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ON CONJUGACY CLASSES OF CONGRUENCE SUBGROUPS
OF PSL(2, R).

C. J. CUMMINS

Abstract

Let G be a subgroup of PSL(2,R) which is commensurable
with PSL(2,Z). We say that G is a congruence subgroup of
PSL(2,R) if G contains a principal congruence subgroup Γ(N)
for some N . An algorithm is given for determining whether two
congruence subgroups are conjugate in PSL(2,R). This algo-
rithm is used to determine the PSL(2,R) conjugacy classes of
congruence subgroups of genus-zero and genus-one. The results
are given in a table.

1. Introduction.

The principal congruence subgroups of Γ = SL(2,Z) are defined as follows:

Γ(N) = {
(
a b
c d

)
∈ SL(2,Z) |

(
a b
c d

)
≡

(
1 0
0 1

)
(mod N)},

for N = 1, 2, 3, . . . . The image of Γ(N) in Γ = PSL(2,Z) = SL(2,Z)/{±12} is
denoted by Γ(N). A subgroup of Γ is called a congruence subgroup if it contains
some Γ(N). The level of a congruence subgroup G of Γ is the smallest N such that
Γ(N) is contained in G.

It is natural to extend this definition to subgroups of PSL(2,R). A subgroup of
PSL(2,R) is commensurable with Γ if G ∩ Γ has finite index in both G and Γ. In
this case, we say that G is a congruence subgroup if it contains some Γ(N).

It was originally conjectured by Rademacher that there are only finitely many
congruence subgroups of given genus in Γ. This problem was studied by several
authors. Cox and Parry [3, 4] gave effective bounds and computed a list of genus-
zero congruence subgroups of Γ. Independently, Thompson [9] showed that, up to
conjugation, there are only finitely many congruence subgroups of PSL(2,R) of
fixed genus. Motivated by Thompson’s result, and using bounds due to Zograf [10],
a list of congruence subgroups of PSL(2,R) of genus-zero and genus-one was found
in [5] and fundamental domains for these groups were found in [6].

The strategy of [5] was, following Thompson, to use a result of Helling which
states that every group commensurable with Γ is conjugate to a subgroup of a cer-
tain class of maximal discrete subgroups of PSL(2,R). Thus to find all congruence
subgroups of genus-zero and genus-one, it suffices to compute all the conjugacy
classes of such subgroups inside these “Helling Groups”. Further work, however, is
required to find the resulting PSL(2,R) conjugacy classes. In this paper we supply
the necessary algorithm and the resulting conjugacy classes are given in Table 1.
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In Section 2 background definitions are given. The algorithm for the computation
is described in Section 3 and some concluding comments are given in Section 4.

2. Background

If G is a discrete subgroup of PSL(2,R) which is commensurable with Γ, then
G acts on the extended upper half plane H∗ = H ∪ Q ∪ {∞} by fractional linear
transformations and the genus of G is defined to be the genus of the corresponding
Riemann surface H∗/G.

From a computational point of view, it is easier to work with subgroups of Γ and
SL(2,R), rather than Γ and PSL(2,R). There is a 1-1 correspondence between the
subgroups of PSL(2,R) and the subgroups of SL(2,R) which contain −12, where
12 is the identity of SL(2,R). Thus in [5] and in this paper we consider subgroups
of SL(2,R) which contain −12. If G is subgroup of SL(2,R) and G is its image in
PSL(2,R), then when we refer to geometric invariants such as the genus or cusp
number of G, we mean the corresponding invariants of G.

We recall the following definition.

Definition 2.1.

Γ0(f)+ = {e−1/2

(
a b
c d

)
∈ SL(2,R)

∣∣∣ a, b, c, d, e ∈ Z, e || f, e | a, e | d,

f | c, ad− bc = e},

where e || f means e | f and gcd(e, f/e) = 1.

By the following theorem, the study of groups commensurable with Γ is essen-
tially the study of subgroups of the groups Γ0(f)+, where f is a square-free integer.

Theorem 2.2. (Helling [7]. See also Conway [2]). If G is a subgroup of SL(2,R)
which is commensurable with Γ, then G is conjugate to a subgroup of Γ0(f)+ for
some square-free f .

