P and S according to their location in the
spectrum proposed by Mack (1976), we observe that the permutation cycles mostly start
with eigenvalues located at the intersection of the three branches of the spectrum but
quickly spread to include most eigenvalues of the A-branch. Only the outermost modes of
the P-branch and very damped eigenvalues of the S-branch (marked in blue in the inset in
figure 4a) maintain isolated orbits with the base flow frequency in the entire considered
parameter range.

In figure 4(a), within the region where subharmonic eigenvalue orbits occur, we can
further distinguish two parameter ranges with very different behaviour.

For intermediate pulsation frequencies (roughly 10 ≤ Wo ≤ 60), only one or two
permutation cycles form. The lengths of these cycles grow quickly as the pulsation
amplitude increases and they eventually contain up to m = 15 eigenvalues (Wo = 8 at
Q̃ = 0.6). This is also the only region in which λ1 and λ4 eventually join the cycles and thus
the dominant eigenvalues with temporarily positive growth rates are part of subharmonic
orbits.
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For pulsation frequencies below approximately Wo = 9 or beyond Wo = 60, instead
of two large subharmonic orbits, we observe the emergence of up to seven distinct
permutation cycles and the orbits of λ1 and λ4 merge, if at all, only for high pulsation
amplitudes. Finally, for 6 ≤ Wo ≤ 10, there is also a sharp increase in the number of
distinct subharmonic orbits as the pulsation amplitude increases beyond Q̃ = 0.55, which
coincides with a drastic reduction of the number of eigenvalues in ϕ1 (figure 4b) indicating
that the large orbit has disintegrated into a number of separate, shorter orbits.

In order to understand the effect of the pulsation frequency and amplitude on the
formation of permutation cycles, it is instructive to consider the location of the orbits
in the complex plane. In figure 5 each row shows all the eigenvalue orbits for one of the
four numbered cases marked with yellow squares in figure 4(a) that highlight prominent
features. In the following discussion we will denote by ϕs and ϕa the permutation cycles
formed by symmetric and antisymmetric eigenvalues, respectively. The orbits in each
figure are indexed by increasing stability.

Figure 5(a,b) shows a typical case at moderate pulsation frequency (Wo = 15) where
the amplitude Q̃ has crossed the critical threshold and the first subharmonic eigenvalue
orbit (involving two antisymmetric modes) has appeared close to the intersection of
the eigenvalue branches. We also observe the characteristic feature that the orbits
corresponding to eigenvalues of the A-branch experience more pronounced excursions
over a cycle, especially in terms of growth rate, than those of the P- and S-branches.
The latter, instead, vary mainly along the imaginary axis, following the variation of the
mass flow rate which can be seen from the fact that the eigenvalues have the largest
(smallest) imaginary part at t/T = 0 (t/T = 0.5) where Q(t) is maximal (minimal), the
former marked by a filled dot along each orbit.

As the pulsation amplitude is increased, the subharmonic orbits expand and eventually
encompass all eigenvalues of the A-branch, separated into two distinct permutation cycles
based on their symmetry. Figure 5(e, f ) show an example of this situation at Wo = 25 and
Q̃ = 0.5. Although the details of the orbits, especially for eigenvalues on the A-branch,
vary considerably, all cases at intermediate pulsation frequencies are structurally similar to
the case presented here featuring only two permutation cycles. Note that for this parameter
combination, both ϕs

1 and ϕa
1 exhibit positive growth rates over part of the cycle.

For higher pulsation frequencies, the variation in the growth rate of the eigenvalues
across the cycle reduces. Eventually, the orbits of λ1 and λ4, being relatively isolated in
the spectrum, no longer merge into subharmonic orbits even at high pulsation amplitudes
as shown in figure 5(g,h) for Wo = 80 and Q̃ = 0.55. Nevertheless, the eigenvalues close to
the intersection of the branches continue to form permutation cycles and exhibit complex
orbits.

If we instead reduce the pulsation frequency, we see a smaller growth rate variation only
for λ1 and λ4 while other eigenvalues from the A-branch and the intersection area exhibit
strong variations in both real and imaginary parts across the cycle. Moreover, in this part
of the parameter space, the leading eigenvalues do not form subharmonic orbits. It can also
be noted that, unlike all cases at intermediate and high pulsation frequencies, the roughly
oval orbits on the A- and P-branches at low Womersley numbers are tilted with the major
axes pointing towards the origin of the complex plane.

The smooth orbits formed by the eigenvalue traces over a period are accompanied
by the corresponding eigenvectors through the permutation cycle. The variation of the
eigenvector of ϕs

1 over a complete subharmonic cycle is shown in movie 1 of the
supplementary material available at https://doi.org/10.1017/jfm.2022.515 for Wo = 25,
Q̃ = 0.2 where ϕs

1 has a period of m = 3.
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Figure 5. Eigenvalue orbits ((a,c,e,g) symmetric; (b,d, f,h) antisymmetric) at Re = 7500 for four representative
combinations of Wo and Q̃ marked by yellow squares in figure 4(a) showing the variations possible in the
parameter space. If present, the subharmonic orbits φs

i and φa
i are highlighted in colour. The black dots indicate

the OS spectrum and the coloured dots the eigenvalue loci at the beginning of each period of t. Here (a,b) Wo =
15, Q̃ = 0.1; (c,d) Wo = 3, Q̃ = 0.55; (e, f ) Wo = 25, Q̃ = 0.5; (g,h) Wo = 80, Q̃ = 0.55.

Within the parameter range considered in this work, the cases in which λ1 eventually
joins a subharmonic eigenvalue orbit are particularly interesting because the variation
of the instantaneous operator spectrum has a large impact on the evolution of a linear
perturbation. We will analyse the periodic orbits for three Womersley numbers in detail,
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Wo 0.1 1 5 25 50 150 300

T 1.3 × 10−6 1.3 × 10−4 3.3 × 10−3 0.083 0.33 3.0 12

Table 1. Overview of the range of time scale ratios of the viscous time scale and the pulsation time scale as a
function of the Womersley number for Re = 7500.

namely Wo = 10, 18 and 25, that span the range of pulsation frequencies of interest and
exhibit very different behaviour as the pulsation amplitude is varied.

4.3. Time scale analysis
The qualitative differences in the spectra and hence the periodic eigenvalue orbits for
different pulsation frequencies can be understood by comparing the time scale of the
intrinsic instabilities of Poiseuille flow and the pulsation frequency.

Following the classical time scale analysis for parallel shear flow with considerable
mean flow described in Davis (1976), the relevant time scale ratio between the principal
viscous flow time scale and the pulsation time scale becomes

T = 2β2

Re
= Wo2

Re
, (4.3)

where we note that, due to differing normalisations, the Womersley number Wo and the
frequency parameter β (not to be confused with the spanwise wavenumber traditionally
using the same symbol) are related as

β

Wo
=

√
2. (4.4)

An overview of the values of T for different values of the Womersley number including
the range considered in this work, assuming a constant Reynolds number of Re = 7500,
are given in table 1.

