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REDUCED SOBOLEV INEQUALITIES 

BY 

R. A. ADAMS 

ABSTRACT. The Sobolev inequality of order m asserts that if 
p ^ 1, mp < n and \/q = \lp — m/n, then the L^-norm of a smooth 
function with compact support in R" is bounded by a constant times 
the sum of the //-norms of the partial derivatives of order m of that 
function. In this paper we show that that sum may be reduced to 
include only the completely mixed partial derivatives or order m, and 
in some circumstances even fewer partial derivatives. 

1. Introduction. Sobolev's inequality of order m, namely 

(1) IMI, ^ K 2 IID^II,, where q = 
\a\ = m 

holds, with fixed constant K, for all functions u e C^ÇRP), the space of infi
nitely differentiable functions with compact support in R", or, more generally, 
for all sufficiently smooth functions u which decay sufficiently rapidly at 
infinity. Here, of course, ||-|| denotes the norm in the space If(Rn), p â 1, 
and Da = D^D^2 . . . Da

n% where Dy = d/dxj9 1 ^ j: ^ n, and a = ( a l s . . . , an) 
is an «-dimensional multi-index of nonnegative integers of order \a\ = 
ax + ... + a„. 

The purpose of this paper is to show that the sum on the right side of 
Sobolev's inequality (1) can, if m ^ 2, be replaced by a reduced sum taken over 
only those partial derivatives of order m which are "completely mixed" in the 
sense that all m differentiations are taken with respect to different variables. 
Denoting 

Jt = Jt(n, m) = {a:\a\ = m, ay = 0 or 1 for 1 ^ j ^ n}, 

we shall show (Theorem 3.3 below) that all u G C^°(R") satisfy a reduced 
Sobolev inequality of the form 
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•*r if mp < n 
n — mp 

I rsn i f n = 1 m 
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(2) 11«||, =i K 2 \\Dau\\p, 

where q has the same value as in (1). The special case/? = 1 of (2) was remarked 
by Stein [3, p. 160]. As an example, if n = 3, m = 2 and 1 â p < 3/2, we can 
find a constant K such that for all u e C^°(R3), 

M|3/?/(3_2/?) ^ K(\\DxD2u\\p + HZ^wll, + IUWH V 

the sum on the right involves only three of the six partial derivatives of u of 
order 2. Observe also that for m = n and/? = 1 the stiJt has only one element, 
a = (1, 1 , . . . , 1), and so (2) says, in this case, 

Ml,» ^ K\\DXD2 . . . Dnu\\x 

which follows at once (with K= 1) from the representation 

«<*> = / - c o # 1 / - c o * 2 • • • / ! " « , ^ 1 ^ 2 • • • ^ « ( J ) ^ „ -

(We shall see later that K can be taken to be 1/2".) 
It is well known that Sobolev's inequality (1), (and therefore also (2) ), is 

invariant under dilation of u. Indeed, if w e C^°(R") is fixed and ux(x) = 
u(Xx) then ux e C™(Rn) for any X > 0 and 

\\Daux\\p = Xm-n/P\\Dau\\p for \a\ = m. 

Hence (1) or (2) imply that 

K^\\Dau\\p \ —n/q — m + n/p 

which cannot hold for all X > 0 unless 
w\q 

n n 
- = - — m, 
q P 

that is, unless q is given as in (1). In Section 4 of this paper we will consider the 
possibility of further reducing (2) so that the sum on the right side extends over 
a subset of Ji. The above argument shows that no such reduction can lead to a 
different value for q. 

2. Mixed norms. Our proof of the reduced Sobolev inequality (2) is based on 
mixed norm estimates in a manner similar to their use in Fournier [2] and 
Adams [1]. We give a brief summary here of the elementary facts about mixed 
norms that we shall need. See [1] or [2] for more details. 

If p = (pi,p2, • • • , /0> where 0 < p] ^ oo for each j , we construct the number 
IMIp by first taking the LPl norm of u with respect to xl9 then the LPl norm of the 
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result with respect to JC2, and so on, finishing with the LPn norm with respect to 
xn. (Of course these are not actually norms unless each A i^ 1.) 

Mlp = \u\\Lp\dxx)\\L
p\dx2) \Lp"{dxn)' 

Evidently \M\^pp^ = \\u\\p. We require the mixed norm Holder inequality 

A; i l k 

n «Jl ^ n iî iip. 

where 1/q = 2 * Œ 1 0/P/)> th a t *s> where q = (^j 
given by 

, qn) has components 

for / = 1,. 