As noted in the introduction, we many define the notion of a congruence subgroup
for subgroups of Γ0(f)+ using the same definition as for subgroups of Γ. However, it
turns out to be equivalent, and more convenient, to introduce, following Thompson,
the appropriate generalization of Γ(N). Recall that

Γ0(N) = {
(
a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod N)}.

Definition 2.3. G(n, f) = Γ0(nf) ∩ Γ(n).

Note that G(n, f) is a normal subgroup of Γ0(f)+ and that G(n, 1) = Γ(n).

Definition 2.4. Call a subgroup G of Γ0(f)+ a congruence subgroup if G(n, f) ⊆ G
for some n.

The following proposition shows that Definition 2.4 is equivalent, for subgroups
of Γ0(f)+, to the standard definition of a congruence subgroup given in the intro-
duction.

265https://doi.org/10.1112/S1461157000001510 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001510


On Conjugacy Classes of Congruence Subgroups of PSL(2,R).

Proposition 2.5. A subgroup G of SL(2,R) contains a subgroup G(n, f) for some
n and some f if and only if G contains Γ(m) for some m.

Proof. Suppose G contains Γ(m). Then Γ(m) = G(m, 1) and so G contains G(m, 1).
Conversely, if G contains G(n, f), then we have Γ(nf) ⊆ Γ0(nf)∩Γ(n) and so Γ(nf)
is contained in G.

We may also extended the notion of the level of a congruence subgroup.

Definition 2.6. If G is a congruence subgroup of Γ0(f)+, then let n = n(G, f) be
the smallest positive integer such that G(n, f) ⊆ G. We call n(G, f) the level of G.

If f = 1, then Γ0(f)+ = Γ and this definition of level coincides with the usual
definition, since G(n, 1) = Γ(n). However, if G is a subgroup of Γ0(f)+ and f 6= 1,
then it is not necessarily the case that n = n(G, f) is the smallest n such that Γ(n)
is contained in G. Moreover, if G is a congruence subgroup of both Γ0(f1)+ and
Γ0(f2)+, with f1 6= f2, then n(G, f1) and n(G, f2) are not necessarily equal.

3. The Algorithm

By Helling’s Theorem, every subgroup of SL(2,R) which is commensurable with
SL(2,Z) is conjugate to a subgroup of Γ0(f)+ for some square-free, positive integer
f . Thus to tabulate all conjugacy classes of congruence subgroups of genus-zero and
genus-one, it is sufficient to list the genus-zero and genus-one subgroups of Γ0(f)+

for the (finite) set of values of f such that Γ0(f)+ is genus-zero or genus-one. This
was done in [5]. However, in [5] the groups were found up to conjugacy in each
Γ0(f)+. If a class occurred for two different values of f , then this was recorded in
the tables, but the full SL(2,R) conjugacy classes were not computed.

In this section we give an algorithm to find these classes. Table 1 records the
results.

Suppose that K1 and K2 are subgroups of Γ0(f1)+ and Γ0(f2)+ respectively,
and that K1 and K2 represent two of the classes in Table 2 of [5]. We want to
test K1 and K2 for conjugacy in SL(2,R). It would initially seem that we have to
consider the case f1 6= f2. It turns out, however, that we do not need to consider
such cases, since we can find a square-free integer fmin such that K1 and K2 are
both subgroups of Γ0(fmin)+.

Proposition 3.1. Suppose K1 and K2 are congruence subgroups of Γ0(f1)+ and
Γ0(f2)+ respectively. If K1 and K2 are conjugate in SL(2,R), then there is some
positive, square-free integer fmin, such that K1 and K2 are subgroups of Γ0(fmin)+.

Proof. First note that if m−1K1m = Km
1 = K2 for some m in SL(2,R), then m is

a multiple of a primitive integer matrix, since K1 and K2 are commensurable with
SL(2,Z). (This follows easily from the fact that K1 and K2 both have Q∗ = Q∪{∞}
as the set fixed by parabolic elements and so m must map Q∗ to Q∗. ) Next, for
any element m of SL(2,R) which is equal to λA, where A is a primitive integer
matrix, we define the normalized determinant 〈m〉 to be the determinant of A. It
is not difficult to verify that 〈m〉 is well defined.