It is clear that for two different pulsation frequencies at the same Reynolds number,
the time scale ratios T cannot be directly compared since the Womersley number affects
both the pulsation time scale and the velocity profile. A more rigorous assessment
of the separation of scales and the role of the Reynolds number can be made via a
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) analysis in time (see Benney & Rosenblat
1964) but this analysis is outside of the scope of this work that focuses on the variation
of the pulsation parameters Wo and Q̃. For our purposes focusing on the emergence
of subharmonic eigenvalue orbits it is sufficient to analyse the behaviour for extreme
values of the pulsation frequency. We consider two cases in particular, namely Wo � 1
(T � 1) and Wo � 1 such that T � 1 for which the variation of the base flow profiles
and corresponding eigenorbits over the pulsation cycle at Q̃ = 0.5 are shown in figure 6.

We see from the definition that the time scale separation between viscous effects and the
base flow pulsation scales with the square of the Womersley number and approaches zero
for the lowest pulsation frequencies considered in this work, indicating that the flow in that
parameter region is quasi-steady (QS), i.e. the pulsation period is so long that the flow can
essentially adapt instantaneously to the changes in pressure gradient. The flow therefore
behaves instantaneously like plane Poiseuille flow with a parabolic velocity profile, the
pulsations only varying the effective Reynolds number. The corresponding periodic orbits
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Figure 6. Base flow profiles and corresponding eigenorbits for extreme values of the Womersley number at
Q̃ = 0.5. In this parameter range there are no subharmonic eigenvalue orbits. Here (a,b) Wo = 0.1; (c,d) Wo =
300.

have the base flow frequency and do not show any hysteresis over the cycle, i.e. there is no
difference between the base flow acceleration and deceleration phases.

At the other extreme of the Wo-spectrum, for T � 1, the pulsation cycles are so short
compared with the viscous time scale that the flow does not have time to adapt at all
and the velocity fluctuation induced by the varying pressure gradient and superimposed
on the steady parabolic component increasingly resembles a top hat profile. The resulting
base flow profile exhibits extremely thin oscillating boundary layers close to the walls but
has an otherwise constant wall-normal variation that is translated along the streamwise
direction during a pulsation cycle. In this regime, the orbits have the base flow frequency,
exhibit no hysteresis and only oscillate along the imaginary axis synchronised with the
pulsations. In fact, the second derivative of the base flow profile in the wall-normal
direction, pivotal for its stability characteristics, is constant and equal to that of the steady
Poiseuille flow everywhere with the exception of the oscillating boundary layer that is too
thin to noticeably affect the instability waves since the inflection points are located too
close to the wall (Kern et al. 2021).

The result that pulsations do not lead to an increased instability of the base flow profile
for high pulsation frequencies is in line with the conclusions drawn in Davis (1976) with
regard to the stability of highly inflectional Stokes layers that are dynamically similar for
δ � h and are found to be unstable only for small pulsation frequencies. For pulsating
Poiseuille flow, however, the results do not extend to very low frequencies (Wo � 1) since
the comparison breaks down when the two Stokes layers merge at the centreline when
δ ≈ h and the base flow profile ceases to be inflectional.

From the time scale analysis we conclude that, while for intermediate values of Wo the
time scales associated with the base flow pulsation and viscous effects are similar and we
thus see considerable variation of the stability characteristics with the Womersley number,
the flow at very high (very low) pulsation frequencies only depends on the (effective)
Reynolds number and we do not find any subharmonic eigenvalue orbits.

4.4. Pulsations and non-normal growth potential
In view of the considerable non-normality of the OS operator, the spectrum itself only
paints only part of the picture. In order to fully examine the stability characteristics of
the operator, it is crucial to consider the energy growth potential brought about by the
superposition of non-orthogonal eigendirections with very different growth rates that can
lead to large transient amplification of disturbances even in linearly stable flows (Reddy &
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Henningson 1993; Trefethen et al. 1993). Of particular interest in the context of pulsating
Poiseuille flow is the question how the non-normal growth potential, intrinsic to plane
Poiseuille flow, is altered by the addition of a pulsatile component to the base flow.
A common measure of this potential is the numerical abscissa of the operator, often
denoted σmax, which encodes the maximum instantaneous growth rate possible taking
into account both modal and non-modal mechanisms (Trefethen & Embree 2005; Schmid
2007). The numerical abscissa of a matrix L is given by the largest eigenvalue of its
Hermitian part, i.e. we have

σmax = λmax

(
1
2

(
L + LH

))
, (4.5)

where ( · )H denotes complex conjugation, and can also be computed as the maximum
protrusion of the numerical range into the unstable half-plane (Trefethen 1997).

In a recent study of the stability of pulsating Poiseuille flow, Kern et al. (2021) have
conjectured that, in spite of the considerable variation of the instantaneous eigenvalues
over a cycle, the pulsations only have a negligible impact on the full non-normal growth
potential. Due to the high computational cost of the method used in the study when aiming
to capture the full non-normality of the operator, the impact of the pulsations on the
non-modal growth potential was analysed only for the case Wo = 25 and Q̃ = 0.2 where
the numerical abscissa was found to fluctuate within 1 % of the corresponding steady value
(Re = 7500, Q̃ = 0) during the pulsation cycle.

Using the full operator from the local analysis, we can efficiently map the effect of
pulsations on the numerical abscissa and test the conjecture over the full parameter range.
In addition to the absolute value of σmax we will also consider �σ = σmax − σr, the
fluctuation of the numerical abscissa with respect to the steady reference value σr, which
is particularly useful for harmonic variations around the reference value. Based on the
time scale analysis above, we can begin by defining the extremal values for the numerical
range. For very large values of Wo, the numerical abscissa is equal to the steady value,
i.e. �σ = 0, since the spectrum is only translated along the imaginary axis. For very low
pulsation frequencies, on the other hand, we are in the QS regime and the base flow profile
UQS(t) is parabolic and synchronised with the fluctuating mass flow rate, such that

UQS(t) = 3
2

Q(t)
2h

(1 − ξ2), (4.6)

where we have used the steady state relationship Q = Ub2h = 2
3 Uc2h with Ub the bulk

velocity.
It is clear that the flow rate variations in the QS regime are equivalent to a variation

of the Reynolds number in plane Poiseuille flow such that the numerical abscissa can be
computed from the corresponding steady problem at each instant in the pulsation cycle.
Therefore, the variation of the non-normal growth potential in the two extreme cases relies
solely on the intrinsic non-normal growth mechanisms of steady Poiseuille flow. In the
following, we will compare the corresponding profiles for the numerical abscissa with the
data for intermediate pulsation frequencies.

The variation of the numerical abscissa for pulsating Poiseuille flow over the full range
of pulsation frequencies and amplitudes considered in this work is shown in figure 7
compared with the QS limit (black dashed line). The first observation is that the relatively
simple dependence of the numerical abscissa on the pulsation frequency and amplitude
that is similar over the entire considered parameter range. This is in stark contrast with
the complex behaviour of other spectral quantities such as the instantaneous eigenvalues
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Figure 7. Variation of the numerical abscissa σmax of the OS operator for pulsating Poiseuille flow at Re =
7500 and (α, β) = (1, 0) as a function of time and the pulsation frequency and amplitude. (a) Variation of the
numerical abscissa over the pulsation cycle for different pulsation frequencies for Q̃ = 0.2 compared with the
variation in the QS limit (dashed line). (b) Same data as in (a) but presenting �σ normalised by the maximum
deviation from the steady value over the period to highlight the intracyclic variation at different frequencies.
The dots correspond to the data from Kern et al. (2021) using r = 100 modes (cf. figure 10 in Kern et al.
(2021)) for the same case.