The definition of ||-|| requires that the individual Lpj norms be evaluated in 
component order. This order can be altered by means of a permutation o of 
{1, 2 , . . . , n}. If op = (pa(lypa{2y . . . ,Pa(n)), ox = (xa(ly xa(2y . . . , xa(/z)), and 
ou(ox) = u(x), then ||aw||ap is called a permuted mixed norm of u\ it involves 
the same Lpj norms with respect to the same variables as does ||w|L but taken in 
a different order. In general the value of ||aw||ap varies with a; the permutation 
inequality states that the largest value for ||at/||ap occurs for any o for which 
the components of op are in non-increasing order: 

Pa{\) = Pa{2) è . . . = Pa(ny 

In general the value of a mixed norm is increased if the order of the two 
adjacent Lpj norms is transposed resulting in the larger Lpj norm being evalu
ated earlier. 

3. Mixed-norm and reduced Sobolev inequalities. Our proof of the reduced 
Sobolev inequality (2) relies on the following mixed-norm version of the first 
order Sobolev inequality. 

3.1 THEOREM. Let n ^ 2 and 1 

(3) 
n 1 n 

r p 

p % q. Let r satisfy 

1 
- 1 > 0. 

q. 

For j = 1, . . . ,n let \j(p, q) = (q9 q, . . . 9p,. . . , q) have all components equal to 
q except thefth component which is p. There exists a constant K such that for all 
u e CS°(R"), 

(4) K 2 \\Dju\\(p,q). 
7 - = i y JKFH' 
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P R O O F . Let 5 ^ 1 . Starting with the identity 

\u(x) \s = / ^ Djiu(x) \sdXj 

we obtain the inequality 
/*oo 

(5) sup \u(x) r ^ s J _ \u(x) \s~l\DjU(x) \dxj. 

Let X ^ 1 be given by 

> _ i + ± _ i + 1 _ i . 
X q p' q p 

( H e r e / / is the exponent conjugate to/?.) Taking the L norm of bo th sides of (5) 

we obtain 

l |a |«niO T . ( o o A )^*| |a | i ir-1Z)y .M| |^. ( I i X ) , 

where a is any permutat ion of {1, 2, . . . , n) for which a ( l ) = j . An application 

of Holder 's inequality sandwiched between two applications of the permutat ion 

inequality for mixed norms gives us 

Mlv/oo^A) = M !'v/°o,À) ^ \\o\u[ l(TV(00,À) 

s\\o\u\s 1Dy*IL. (U) 

s s\\a\u 
1 5 - 1 I 

Ljip'^WoDjUWo^p,;,) 

^ s\\u\\\r-\v\\Dju\\MP^ 
Note that p ^ q is needed to justify the last inequality above. We now have 

\ujiooA) ^ ifi i i i i i^ii^ii^. ,)-
(Throughout this and subsequent proofs K represents various constants 

independent of w G C^°(R"), and may change from line to line.) Let / satisfy 

1/t = 2 y = i ( l /vy(oo, sX) ). Evidently t = ( * , * , . . . , / ) where t = sX/(n - 1). 

Using Holder 's inequality again we obtain 

(6) IK = ^ n IN "V(00,5À) 

K\\u\\trx> n ii^n;^). 
Clearly we want to choose s so that 

(7) (s - \)p' = nt = 
nsX ns qp' 

n — 1 q 4- /?' 
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Solution of (7) for s leads to the common value (s — \)p' = nt = r, where r is 
given by (3). Cancellation of the common factor in (6) then gives us 

Ml, ^ 4jJ \\DJU\\MPJ 

n 

^Kjl\\Dju\\{p^ 

as required. D 

3.2 REMARK. Inequality (4) is also invariant under dilation and cannot hold 
for all u e C^°(R") unless r satisfies (3). Therefore we can avoid the algebra to 
solve (7) — it must lead to the correct value for r. 

3.3 THEOREM. Let p ^ 1, m = 1, mp < n, and let r satisfy 

n n 
- = - — m. 
r p 

Then there exists a constant K such that for all u G C^°(R"), 

IMI, ^ K 2 \\Dau\\p. 

PROOF. We proceed by induction on m. The case m = 1 is the usual 
first-order version of Sobolev's inequality, and it is also the special case q = p of 
Theorem 3.1. Suppose, therefore, that the case m — 1 has been proved. We 
consider the case m. By Theorem 3.1 we have 

MI^KUWDJUW^^ 

where p = q and r satisfies 

n 1 n — \ 

r p q 

Now apply the induction hypothesis to D-u, considered as a function of the 
n — 1 variables excluding x,: 

(8) I I^IIL^R-1) ^ K 2 llZ^-ttlI^R--!) 
J 8 G J ^ ( « , W - 1 ) 

where 

(9) n-=^- » "-^ - (m - 1). 
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Observe that q, as determined by (9), is indeed larger than p. We take the LP 
norm of (8) with respect to the remaining variable Xj. Since p â q we can 
transpose that LP norm into its correct ( / th) position and hence obtain 

Thus 

where 

ra, 

4. Further reductions. Is it possible to replace Jt in (2) with a proper subset 
oiJtl. For some values of ra, « and/? the answer is yes. However, the techniques 
we are using in this paper are well suited to address this question only for the 
special case/? = 1. Only partial results are accessible if p > 1. 