If B ∈ SL(2,Z), then 〈mB〉 = 〈m〉. So the set of normalized determinants of
the elements of K1 is finite, since K1 contains some Γ(N) with finite index. Let
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{e1, . . . , ek} be the set of normalized determinants of the elements of K1. These
must be square-free, since K1 is contained in Γ0(f1)+, so the normalized determi-
nants divide f1. Then fmin = lcm(e1, ..., ek) is the smallest square-free integer such
that K1 is contained in Γ0(fmin)+. The matrices of K2 have the same normalized
determinants as K1 up to squares, since they are obtained by conjugating by a
multiple of a primitive integer matrix. But K2 is contained in some Helling group
and so the normalized determinants of its elements must also be square-free. So the
set of its normalized determinants is also {e1, . . . , ek}. Thus K2 is also contained in
Γ0(fmin)+.

So to find all SL(2,R) conjugates of the congruence subgroups of interest, we can
first find all SL(2,R) conjugates within Γ0(f)+ for each f . Then the full SL(2,R)
classes are obtained using the known intersections of classes for different values of
f already computed in Table 2 of [5].

The area of a fundamental domain is invariant under conjugation in SL(2,R)
and so if K1 and K2 are subgroups of Γ0(f)+ which are conjugate in SL(2,R), they
have the same index in Γ0(f)+. Also, the number of classes of elliptic fixed points
of given order and the cusp number are invariant under SL(2,R) conjugation. Thus
when testing K1 and K2 for SL(2,R) conjugacy these invariants are first tested for
equality. Also, by [5] Corollary 4.8, the set of primes dividing the levels of K1 and
K2 are equal if the groups are conjugate in SL(2,R).

Given two groups which pass these initial tests, we now want to bound the
number of conjugating matrices m which have to be considered. As Γ0(f)+ acts
transitively on Q ∪ {∞}, by replacing K2 by a conjugate group in Γ0(f)+ we can

arrange for m to have the form m = λ

(
p q
0 r

)
, with p, q, r integers such that

gcd(p, q, r) = 1, pr > 0 and λ = (pr)−1/2. By [5] Proposition 4.7 we have the
following constraints: p | `1, r | (`1/p) gcd(f, p), 0 6 q < p and also `2 | gcd(pr, `1)`1,
where `i is the level of Ki, i = 1, 2. This assumes that we fix K1 and conjugate K2

in Γ0(f)+. If we also allow conjugations of K1 in Γ0(f)+, then we can also impose

0 6 q < gcd(p, r), since we can then conjugate K1 by
(

1 t
0 1

)
. As Km−1

2 = K1 we

can apply the same arguments to get the conditions: r | `2 and p | (`2/r) gcd(f, r),
but again this assumes we allow a conjugation of K1 in Γ0(f)+. This produces a
finite list of possible conjugating matrices m.

To summarize: given K1 and K2, subgroups of Γ0(f)+, we first test the obvious
invariants for equality. Then, given the levels of the two groups, we can find a
finite list of possible conjugating matrices with the property that, if K1 and K2 are
conjugate in SL(2,R), then there is some m in the list and some conjugate K ′1 of K1

in Γ0(f)+ and some conjugate K ′2 of K2 in Γ0(f)+ such that m conjugates K ′1 to
K ′2. Since there are only finitely many conjugates K ′1 and K ′2, this leads to a finite
number of cases to test and so we have an algorithm for finding all the SL(2,R)
conjugacy classes of congruence subgroups of a given genus.

Since the groups are infinite there is still the problem of giving an algorithm
to perform the test for equality. This can be done as follows. It is not difficult to

verify that if m = λ

(
p q
0 r

)
as above, then mG(pr`1, f)m−1 ⊆ G(`1, f) ⊆ K1. Let

`3 = lcm(pr`1, `2), then since G(`3, f) ⊆ G(pr`1), we have mG(`3, f)m−1 ⊆ K1.
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Moreover, G(`3, f) ⊆ G(`2, f) ⊆ K2. Thus to test if mK2m
−1 is equal to K1, it

is sufficient to test if msm−1 is in K1, for all s ∈ S for some set of generators S
of K2 over G(`3, f). (The fact that G(`3, f) and G(`2, f) are normal subgroups of
K2 and that K2/G(`2, f) was constructed as a permutation group in [5] simplifies
the computation of the cosets). Thus we are finished if we have an algorithm for
testing when an element g in Γ0(f)+ is in K1, but as the group K1/G(`1, f) was
constructed as a subgroup of Γ0(f)+/G(`1, f) in [5], we can simply test to see if
the image of g in Γ0(f)+/G(`1, f) is in K1/G(`1, f).