(compare with the large variability of the eigenvalue orbits within the parameter range
in figure 5) or the Floquet exponents (especially at low pulsation frequencies where the
variation of the intercyclic stability is high non-monotonic, see Pier & Schmid (2017) and
Kern et al. (2021)). Not only are the slopes of maxp |�σ | similar, also the intracyclic
variations of the numerical abscissa are highly regular for all but the highest pulsation
frequencies which have negligible amplitude. The similarity of the intracyclic variation
across the parameter range to the QS limit further supports the conclusion that the main
mechanism generating it is the same. The comparison with the data from Kern et al.
(2021) shows very good agreement, in particular in terms of the intracyclic variation. The
amplitude mismatch is minute considering that the corresponding amplitude maxp |�σ | is
around 1 % σr and shows that the computation indeed captured nearly the fully non-normal
growth potential.

The orderly variation of the numerical abscissa across the considered parameter
range is all the more surprising given the fact that is uncorrelated with the leading
eigenvalues of the Jacobian, both in terms of intracyclic variation and in amplitude. It
is especially striking that we do not see any trace of the EPs that are so abundant in
the spectrum and are characterised by eigenvector coalescence and thus lead to highly
non-orthogonal eigenvectors in their vicinity. There are two explanations for this fact.
Firstly, for non-normal growth to occur involving two non-orthogonal eigendirections,
it is not sufficient for them to be nearly colinear but they also require very different
growth rates. Since the coalescing eigenvectors, instead, have more similar growth rates the
closer they come to the EP, they cannot, by themselves, generate considerable non-normal
growth. Secondly, the non-modal growth mechanisms intrinsic to plane Poiseuille flow that
lead to the maximum transient growth rely on very damped modes. In particular, r = 100
real modes (which corresponds to 50 complex modes) are necessary to map the full
potential which includes modes from the S-branch that are considerably less affected by
the pulsation than the modes from the A-branch that predominantly form the permutations
cycles. These modes in fact exhibit a harmonic variation over the pulsation cycle and
exhibit considerable growth rate variations only for low values of the Womersley numbers
where the flow is close to the QS regime (compare the most damped modes in figure 5)
which is in line with the behaviour of the numerical abscissa.
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Based on these analyses, the conjecture that the addition of a pulsatile component does
not considerably alter the perturbations having the maximum non-normal growth potential
in two-dimensional Poiseuille flow can be confirmed. The intracyclic variations of the
numerical abscissa over the full range of Womersley numbers, not only in the limiting
cases, are caused by the mechanisms intrinsic to plane Poiseuille flow that dependent on
the effective Reynolds number instead of the details of the oscillating base flow profile.
The mechanisms that are dependent on the modes that experience modulation due to the
pulsations lead to smaller non-normal growth and therefore have no repercussion on the
numerical abscissa.

This conclusion is in line with results from the recent work by Pier & Schmid
(2021) where the authors computed the optimal transient growth curves for two- and
three-dimensional disturbances in pulsating Poiseuille flow that showed the universality of
the Orr mechanism and the lift-up effect in optimal non-modal growth known from steady
Poiseuille flow also in the pulsating case. The study found that for pulsating Poiseuille flow
the largest transient growth is achieved either via the lift-up effect like in the steady case
for low pulsation amplitudes (largely independent of the frequency) or, as the pulsation
amplitude increases, via the Orr mechanism. The two-dimensional mechanism takes over
as the driver for maximum energy growth since the perturbation first grows via the Orr
mechanism just before the phase of linear instability where it switches gears and takes
advantage of the modal growth of the unstable eigenvalue that increases exponentially with
the pulsation amplitude. The analysis of the numerical abscissa shows that non-normal
growth in pulsating Poiseuille flow is fundamentally similar to the steady counterpart
not only for the optimal initial condition but also for the instantaneously most amplified
structure.

5. The linear periodic IVP

The emergence of the subharmonic eigenvalue orbits as the pulsation amplitude is
increased changes the topology of the spectrum across the perturbation cycle which also
affects the linear evolution of a perturbation.

To analyse the impact of the changes to the instantaneous spectrum on the evolution
of a linear perturbation in the periodic regime, we integrate (3.18) in time and compare
the evolution of the perturbation with the eigenspectrum of L. To avoid numerical over-
or underflow, we continuously normalise the perturbation v to unit energy, i.e. at the
beginning of every time step we have

E(q) = 〈v, v〉E = 1. (5.1)

The periodic solution of the IVP is independent of the initial conditions when the
transients have passed. We could therefore initialise the computations with noise but in
order to speed up the convergence to the periodic solution and to facilitate reproduction,
we choose a specific initial condition. In particular, we set

v0 = ξmax(t0) with t0 = 0, (5.2)

where ξmax denotes the instantaneous eigenvector of L corresponding to the eigenvalue
which reaches the maximum growth rate over the cycle (usually λ1). The initial time t = 0
corresponds to the instant when Q(t) reaches its maximum.

Once the perturbation has settled into a periodic orbit, we record its growth rate. The
instantaneous growth rate γ of the perturbation from vn at time step tn to vn+1 at time step
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Figure 8. Instantaneous perturbation growth rates for three configurations from figure 3 close to Q̃crit over
one period after the transients have passed. The grey lines indicate the instantaneous symmetric spectrum at
Q̃crit and the eigenvalue orbits merging at the EP (marked with a red cross) are highlighted in black (solid and
dashed). The colour coding for the IVP solutions is the same as for the corresponding spectra in figure 3.

tn+1 separated by �t is given by

γ = 1√
E(vn)

√
E(vn+1) − √

E(vn)

�t
=
√

E(vn+1) − 1
�t

(5.3)

due to the normalisation of the energy at each step. This instantaneous growth rate is then
compared with the eigenvalue orbits discussed above.

5.1. Effect of EPs on the linear IVP
The first question of interest regarding the solution of the IVP in the context of EPs
is which effect the eigenvalue degeneracies have directly on the linear solution and, in
particular, what happens to the solution close to a degeneracy. In our study, we have not
been able to detect any abrupt or notable changes in the instantaneous linear solutions as
the pulsation amplitude is increased past a bifurcation point where an EP occurs during
the period. As a typical example, we consider the same case as for the identification of the
EPs (figure 3, i.e. Wo = 25) and compare the linear solutions computed for three different
pulsation amplitudes around the critical value at which the EP forms. It turns out that the
linear growth rates, shown in figure 8, behave nearly identically both before, after and very
close to the bifurcation point. This is not particularly surprising considering the ubiquity
of EPs we have documented together with the facts that in steady flows energy growth
varies smoothly (channel flow (Reddy & Henningson 1993)) and spectral degeneracies
have been studied previously without uncovering traces of dramatic growth variations for
nearly degenerate operators (Gustavsson & Hultgren 1980; Koch 1986; Shanthini 1989).
Note that the operator is never exactly degenerate numerically.