Let Sf be a subset olJ((n, m) satisfying the condition 

(10) 2 ctj = k^ 1, (j = 1 , 2 , . . . , » ) , 

where k is independent of y. If c is the number of elements in Sf then 

« n 

(11) «A: = 2 2 « = 2 2 a, = >wc. 

We shall show that, at least for/7 = 1, the set^# in (2) can be replaced w i t h ^ 
For Sf = Jt we have 

n 1 « — 1 1 « — 1 

r p q P P 

and the induction is complete. 

- (m -- 1 ) -
p 

W m\(n - m)\ 

while 

(n - 1)! 
\m - 1/ (m — \)\(n — m)\ 

If « = 4 and m = 2 there are several possibilities for the choice of Sf, among 
them the sets 
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sex = { ( i , 1,0,0), (0,0, i, l ) } , 

Se2 = { (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1) }. 

For^J we have k = 1, c = 2; f o r ^ , k = 2, c = 4. B o t h ^ a n d ^ are proper 
subsets of Jt(A, 2), which has six elements. 

4.1 THEOREM. Let m < n and let 6^ be a subset of Jt(n, m) satisfying (10) and 
having c elements. If q = n/(n — m) then the reduced Sobolev inequality 

(12) IMI, ^ - i - 2 IIMi, 

holds for all u <E C£°(R"). 

PROOF. Since 

A i /•«> 
W(*) = J -oo DlU& *2> • • • » Xn)d£ = - J Dlu& X2,..., Xn)(%9 

therefore 

X\ 

1 f°° 
SUp |t/(x) | S - / _ l^jM^) |JXj. 

Iterating this inequality to take successive suprema with respect to x 2 , . . . , x„ 
we obtain 

1 /*°° /*°° f°° 
sup | « ( x ) | â - J _ o D J _ o o . . . J _ o o | Z ) 1 Z ) 2 . . . J D m M | ^ , . . . J x m . 

Integrating the remaining variables leads to 

\M\(co,...,oo,h...,i)^^,\\DiD2...Dmu\\l. 

Similarly, for any a e Jt(n, m) we have, by the permutation inequality, 

where wtt has / t h component given by 

roo if a, = 1 (oo if a = 1 

1 if a, = 0. 

Now 2 a e ^ ( l / w a ) = 1/r, where, by (11), 

c — k = k = - (independent of j). 
r- m r 
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Also, q = n/(n — m) = cr, so by Holder's inequality 

\u\\c
q = II M c | | r = n u ^ n \\u\\^ n ^\\Dau\\v 

The desired inequality (12) now follows by virtue of the inequality between 
geometric and arithmetic means. • 

It seems reasonable to conjecture that if p > 1 and mp < n then 

(13) Ml, ë K 2 II^HII, 

holds for all u e C^°(R") provided q = np/(n — mp) a n d ^ satisfies (10). The 
author does not know how to prove this in general; the mixed-norm techniques 
used here are not adequate. Some special cases, however, can be confirmed. For 
instance (13) holds provided m = 2 and provided the number k in (10) satisfies 
k ^ n/2. To see this, picky and let Sj = {i ¥= j:at = otj = 1 for some a e S?}. 
Evidently Sj has k elements and since 2p < n ^ 2k we can apply the ordinary 
first order Sobolev inequality to D.u considered as a function of the k variables 
{xt\i G Sj} to obtain 

I I ^ H L ^ ) ^ K 2 iiztyiiî R*), 
i*Sj 

where klr = (kip) — 1. Taking LP norms with respect to the remaining 
variables leads to 

HDy-tt||w//v,s.) ^ K 2 llltyill,, 
i es. 

where w/(^, r S-) has z'th component equal to r if i e 5- and equal to p 
otherwise. Now the proof of Theorem 3.1 can be easily modified to show that 

provided 

Thus we have 

IMI, =i K 2 IU>,*llw//v.Sy) 

n n — k k 
- = + - - 1 > 0. 
q p r 

\u\\q ^ * 2 2 ii/tyiii, ^ K 2 IU^II, 
y=l ies- « e ^ 

provided 
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q P P P 
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