In summary we have the following algorithm.

The Algorithm

Input: A square-free integer f , and two congruence subgroups K1 and K2 of
Γ0(f)+, of levels `1 and `2 respectively.

Output: Return true if K1 and K2 are conjugate in SL(2,R) and false otherwise.

• I1 ← invariants of K1

• I2 ← invariants of K2

• If I1 6= I2 then return false
• Else
• C1 ← conjugates of K1 in Γ0(f)+

• C2 ← conjugates of K2 in Γ0(f)+

• M ← list of possible conjugating matrices
• For K in C2

• For m =
(
p q
0 r

)
in M

• `3 ← lcm(pr`1, `2).
• S ← a set of generators of K over the normal

subgroup G(`3, f).
• S′ ← mSm−1

• If S′ is not a subset of Γ0(f)+ then move to the next m
• For each L in C1

• If the image of S′ in Γ0(f)+/G(`1, f) is contained in
L/G(`1, f) then return true

• If after testing all elements of C2 we have not returned true then return false

4. Conclusions

In the previous section an algorithm was given for determining whether two
subgroups of Γ0(f)+ are conjugate in SL(2,R). Table 2 of [5] records when the
conjugacy classes of subgroups Ci of Γ0(fi)+, i = 1, 2, are such that f1 6= f2 and
C1 ∩ C2 is not empty. As explained in the last section, combining these two pieces

268https://doi.org/10.1112/S1461157000001510 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001510


On Conjugacy Classes of Congruence Subgroups of PSL(2,R).

of information yields the SL(2,R) conjugacy classes of congruence subgroups of
genus-zero and genus-one.

The algorithm of the previous section was programmed in MAGMA [1]. The
results are presented in Table 1. Each entry in this table is a list of the Γ0(f)+

conjugacy classes from Table 2 of [5] which are subsets of one SL(2,R) conjugacy
class. Cases with a single Γ0(f)+ conjugacy class have been omitted. The notation
is as in Table 2 of [5]: each class has a label level(letter)genus

f , where f is a square-
free integer such that the group is contained in Γ0(f)+; level is the level of the
group with respect to this f (as defined in Definition 2.4); genus is its genus; and
letter is a letter labelling the group amongst all groups of the same level and genus.

Sebbar [8] has shown that there are 15 SL(2,R) conjugacy classes of torsion-
free congruence subgroups of genus-zero. As a test of the results of this paper,
using the additional data from Table 2 of [5], we also find 15 SL(2,R) conjugacy
classes of torsion-free, genus-zero congruence subgroups. Moreover, these give rise
to 33 classes of subgroups of the modular group, again in agreement with Sebbar’s
results.
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Table 1: PSL(2,R) conjugacy classes of congruence subgroups of genus-zero and
genus-one.