5.2. Branch transition on subharmonic eigenvalue orbits
Although the EPs themselves do not seem to leave any traces in the evolution of a linear
perturbation, they have a pronounced effect via the formation of subharmonic eigenvalue
orbits.

The evolution of the linear perturbation, at each instant in time, is dictated by the
instantaneous spectrum of the OS operator. Since the operator changes continuously,
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the perturbation never fully aligns with the dominant eigendirection for long times as
we would expect in the steady case. Nevertheless, the perturbation, so long as it has a
projection on an instantaneous eigendirection, will grow in that direction and preferentially
towards the dominant eigenstate. Two major factors governing this alignment are therefore
the rate at which the eigenstates change compared with their instantaneous growth rates
and the difference between the growth rates of the dominant and subdominant eigenstates
with a considerable projection on the instantaneous perturbation.

This imperfect alignment with the dominant eigendirection can be seen in figure 9
comparing the instantaneous growth rates of the linear solution with the corresponding
symmetric spectrum (only the symmetric spectrum is shown since the linear perturbation
is always symmetric in the periodic regime and therefore the asymmetric modes are
irrelevant) for a wide range of pulsation frequencies and amplitudes. The alignment is best
when the eigenstates only change slowly (typically, a slow variation of the growth rate is
linked to a slow variation of the eigenvector for shown here) and the dominant eigenvalue
grows much faster than the subdominant, such as during the amplification phase at low
pulsation frequencies (column 3). On the other hand, the alignment is less pronounced
at higher pulsation frequencies where the operator changes quickly (column 1) as well as
during the damping phases where dominant and subdominant eigenvalues exhibit similar
growth rates. In these regions we also see considerable growth rate overshoots/undershoots
and wiggles. These wiggles, although they already appear earlier, become particularly
pronounced once the dominant eigenvalue forms a subharmonic orbit (see figure 9d,e,i)
and are linked to the transition of the linear perturbation from the decaying branch to the
amplified branch of the eigenvalue orbit. The branch transition is necessary because, as we
know from Floquet theory, the linear perturbation eventually settles into a periodic motion
at the same frequency as the base flow once the initial transients have passed. As the branch
transition happens during a part of the cycle where the spectrum is heavily damped and
the perturbation is influenced by several non-orthogonal decaying eigendirections at the
same time, it is likely that the wiggles are due to non-normal growth bursts. For very large
pulsation amplitudes, the wiggles are suppressed and the branch transition is increasingly
abrupt (see figure 9j–k).

We know that the non-normal growth mechanisms from plane Poiseuille flow and hence
their time scales are essentially unchanged when pulsations are added both instantaneously
(see § 4.4) and when considering optimal disturbances (Pier & Schmid 2021). It is
therefore useful to compare the time scale of the growth bursts we observe in the
periodic regime with that of the Orr mechanism, central to optimal transient growth of
two-dimensional disturbances. Considering the IVP for plane Poiseuille flow, the optimal
initial condition for maximum transient growth at Re = 7500 with α = 1 (close to the
transiently most amplified streamwise wavenumber) reaches the maximum energy at
tOrr = 27tU with the mean flow advection time scale tU = h2/Q(0). Figure 10(a) shows
the energy growth envelope for plane Poiseuille flow for this case with tOrr marked
by the red line. In figure 10(b), we compare the growth rate wiggles for different
pulsation frequencies to this transient growth time scale. We see that the growth bursts
all happen on the same time scale that compares very well with the time scale of the Orr
mechanism.

In a second step, we take a closer look at one particular case, Wo = 18, Q̃ = 0.16
(figure 9e), where the wiggles are particularly pronounced. In figure 11, the variation of the
dominant subharmonic eigenvalue orbit during the damping phase is shown together with
snapshots of the streamwise velocity component of the associated eigenvectors as well
as the linear perturbation for the full the branch transition. This parameter combination
highlights the typical features of the branch transition while the dominant permutation
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Figure 9. Evolution of the perturbation growth rate (thick coloured line) after the transients have passed
compared with the real part of the instantaneous symmetric spectrum (grey lines) over three consecutive
periods for different pulsation frequencies and amplitudes at Re = 7500. The dominant eigenvalue orbit is
highlighted and, if it is subharmonic, the same orbit in adjacent periods are marked in black as dotted and
dashed lines. In these cases, a movie comparing flow fields of the linear perturbation with the instantaneous
eigenvectors of adjacent branches of the dominant orbit are available in the supplementary material (linked in
the description). Here (a–c) Q̃ = 0.08; (d–f ) Q̃ = 0.18; (g–i) Q̃ = 0.28 (j–l) Q̃ = 0.50. Here (a,d,g,j) Wo = 25
(blue); (b,e,h,k) Wo = 18 (red); (c, f,i,l) Wo = 10 (yellow).

cycle only contains two eigenvalues which makes the presentation more clear. The
essential features of the transition process are the same in all cases considered in this
work.

Let us first analyse the variation of the instantaneous eigenstates along the two branches
u0 and u1 of the dominant subharmonic orbit before comparing it with the linear
perturbation.
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Figure 10. Definition of the non-normal growth time scale tOrr. (a) Growth envelope for maximum transient
growth for plane Poiseuille flow at at Re = 7500 and α = 1. The energy maximum at tOrr is indicated with a
red dot. (b) Superposition of the wiggles in the growth rates of for three configurations with time scaled by
tOrr. Since the wiggles occur at very different times in each case, the curves are shifted by t0 (different in each
case) to facilitate direct comparison.

At the beginning of the considered section, which corresponds to the end of the
amplification phase (t1), we observe that the two branches of the orbit are very different,
both in terms of growth rate and in spatial structure. With the beginning of the damping
phase (t/T = 0.80), the eigenstates (eigenvalues and eigenvectors) quickly converge and
are very similar at t2. This point is very close to the EP at which the subharmonic orbit
formed and of which the minimum of the angle θ is the vestige. Their paths subsequently
diverge again. During the damping phase, the growth rate of u0 drops as the vortices of
the eigenvector are sheared by the base flow an move away from the wall (t2 and t3). The
imaginary part of the eigenvalue reflects the increased base flow velocity at the location
of the dominant vortex row by steadily increasing up until t4/t5 where the heavily sheared
vortices of the eigenvector u0 stop moving towards the centreline. Simultaneously, the
growth rate of u1, which was very damped at t = t1, increases continuously, passing u0
at t3 and changing sign at t7 thus initiating the amplification phase. In contrast to u0, for
which the vortices move to the centreline while experiencing intense shear, the eigenvector
of u1 is pushed towards the wall which is echoed by a decrease of the imaginary part
(phase speed) of the corresponding eigenvalue. These two opposite effects lead to the large
difference in phase speeds between u0 and u1 that we observe throughout the damping
phase.

Consider now the evolution of the linear perturbation ulin in the limit cycle over the
same period and how it relates to the instantaneous eigenvectors described above.

Initially, the perturbation is aligned with the direction u0 exhibiting the structure of
modulated Tollmien–Schlichting waves typical of the amplification phase of pulsating
Poiseuille flow (t1). The subsequent variation of the eigenvectors heralding the damping
phase is too rapid to be followed instantaneously by the linear perturbation and we observe
that the growth rate only slowly decreases and changes sign at t2 with considerable delay
compared with u0. The vortices in the linear perturbation are soon also sheared with the
mean flow which is accompanied by strong damping (t3). In the subsequent phase, all
eigenvalues are damped and the linear perturbation has a non-zero projection on both u0
and u1 that are far from orthogonal during the branch transition process and can thus lead
to non-normal growth. In fact, we see the footprint of both eigenvectors in the perturbation
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Figure 11. Variation of the streamwise velocity field and the growth rate of the linear perturbation centred
on the branch transition compared with the dominant eigenstate orbit at Re = 7500, Wo = 18, Q̃ = 0.16
(same case as in figure 9e). (a–c) Variation of the real and imaginary parts ((a) and (b), respectively) of the
instantaneous eigenvalues along the subharmonic orbit ϕs

1 (black lines) compared with the growth rate of the
linear perturbation (thick blue line). The two branches of ϕs

1 are distinguished by the dashed and full linestyles
and the angle θ (in radians) between the corresponding eigenvectors is shown in panel (c). (d–f ) Instantaneous
streamwise velocity fields of the linear perturbation and eigenvectors of ϕs

1, each column corresponding to a
time instant marked by a vertical line in (a–c). Panel (d) corresponds to the linear perturbation (ulin) whereas
the panel (e, f ) shows the instantaneous eigenvectors of the branches u0 (full black line) and u1 (dashed line)
of ϕs

1. The y-direction is the wall-normal direction and the x-direction is the streamwise direction. A movie of
the variation in time is available in the supplementary material (movie 2).

field which exhibits a row of vortices close to the wall (u1) as well as sheared vortices
closer to the centreline (u0). The wiggles in the growth rate occur due to the rapid changes
in the structure of ulin. The difference in phase speed of the eigenvectors related to the
difference in magnitude of the imaginary parts of u0 and u1 leads to a large relative velocity
difference in the streamwise translation of the vortex rows in the linear perturbation. It is
the interaction of these vortices that creates the strong variations in the growth rate we
see in the perturbation in figure 11(a–c). During each growth burst, the vortex rows begin
paired with alternating orientations. As the faster moving inner vortex row moves ahead of
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the outer row, the vortices of the same orientation merge to form large structures leaning
against the mean shear extracting energy from the base flow in a manner analogous to the
Orr mechanism generating large growth (t5 and t7). Subsequently, the vortices experience
a strong decay when they are sheared with the mean shear (t4 and t5). During the branch
transition process, the focus of the perturbation steadily moves from the vortices close to
the centreline to the vortex row close to the wall together with the increasing growth rate
gap in the corresponding instantaneous eigenvalues. As soon as u1 starts to be amplified
t7, the wiggles quickly disappear as ulin aligns with the newly amplified eigenvector (t8
and t9).

In order to allow the reader to fully appreciate the similarities and differences across the
considered parameter range, we have created a movie that is available in the supplementary
material comparing the evolution of the linear perturbation with the instantaneous
eigenstates in terms of both the growth rate and the spatial structure for the case shown
in figure 11 where the leading eigenvalue has joined a permutation cycle and thus branch
transition occurs.

Based on this analysis, the wiggles in the instantaneous growth rate observed during
the branch transition process are indeed caused by repeated non-normal instantaneous
transient growth bursts that are very similar to the Orr mechanism. All the cases considered
in this work exhibiting a branch transition follow the same path.

5.3. Instantaneous non-normal growth and Floquet eigenfunctions in periodic flows
Time-periodic flows such as pulsating Poiseuille flow are special cases of time-dependent
flows for which the time-asymptotic behaviour of a linear perturbation can be represented
by the Floquet eigenfunctions (Davis 1976). The variations of the growth rate during
the pulsation cycle that we have identified as non-normal growth bursts are included
and contribute to the Floquet multipliers that quantify the cycle-to-cycle growth of
the eigenfunctions. This fact does not preclude an analysis of the growth bursts as
instantaneous phenomena linked to the local eigenvalue spectra in time. The leading
Floquet eigenfunction is, in fact, identical to the solution of the linear IVP after the initial
transients have passed, as computed in this study using a time stepper approach; whether
the instantaneous transient growth bursts are understood as manifestations of the global
dynamics (Floquet) or an instantaneous effect of the local (in time) dynamics differs only
in the interpretation.

The local interpretation of transient growth that we propose here is useful for two
reasons. On the one hand the direct comparison with the local spectra elucidates the
instantaneous growth mechanism allowing for the distinction of phases dominated by
modal or non-modal growth within the pulsation cycle. This analysis is not directly
possible within the Floquet framework since it involves a Fourier transform and is therefore
delocalised in time. On the other hand, the interpretation of instantaneous growth in terms
of local spectra can be extended to non-periodic time-dependent cases where Floquet
theory cannot be applied, given a sufficient time scale separation between viscous/inertial
time scales of the flow and the imposed time-dependence. In the case of arbitrary
time-dependence of the flow without scale separation the local approach is questionable.
A possible way forward in this scenario is the analysis of the left and right singular vectors
of the fundamental solution matrix (see, e.g. Schmid 2007).

Due to the special care that needs to be taken when applying the nomenclature
related to transient and non-normal growth, typically discussed in steady scenarios, in
a time-dependent setting, we propose a disambiguation in the Appendix B.
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Figure 12. (a) Same as figure 4(b) but showing the appearance of the first subharmonic orbit involving the
dominant symmetric eigenvalue for different Reynolds numbers. The red line is the same as the limit of
the coloured area in figure 4(b). (b) Growth rate of the most amplified wavenumber for different pulsation
amplitudes at Re = 7500 and for Wo = 10, 18, 25, (dashed, dotted and full lines, respectively).

5.4. Variation of the spanwise wavenumber and the Reynolds number
In this study, we have restricted the detailed analysis to the two-dimensional configuration
with a streamwise wavenumber α = 1 and a Reynolds number of 7500, which is slightly
supercritical in the corresponding steady case. In order to assess the general validity of
our approach and analysis also beyond the scope of the chosen parameter range, it is
important to consider the effect of a variation of the Reynolds number and the streamwise
wavenumber α.

The Reynolds number governs the viscous time scale (i.e. the time scale on which
viscosity is dominant) of the system and measures the ratio of inertial to viscous forces
in the flow. In general, an increase (decrease) of the Reynolds number leads to a decrease
(increase) of the base flow stability and sparsity of the spectrum (i.e. the distance between
neighbouring eigenvalues) but the non-normality remains. We know that for intermediate
values of the Womersley number, the pulsations lead to increasingly large excursions of the
eigenvalues, both in term of growth rate and phase speed, and the formation of EPs as the
pulsation amplitude grows. In terms of the spectrum and the emergence of subharmonic
orbits, an increase of the Reynolds number leads to larger excursions of the eigenvalues
over a pulsation cycle and, in general, earlier formation of subharmonic orbits, and vice
versa. Since the non-normal growth potential decreases with the Reynolds number, the
transient growth bursts during branch transitions follow suit. Figure 12(a) shows how
the Reynolds number affects the appearance of subharmonic eigenvalue orbits (only the
symmetric case is shown).