Classes Classes Classes Classes

2B0
1 1B0

2 8C0
1 4D0

2 14C0
1 2D0

7 4H0
3 4I0

3 8C0
3

2L0
6 4I0

6
2C0

1 4B0
1 2D0

2 8I0
1 4K0

2 14D0
1 14C0

7
4J0

3 8D0
3 4J0

6
3B0

1 1B0
3 8J0

1 8K0
1 16E0

1 15C0
1 3C0

5
8L0

2 8U0
2 8V 0

2 4K0
3 8F0

3 4M0
6

3D0
1 9B0

1 3D0
3 15D0

1 15E0
5

8L0
1 16F0

1 8W0
2 6E0

3 3C0
6

4C0
1 2C0

2 16C0
1 8J0

2
8M0

1 8N0
2 7A0

3 1C0
21

4E0
1 8D0

1 2F0
2 18C0

1 6F0
3

4F0
2 8P0

1 8Q0
1 16H0

1 7B0
3 7B0

21
16I0

1 32A0
1 8AB0

2 24A0
1 12E0

2
4F0

1 8E0
1 4G0

2 8Y 0
2 8Z0

2 16E0
2 12F0

3 24B0
3 12D0

6
26A0

1 26C0
13

4G0
1 8H0

1 16D0
1 8R0

1 8AA0
2 12G0

3 12H0
3 12I0

3
4J0

2 8M0
2 28A0

1 28C0
7 24A0

3 12A0
6 12B0

6
9C0

1 3C0
3 12C0

6
5B0

1 1B0
5 30A0

1 30C0
5

9H0
1 9I0

1 27A0
1 12N0

3 6F0
6

5D0
1 5C0

5 9F0
3 9G0

3 36A0
1 12O0

3
12R0

3 12S0
3 24D0

3
5G0

1 25A0
1 5H0

5 9J0
1 9E0

3 48A0
1 24C0

2 24E0
3 12M0

6 12N0
6

12O0
6

5H0
1 25B0

1 5I0
5 10B0

1 10D0
5 3B0

2 1C0
6

21A0
3 21B0

3 21B0
21

6C0
1 2D0

3 10C0
1 5D0

2 2C0
5 3H0

2 9B0
2 3E0

6
1E0

10 2B0
5 1B0

10
6D0

1 3C0
2 5B0

2 1D0
10

10F0
1 5G0

2 10N0
5 2D0

5 4B0
5 2G0

10
6F0

1 3F0
2 2F0

3 5C0
10 6D0

2 2E0
6

1E0
6 3B0

5 1B0
15

10G0
1 20A0

1 10D0
2 6M0

2 2M0
6

6G0
1 3G0

2 10Q0
5 20E0

5 10G0
10 4C0

5 2D0
10

9F0
2 9G0

2 9C0
6

6H0
1 12D0

1 6H0
2 12B0

1 12C0
3 4E0

5 2I0
10

10B0
2 2F0

10
6I0

1 12E0
1 6L0

2 12C0
1 6E0

2 6B0
5 2D0

15
2H0

3 4G0
3 2K0

6 10E0
2 10J0

10
12H0

1 6N0
2 8A0

5 4D0
10

6J0
1 18D0

1 6G0
3 12D0

2 4E0
6

12I0
1 12J0

1 24B0
1 10F0

5 10G0
5 5A0

10
6K0

1 18F0
1 3I0

2 12G0
2 12H0

2 12P0
3 12I0

2 12L0
6

9E0
2 6H0

3 3G0
6 12Q0

3 24C0
3 12I0

6 10H0
5 20A0

5 10B0
10

12J0
6 2C0

3 1D0
6

6L0
1 12G0

1 6O0
2 10I0

5 20B0
5 10A0

10
13A0

1 1B0
13 2E0

3 4B0
3 2H0

6
7C0

1 1B0
7 10O0

5 20G0
5 10F0

10
13B0

1 13D0
13 2G0

3 4C0
3 2G0

6
7G0

1 7B0
7 10P0

5 20F0
5 10E0

10
13C0

1 13E0
13 4D0

3 2F0
6
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Classes Classes Classes Classes