The streamwise wavenumber α = 1 for this study was chosen close to the most unstable
spanwise invariant configuration for steady Poiseuille flow. When pulsations are added, we
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observe not only a large variation of the instantaneous spectrum but also a shift in the most
amplified streamwise wavenumber over the course of the pulsation cycle. Figure 12(b)
shows, for each wavenumber, the maximum growth rate of the dominant eigenvalue of
the local spectra at any time during the pulsation cycle. As expected, the maximum
growth rates increase for all wavenumbers with the pulsation amplitude, irrespective of
the pulsation frequency. At the same time the overall most amplified wavenumber shifts to
slightly higher values.

In spite of these differences, the solutions to the IVP in the periodic regime do not
change qualitatively. Since the time scale ratio T is inversely proportional to the Reynolds
number, a decrease of the Reynolds number leads to an increase of the time scale ratio (and
vice versa) meaning that the viscous time scale becomes slower relative to the pulsation
time scale and the linear solution lags behind the instantaneous spectra even for low values
of the Womersley number.

5.5. Outlook on three-dimensional perturbations
Given the well known fact that three-dimensional perturbations often generate far greater
transient growth than their two-dimensional counterparts and, moreover, that the recent
study of Pier & Schmid (2021) has shown that the mechanism for optimal initial transient
growth can be either two-dimensional or three-dimensional depending on the parameter
configuration, it is a natural next step to ask whether the bursts during the transition process
will exhibit a similar behaviour.

The mathematical properties that give rise to EPs and thereby lead to the formation
of subharmonic eigenvalue orbits, i.e. the non-normality of the linear operator, do not
depend on the spatial structure of the perturbations considered. If anything, the additional
parameter makes the appearance of EPs more likely. Therefore, the results regarding
the appearance and distribution of the eigenvalue permutation cycles in the considered
parameter space vary only quantitatively as the spanwise wavenumber is varied and are
not shown here.

In this work, only two-dimensional perturbations were considered in detail to keep the
parameter space manageable. Since the qualitative behaviour of EPs and subharmonic
eigenvalue orbits is the same as for the two-dimensional case and we have data regarding
optimal energy growth (Pier & Schmid 2021) for the three-dimensional case, we can
speculate about the effect of allowing three-dimensional perturbations on the solution of
the linear IVP.

The existence of subharmonic eigenvalues orbits involving the leading eigenvalue
also when β /= 0 implies the necessity of branch transitions in the periodic regime in
these cases likely driven by non-normal growth bursts. Considering that, as Pier &
Schmid (2021) note, ‘streamwise-invariant (α = 0) perturbations appear to be almost
unaffected by the time-dependent component of the base flow and to display a dynamics
predominantly dictated by the time-averaged base flow’, it is unlikely that a considerable
streamwise-invariant component of the perturbation is part of the intrinsic linear dynamics
of pulsating Poiseuille flow which fully determine the solution in the time-asymptotic
periodic regime. Hence the authors expect the behaviour of the linear IVP allowing for
three-dimensional perturbations to be qualitatively similar in the periodic regime to the
results shown here, in particular regarding the nature of the non-normal growth bursts via
a predominantly two-dimensional mechanism.
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6. Summary and conclusion

In the following we discuss the main findings of this paper that follow two main lines. First,
we consider the occurrence of EPs in the spectrum of the local OS problem for pulsating
Poiseuille flow over a wide range of pulsation frequencies and amplitudes that lead to the
formation of subharmonic eigenvalue orbits. The second part focuses on the effect of these
eigenvalue permutation cycles on the evolution of linear perturbations on top of the base
flow with particular emphasis on the wiggles in the growth rate during the damping phase.

Eigenvalue degeneracies and their impact on the linear stability have been discussed
for a number of canonical flow cases (Gaster (1968), Gustavsson & Hultgren (1980),
Koch (1986), Shanthini (1989), Reddy & Henningson (1993), among others). We consider
a specific type of degeneracy, namely EPs, mentioned in passing by Grosch & Salwen
(1968), that are in fact ubiquitous in the spectrum of pulsating Poiseuille flow.

In this work, the prevalence of subharmonic eigenvalue orbits in the spectrum of
two-dimensional pulsating Poiseuille flow was studied at Re = 7500 for a streamwise
wavenumber of α = 1 for a wide range of pulsation frequencies and amplitudes. We will
summarise the results of the spectral analysis for these cases here.

(i) For very low pulsation amplitudes, all eigenvalues form isolated periodic orbits at
the base flow frequency around the locus of the steady spectrum.

(ii) The first subharmonic orbits form with the merging of neighbouring orbits in the
junction region of the eigenvalue branches. The lowest pulsation amplitude that
was found to sustain a subharmonic eigenvalue orbit is Q̃ = 0.07 at a frequency
of Wo = 18. As the pulsation amplitude is further increased, subharmonic orbits
become ubiquitous and the eigenvalue permutation cycles soon encompass most of
the eigenvalues with the exception of the least stable centre modes (P-branch) and
highly damped eigenvalues of the S-branch.

(iii) Subharmonic orbits are most abundant for intermediate pulsation frequencies where
the base flow pulsations have a similar time scale as the intrinsic instability waves
in Poiseuille flow and the eigenvalue excursions over the cycle are largest. In this
parameter region there are generally only two subharmonic orbits (one for each
symmetry) encompassing more and more eigenvalues from the A-branch and the
junction region as the pulsation amplitude is increased.

(iv) At higher/lower pulsation frequencies, the large permutation cycles disintegrate into
a number of separate and smaller orbits. For very high and very low pulsation
frequencies, the emergence of subharmonic orbits is increasingly delayed to higher
pulsation amplitudes. In the limiting cases of QS flow (Wo → 0) as well as
high-frequency base flow oscillations (Wo → ∞), the formation of subharmonic
orbits is entirely suppressed.

(v) We confirm the conjecture of earlier studies (Kern et al. 2021) that the maximum
non-normal growth potential at higher pulsation frequencies is largely unchanged
compared with steady Poiseuille flow. The variation at low pulsation frequencies
can be fully explained by the variation of the effective Reynolds number and does
not depend on the details of the base flow profile.

In the light of the existence of EPs that lead to subharmonic eigenvalue orbits in the
spectrum of pulsating Poiseuille flow, it is interesting to analyse their impact on growth
and decay of linear perturbations on the base flow. Although the eigenvalue degeneracies
themselves do not seem to have any visible effect on the evolution of a linear perturbation,
the formation of subharmonic eigenvalue orbits involving the dominant eigenvalue leads
to necessary transitions from the decaying to the amplified branch of the orbit. In the
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following we will summarise the results concerning the solution to the linear IVP and in
particular the analysis of the branch transition process.

(i) The evolution of the linear perturbation is smooth with respect to all parameters,
even close to a spectral degeneracy.

(ii) The perturbation continuously aligns with the instantaneously most unstable
eigendirection. The alignment, although never complete, is more pronounced when
the growth rates are large and the operator changes slowly (low pulsation frequency).
When the operator changes rapidly or when there are several competing eigenstates
with projections on the instantaneous perturbation, the alignment is worse or
completely lost (high pulsation frequencies and damping phases when subharmonic
orbits exist).