15C0
5 15D0

5 5A0
15 8G1

1 16G1
1 8AC1

2 12L1
1 6L1

2 16D1
1 8N1

2
8V 1

2
15G0

5 15H0
5 15A0

15 12M1
1 6K1

2 16F1
1 8W1

2
8H1

1 16I1
1 8AE1

2
20H0

5 20I0
5 10I0

10 12N1
1 6J1

2 16J1
1 8AB1

2
8I1

1 16H1
1 8AD1

2
2C0

7 1B0
14 12O1

1 24G1
1 12N1

2 16K1
1 32C1

1 16Q1
2

8K1
1 16M1

1 32E1
1

2E0
7 4A0

7 2D0
14 8AH1

2 8AI1
2 16W1

2 12P1
1 36B1

1 12K1
3 16L1

1 32D1
1 16R1

2

6B0
7 3B0

14 9A1
1 3A1

3 12Q1
1 24I1

1 6P1
2 17A1

1 1A1
17

12V 1
2 4H1

3 8J1
3

14B0
7 7C0

14 9D1
1 27A1

1 3B1
3 2H1

6 4U1
6 17B1

1 17A1
17

9D1
3

2B0
11 1B0

22 12S1
1 12O1

3 17C1
1 17B1

17
9E1

1 9B1
3

3A0
11 1B0

33 12U1
1 6R1

2 18D1
1 6E1

3
9J1

1 27C1
1 9H1

3
4B0

11 2C0
22 9I1

3 12V 1
1 24K1

1 12Y 1
2 18E1

1 9D1
2

2C0
15 1E0

30 10A1
1 2B1

5 12W1
1 24L1

1 12AC1
2 18I1

1 9I1
2

12AD1
2 12T1

3 24O1
3

2E0
15 1F0

30 10B1
1 5A1

2 12U1
6 12V 1

6 18K1
1 6L1

3

2F0
15 4A0

15 2D0
30 10D1

1 10C1
5 14C1

1 7E1
2 19A1

1 1A1
19

2A0
23 1B0

46 10F1
1 5C1

2 14D1
1 7B1

2 19B1
1 19A1

19

6C1
1 12B1

1 6C1
2 10G1

1 20E1
1 10F1

2 14E1
1 7F1

2 2A1
7 20B1

1 20C1
1 20E1

5
2D1

5 4D1
5 2H1

10 1B1
14

6D1
1 18C1

1 6D1
3 20D1

1 4C1
5

10I1
1 5D1

2 14L1
1 7N1

2 14C1
7

6E1
1 12K1

1 6M1
2 7B1

14 20F1
1 10E1

2 4E1
5

10K1
1 20J1

1 10L1
2 2G1

10
6F1

1 12T1
1 18J1

1 10F1
5 20W1

5 10L1
10 15B1

1 5B1
3

36C1
1 6Q1

2 18F1
2 20I1

1 20V 1
5

6K1
3 12P1

3 6I1
6 11A1

1 1A1
11 15C1

1 5C1
3 3B1

5
1B1

15 20K1
1 20L1

1 40A1
1

7B1
1 49A1

1 7A1
7 11D1

1 11A1
11 40B1

1 20G1
2 20H1

2
15E1

1 3C1
5 20AA1

5 40G1
5 20L1

10
8A1

1 4B1
2 12A1

1 4B1
3

15G1
1 5F1

3 15E1
5 20M1

1 10K1
2 20Y 1

5
8B1

1 16A1
1 4D1

2 12C1
1 6E1

2 5A1
15 10K1

10
8H1

2
12F1

1 6I1
2 4C1

3 15H1
1 15F1

5 21A1
1 21B1

1 21A1
7

8C1
1 4E1

2 2G1
6

15I1
1 15D1

3 15I1
5 21C1

1 7A1
3 3C1

7
8D1

1 16C1
1 8T1

2 12I1
1 4G1

3 15A1
15 1B1

21

8F1
1 16E1

1 32A1
1 12J1

1 24E1
1 12H1

2 16B1
1 8G1

2 21I1
1 21C1

3 21C1
7

4F1
2 8X1

2 16I1
2 21B1

21
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Classes Classes Classes Classes

24F1
1 12F1

2 13A1
2 1B1

26 8L1
3 4R1

6 3D1
5 9B1

5 3B1
15

24J1
1 12X1

2 13B1
2 13B1

26 8M1
3 4T1

6 4B1
5 2C1

10

26A1
1 2C1

13 15D1
2 3F1

10 8N1
3 16F1

3 8P1
6 4F1

5 8B1
5 4K1

10

26B1
1 26F1

13 15E1
2 5C1

6 8O1
3 16G1

3 8Q1
6 4G1

5 8C1
5 4J1

10

27B1
1 9C1

3 17A1
2 1C1

34 8P1
3 16H1

3 8V 1
6 6D1

5 3D1
10

30D1
1 6E1

5 17B1
2 17C1

34 10B1
3 5B1

6 6H1
5 3G1

10 2F1
15

1F1
30

30E1
1 30K1

5 20B1
2 20C1

2 20C1
10 12A1

3 24B1
3 12A1

6
7A1

5 1A1
35

32B1
1 16G1

2 20D1
2 4I1

10 12D1
3 24A1

3 12B1
6

7B1
5 7A1

35
39A1

1 39B1
1 39A1

13 20I1
2 20J1

2 20P1
10 12H1

3 24G1
3 12H1

6
12K1

6 8A1
5 4F1

10
52A1

1 52B1
1 52B1

13 24J1
2 24L1

2 8M1
6

12I1
3 24H1

3 12I1
6 8E1

5 4N1
10

5E1
2 25A1

2 5A1
10 24K1

2 24M1
2 24E1

6 12J1
6

10D1
5 20H1

5 10E1
10

6B1
2 2B1

6 24N1
2 24O1

2 24H1
6 12L1

3 24I1
3 24J1

3
24K1

3 12M1
6 12N1

6 10E1
5 20I1

5 10F1
10

6O1
2 18B1

2 6E1
6 24P1

2 8L1
6 12O1

6
16A1

5 8F1
10

7A1
2 1A1

14 4A1
3 2D1

6 12M1
3 24L1

3 48A1
3

12L1
6 24G1

6 20A1
5 20B1

5 10A1
10

7G1
2 7A1

14 4D1
3 2E1

6
12Q1

3 24N1
3 12T1

6 20AB1
5 40H1

5 20M1
10

9A1
2 3C1

6 4E1
3 8C1

3 2F1
6

4M1
6 12S1

3 24P1
3 12W1

6 20AC1
5 40I1

5 20K1
10

9B1
2 3D1

6
4F1

3 8D1
3 4N1

6 13A1
3 1A1

39 20J1
5 20Q1

5 10I1
10

9G1
2 9D1

6
4I1

3 8K1
3 16E1

3 13B1
3 13F1

39 20K1
5 10C1

10
9H1

2 9E1
6 4V 1

6 8O1
6

14A1
3 2D1

21 20L1
5 20O1

5 10H1
10

9J1
2 27A1

2 9H1
6 5A1

3 1A1
15

14B1
3 2E1

21 20M1
5 20N1

5 10J1
10

10B1
2 2B1

10 6C1
3 3B1

6
18J1

3 9G1
6 20P1

5 10D1
10

11A1
2 1A1

22 6F1
3 12F1

3 6D1
6

21A1
3 21B1

3 21A1
21 20R1

5 40C1
5 20D1

10
11B1

2 11A1
22 6H1

3 12G1
3 6C1

6
21D1

3 21E1
3 21D1

21 20S1
5 40D1

5 20E1
10

12E1
2 4K1

6 6J1
3 3E1

6
42A1

3 42B1
3 42B1

21 20X1
5 20Z1

5 10M1
10

12U1
2 4S1

6 8E1
3 4J1

6
2C1

5 4A1
5 2E1

10 30C1
5 30D1

5 10A1
15

12W1
2 4X1

6 8F1
3 4E1

6
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Classes Classes

30I1
5 30J1

5 10C1
15 33A1

11 33B1
11 33A1

33

40A1
5 40B1

5 20B1
10 2B1

13 1A1
26

40E1
5 40F1

5 20J1
10 3A1

14 1B1
42

5A1
6 1C1

30 3D1
14 1F1

42

5D1
6 1D1

30 2E1
15 4C1

15 2M1
30

5I1
6 5C1

30 2G1
15 4B1

15 2N1
30

7A1
6 1C1

42 2H1
15 4G1

15 2R1
30

7B1
6 7A1

42 4D1
15 2I1

30

2B1
7 4B1

7 2E1
14 4E1

15 2H1
30

3A1
7 1A1

21 4H1
15 2Q1

30

4C1
7 2C1

14 6D1
15 3C1

30

4D1
7 2D1

14 10D1
15 5D1

30

4F1
7 8A1

7 2G1
14 2A1

17 1B1
34

4E1
14

3B1
17 1A1

51
6E1

7 12A1
7 6E1

14
2B1

19 1A1
38

6F1
7 3E1

14
2C1

21 1A1
42

14D1
7 28F1

7 14C1
14

3B1
22 1A1

66
28A1

7 28B1
7 28C1

7
56A1

7 28A1
14 28B1

14 2C1
23 4A1

23 2C1
46

28C1
14

3A1
23 1A1

69
3A1

10 1B1
30

2C1
31 1A1

62
2B1

11 4B1
11 2B1

22
2C1

33 1C1
66

2C1
11 4A1

11 2C1
22

2C1
35 1C1

70
4D1

11 8C1
11 4C1

22
3A1

35 1C1
105

5A1
11 1A1

55
2E1

39 1B1
78

5B1
11 5A1

55
2A1

47 1A1
94

6A1
11 2D1

33
2C1

55 1A1
110
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