(iii) When subharmonic orbits exist, the perturbation will necessarily transition from
the decaying branch to the amplified branch of the dominant orbit at some point
during the cycle since the perturbation has the same frequency as the base flow in
the periodic regime.

(iv) The branch transition is accompanied by growth rate wiggles for all considered
parameter combinations as the pulsation amplitude is increased and have a similar
characteristic time scale, tOrr, which is the time scale of the transient growth
generated via the Orr mechanism for two-dimensional optimal disturbances. The
wiggles are identified as transient growth bursts generated by the interaction of
non-orthogonal instantaneous eigendirections.

(v) Although the details and amplitudes are highly dependent on the parameter
combination, the non-normal growth bursts that constitute the branch transition
process in all considered cases generate energy growth via the Orr mechanism.

In this work we have shown that subharmonic eigenvalue orbits, brought about by
the existence of EPs, are ubiquitous in the periodic spectrum of the OS operator for
two-dimensional pulsating Poiseuille flow for a large range of pulsation amplitudes and
frequencies of practical interest. When such subharmonic permutation cycles occur, the
difference in temporal periodicity of the eigenvalue orbits compared with the evolution
of a linear perturbation, asymptotically periodic with the base flow frequency, leads to
periodic branch transitions as the disturbance aligns with the instantaneously unstable
eigendirection. These transitions towards the amplified branch are shown to occur via a
series of non-normal growth bursts involving the interaction of non-orthogonal modes
from different branches of the subharmonic cycle similar to the Orr mechanism in steady
Poiseuille flow. These results show that, while they are not the main driving mechanism for
non-modal growth, spectral degeneracies and in particular EPs can have significant impact
on the spectral characteristics of the periodic OS operator that reflect on the evolution of
linear disturbances.

Supplementary movies. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2022.515.
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Figure 13. Resolution studies. (a,b) Eigenvalue problems: eigenvalue spectra of the OS operator and error for
different spatial resolutions for Re = 7500, α = 1, Wo = 25, Q̃ = 0.2 using the base flow profile at t/T = 0.5.
(c) Linear IVPs: error in the real temporal growth rate (real part of the Floquet exponent) computed as the
integral over one period of the instantaneous growth rates γ compared with the values from Kern et al. (2021)
for Re = 7500, α = 1, Wo = 25, Q̃ = 0.2 using different spatial (N) and temporal (�t) resolutions.
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Appendix A. Numerical solution of the eigenvalue problems and linear IVPs and link
to OTD modes

The eigenvalue problems are discretised in the wall-normal direction using the Chebyshev
collocation technique. The differential operators are computed using the dmsuite software
package (Weideman & Reddy 2000). Within the package, the Dirichlet boundary condition
at the walls is implemented by omitting the boundary points from the equation system
for which the solution is known, while the Neumann condition on the first derivative is
implemented via Hermite interpolation.

The error in the computation of the eigenspectra as a function of the wall-normal
resolution are shown in figure 13(a,b) for a particularly inflectional base flow profile. In
order to capture the transient growth bursts that rely on damped eigenvalues, a spatial
resolution of N = 128 was chosen where the relevant part of the spectra is fully converged.

The wall-normal symmetry of the base flow can be leveraged to reduce the size of the
eigenvalue problems to Ns = N/2 by imposing the symmetry in the operator and solving
for the symmetric (varicose) and antisymmetric (sinuous) modes separately.

The time integration of the linear IVP (3.18) was implemented using a four-step
Runge–Kutta scheme. The full three-dimensional operator (of order 2N) is computed
using the analytical expression for the base flow at each time step. When considering
only two-dimensional perturbations (β = 0), only the OS equation is solved, reducing the
problem size to order N. The wall-normal symmetry was not implemented in the time
integration.

Figure 13(c) shows the evolution of the error in the time integration for different
choices of time step �t and N for Wo = 25, the case with the shortest pulsation period
T = 75.4. With the spatial resolution of N = 128, a time step of �t = 10−3 was chosen
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(T/�t = 7.5 × 104). It was carefully checked that the details of the growth rate wiggles
do not depend on the spatial or temporal resolution.

The OTD modes are a recent framework to compute a time-dependent orthonormal basis
that spans the instantaneously most unstable directions of the tangent space of nonlinear
systems (Babaee & Sapsis 2016). In order to generate the basis vectors and avoid their
collapse on the most unstable direction, the orthonormality constraint is included directly
into the linear evolution equations (3.18) yielding the OTD equations for each basis vector
qi (Blanchard & Sapsis 2019) given by

∂qi

∂t
= Lqi − 〈Lqi, qi〉E qi −

i−1∑
j=1

(〈Lqi, qj〉E + 〈Lqj, qi〉E
)

qj, i = 1, . . . , r, (A1)

where L is the linear operator, 〈 · , · 〉E is the energy norm and r is the number of
orthonormal basis vectors.

For the computations involving the OTD modes, r linear problems of the form (3.18)
are solved simultaneously, coupled via additional nonlinear forcing terms fi for each OTD
basis vector qi, i = 1, . . . , r, which are computed explicitly at every step as

fi = −〈Lqi, qi〉E qi −
i−1∑
j=1

(〈Lqi, qj〉E + 〈Lqj, qi〉E
)

qj. (A2)

In practise, the resulting basis vectors need to be reorthonormalised at regular intervals to
avoid the collapse of the OTD subspace (Kern et al. 2021).

Appendix B. Disambiguation of the term transient growth in the context of
time-dependent flows

Transient growth, i.e. the short-lived energy amplification of particular states due to
the interaction of non-orthogonal eigendirection of non-normal operators, was originally
described for steady flows and has since been tightly linked to the concept of optimal
initial conditions for energy growth. For these cases, since almost all perturbations
eventually align with the dominant eigendirection and are asymptotically governed by the
corresponding modal growth rate, transient growth becomes effectively synonymous with
initial transient growth since it can only occur at the beginning of the considered time
window.

In the context of time-dependent flows this is not the case. Since the linear operator and
hence its eigendirections are constantly evolving, the potential for non-modal growth is
present at all times, depending on the projection of the perturbation onto the instantaneous
eigendirections. This does not mean that the evolution of the perturbation therefore must
be dominated by these non-normal effects at all times. In the same way that the initial
transient growth can be entirely bypassed in a steady system if, e.g. the initial condition is
chosen to be the dominant eigendirection, the perturbation in a time-dependent flow will
only experience considerable non-modal growth in the right conditions.

Note here that the instantaneous non-normal growth a perturbation experiences due
to a change in the operator at a specific time is, in general, lower than the maximum
transient growth at the same instant (which is achieved for the first eigenvector of the
symmetrised operator). Furthermore, the conditions that lead to non-normal growth in the
time-asymptotic solution are a product of the linear dynamics alone and are independent
of the initial conditions. In the case of periodic flows, only the linear dynamics on the
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limit cycle are of interest for instantaneous non-normal growth once the initial transients
have passed. Although the optimal disturbances for maximum energy growth may employ
the same growth mechanism, the similarity is coincidental. They are generated via an
optimisation over all possible initial conditions and do not take into account whether the
corresponding state lies on the system’s trajectory after the initial transients or not.

Appendix C. Exact relation between the subharmonic eigenvalue orbits and the
subharmonic orbits found with OTD modes

The r-dimensional subspace spanned by the orthonormal basis vectors qi is called an
OTD subspace and spans the instantaneously most unstable directions in the phase space
(Babaee & Sapsis 2016). Comparing (A1) with the original IVP (3.18), we see that the
basis vectors qi are not solutions of (3.18) due to the forcing term with the exception of the
first basis vector q1, which is only constrained to change orthogonal to itself but otherwise
follows the linearised dynamics.

In order to extract physically relevant information about the dominant directions in the
subspace, we compute the reduced operator Lr ∈ Cr×r by orthogonal projection of the full
operator L onto the OTD subspace. The eigenvalues of Lr together with the OTD modes,
obtained by projecting the OTD basis vectors on the associated eigenvectors, correspond to
the instantaneously most unstable directions of the tangent space (Babaee & Sapsis 2016).

In a recent study applying the OTD framework to the case of pulsating Poiseuille flow,
the authors reported that while for small subspace sizes the eigenvalues of Lr converged to
periodic orbits with the same periodicity as the base flow, larger subspace sizes generated
subharmonic eigenvalue orbits through the merging of several simple eigenvalue orbits
(Kern et al. 2021).

In order to understand how the subharmonic eigenvalue orbits obtained from the OTD
modes relate to the permutation cycles obtained by tracking the eigenvalues of L in time,
we recall the definition of the reduced operator Lr in matrix form

Lr = QT
r LQr, (C1)

where Qr = [q1, . . . , qr].
In case of a normal operator L for all times t, its eigenbasis is orthogonal and the

OTD basis vectors (and also the OTD modes which coincide with the basis vectors
in this case) converge to the r eigenvectors corresponding to the instantaneously least
stable eigenvalues of L leading to a diagonal Lr (Babaee & Sapsis 2016). For these
operators, subharmonic eigenvalue orbits cannot occur since the existence of EPs requires
non-orthogonal eigenvectors, and we therefore do not consider this case further.

If the operator L is non-normal, the OTD modes are in general different from the
instantaneously least stable eigendirections of the underlying operator, with the exception
of the limiting case r = n, where we have

Ln = QT
n LQn (C2)

which is simply a change of basis and does not affect the eigenvalues. This means that
the OTD modes will recover the orbits of the instantaneous eigenvalues of the underlying
operator including the permutation cycles that appear with the presence of EPs. At an EP,
two or more eigenvectors of L coalesce and its eigenbasis does not span the full Cn. It has
been shown that the OTD framework can deal with the instantaneous ambiguity due to
eigenvalue crossings (Babaee et al. 2017) which will be crucial in this application since
crossing an EP is algorithmically similar to a generic eigenvalue crossing.
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Figure 14. Variation of the eigenvalue orbits of the reduced operator Lr including the dominant eigenvalue
using the OTD framework when increasing r from 6 to 60 (full lines) compared with the eigenvalue orbits ϕi
computed from the full operator L (dashed lines) and the steady OS spectrum (black dots) for Re = 7500, Wo =
25, Q̃ = 0.2. The eigenvalue orbit ϕ1 that includes the dominant eigenvalue is highlighted in red showing the
convergence of the eigenvalue orbits of Lr as r is increased. The grey and coloured dots indicate the eigenvalue
loci at the beginning of the corresponding cycle. The length m (in multiples of the base period T) of each
coloured orbit is indicated in parentheses in the legend.

For r < n, the situation is less clear. For small subspace sizes r that do not span a
considerable portion of the full non-normal spectrum of L, the spectrum of Lr can be very
different from the spectrum of L, especially if the highly non-orthogonal eigenvectors
are associated with eigenvalues of very different growth rates. If the instantaneously
fastest growing structure in the OTD subspace is due to the interaction of two such
non-orthogonal eigenvectors of L, it will be identified by a single OTD mode (i.e.
interpreted as a modal structure) as long as the second, more damped eigenvalue is
not spanned by the subspace. In fact, the OTD subspace does not contain information
about the eigenvectors of L or their relative orientation. Only when r is large enough
to encompass the damped mode is this structure’s growth identified as a non-normal
effect and therefore included in σmax while the OTD modes subsequently follow the
corresponding eigendirections of L (which, taken separately, exhibit a much lower modal
growth). Since the OTD basis in the Blanchard & Sapsis formulation is hierarchical, i.e.
adding more basis vectors does not affect the existing ones, the growth rate information
they contain does not change as the OTD subspace is enlarged but is only reinterpreted as
non-normal instead of modal growth.

The variation of the periodic orbits of the eigenvalues of the reduced operator Lr
containing λ1 as the subspace size r is increased compared with the orbits obtained
through eigenvalue tracking using local theory is presented in figure 14 and clearly shows
convergence of the orbits computed using the OTD framework to the orbits of the full
operator (dashed lines, in particular, the red dashed line). Note that, comparing with
figure 3 where ϕ1 has a period of 2T for Q̃ = 0.15, the orbit has undergone one further
coalescence in the range Q̃ ∈ [0.15, 0.2] and now has period 3T .

945 A11-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.515


Subharmonic eigenvalue orbits in pulsating Poiseuille flow

We observe that the convergence begins in the unstable part of the orbit of the
corresponding eigenvalues since they are more likely to be spanned by the OTD subspace.
Although, to the naked eye, ϕ1 is indistinguishable from the orbit of the corresponding
eigenvalues of Lr at r = 60, we see that the convergence history is all but monotonic with
the orbit first becoming much more complicated and spanning up to five periods (r = 24)
before homing in on the final orbit with period 3T (red dashed curve). The seemingly
chaotic orbit for r = 24 is due to the fact that part of the orbit follows the most stable
eigenvalue of the OTD subspace that shields the more unstable eigenvalues from the
dynamics outside of the subspace but itself is very sensitive to eigenvalue crossings with
modes just beyond the edge of the subspace. In order for the orbits to reliably represent a
specific eigenvalue trajectory it needs to be spanned continuously during the entire cycle.
This is ensured only if the most stable eigenvalue is not part of the considered orbit at any
time because, in case of an eigenvalue crossing at the edge of the subspace, this eigenvalue
will switch to a new eigenvalue and thus follow its orbit instead.

Although a good approximation of the eigenvalue orbits may be obtained in some cases
using few OTD modes, a large subspace size r is required for their accurate computation
for highly non-normal operators. In these cases, the OTD framework becomes exceedingly
expensive since it requires the simultaneous solution of r IVPs of the form (3.18) in
addition to the base flow trajectory and, if it is computationally feasible, the correlation
based eigenvalue tracking is a far more efficient method for computing the subharmonic
eigenvalue orbits. If, on the other hand, the full operator is not available explicitly (e.g.
in matrix-free codes) or too large to analyse directly, the OTD modes are competitive
in terms of computational cost for the approximation of subharmonic eigenvalue orbits,
together with iterative eigenvalue methods such as the Arnoldi iteration to obtain the most
unstable eigenvalues of the local problems involved in eigenvalue tracking methods.
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