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Abstract

Let σA(n)= |{(a, a′) ∈ A2
: a + a′ = n}|, where n ∈ N and A is a subset of N. Erdős and Turán con-

jectured that for any basis A of N, σA(n) is unbounded. In 1990, Ruzsa constructed a basis A ⊂ N
for which σA(n) is bounded in square mean. Based on Ruzsa’s method, we proved that there exists a
basis A of N satisfying

∑
n≤N σ

2
A(n)≤ 1 449 757 928N for large enough N . In this paper, we give a

quantitative result for the existence of N , that is, we show that there exists a basis A of N satisfying∑
n≤N σ

2
A(n)≤ 1 069 693 154N for N ≥ 7.628 517 798× 1027, which improves earlier results of the

author [‘A note on a result of Ruzsa’, Bull. Aust. Math. Soc. 77 (2008), 91–98].
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1. Introduction

For A, B ⊆ Z and n ∈ Z, let

σA,B(n) = |{(a, b) ∈ A × B : a + b = n}|,

δA,B(n) = |{(a, b) ∈ A × B : a − b = n}|.

Let σA(n)= σA,A(n) and δA(n)= δA,A(n). A subset A of N is called a basis of N if
σA(n)≥ 1 for n ≥ n0. In 1941, Erdős and Turán [3] formulated the following attractive
conjecture.

CONJECTURE (Erdős–Turán). If A ⊂ N is a basis of N, then σA(n) cannot be
bounded:

lim sup
n→+∞

σA(n)=+∞.

This harmless-looking conjecture seems to be extremely difficult. In 1954, using
probabilistic methods, Erdős [2] proved the existence of a basis of N for which σ(n)
satisfies c1 log n < σ(n) < c2 log n for all n with certain positive constants c1, c2. In
1990, Ruzsa [5] constructed a basis A of N for which σA(n) is bounded in mean
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square, that is, he constructed a basis A satisfying
∑

n≤N σ
2
A(n)= O(N ). Based

on Ruzsa’s method, Tang [6] proved that there exists a basis A of N satisfying∑
n≤N σ

2
A(n)≤ 1 449 757 928N for large enough N .

In this paper, improving Ruzsa’s method and employing a result concerning the
function π(x) of Panaitopol, we give a quantitative result for the existence of N and
obtain a stronger version of the above result.

THEOREM 1.1. There exists a set A of nonnegative integers that forms a basis of N,
and satisfies

∑
n≤N σ

2
A(n)≤ 1 069 693 154N for N ≥ 7.628 517 798× 1027.

Throughout this paper, let p be an odd prime, Zp be the set of residue classes
mod p and G = Z2

p. For A, B ⊆ G, let A − B = {a − b : a ∈ A, b ∈ B}. Denote
Qk = {(u, ku2) : u ∈ Zp} ⊂ G and for a finite set A, let

D(A)=
+∞∑
−∞

σ 2
A(n)= |{(a, b, c, d) ∈ A4

: a + b = c + d}|.

ϕ is a mapping
ϕ : G→ Z, ϕ(a, b)= a + 2pb,

where we identify the residues mod p with the integers 0≤ j ≤ p − 1.

2. Proofs

LEMMA 2.1. For any real number x ≥ 1342, there exists at least one prime in the
interval (x, 1.0147x].

PROOF. By direct calculation we know that Lemma 2.1 is true for 1342≤ x ≤
1 341 755 571 000.

We now assume that x > 1 341 755 571 000. We employ a result concerning the
function π(x) of Panaitopol [4]. That is,

π(x) <
x

log x − 1− (log x)−0.5 ∀x ≥ 6.

and

π(x) >
x

log x − 1+ (log x)−0.5 ∀x ≥ 59.

Thus it suffices to prove that for x > 1 341 755 571 000,

π(1.0147x)− π(x)

>
1.0147x

log(1.0147x)− 1+ (log(1.0147x))−0.5 −
x

log x − 1− (log x)−0.5

≥ 0.

This is equivalent to showing that

147 log x ≥ 147+ 104 log 1.0147+ 10147(log x)−0.5
+ 104(log x + log 1.0147)−0.5.
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It is easy to verify that the inequality is true for x = 1 341 755 571 000. Hence the
inequality is true for x > 1 341 755 571 000.

This completes the proof of Lemma 2.1. 2

LEMMA 2.2 [6, Lemma 2]. For g = (a, b) ∈ G, and fixed k, l ∈ Zp \ {0}, consider
the equation

g = x − y, x ∈ Qk, y ∈ Ql .

If k − l 6= 0, this equation is solvable unless(
(k − l)b + kla2

p

)
=−1,

and it has at most two solutions. If k − l = 0, it has at most one solution except for
g = 0, when it has p solutions.

LEMMA 2.3. Let p(≥11) be prime and m be a quadratic nonresidue of p with
m + 1 6≡ 0 mod p, 3m + 1 6≡ 0 mod p and m + 3 6≡ 0 mod p. Put B = Qm+1 ∪

Qm(m+1) ∪ Q2m . Then 1≤ σB(g)≤ 16 for all g ∈ G and 1≤ δB(g)≤ 11 for all
g 6= 0.

PROOF. The statement that 1≤ σB(g)≤ 16 for all g ∈ G is obtained by Yong-Gao
Chen in [1, Lemma 2]. We now show that 1≤ δB(g)≤ 11 for all g 6= 0.

Suppose that there is a g = (a, b) ∈ G, g 6∈ Q2m − Qm+1, g 6∈ Qm(m+1) − Q2m .
Note that m is a quadratic nonresidue of p, hence m − 1 6≡ 0 mod p and, by
Lemma 2.2,(

(m − 1)b + 2m(m + 1)a2

p

)
=−1,

(
m(m − 1)b + 2m2(m + 1)a2

p

)
=−1.

Thus

1=
(
(m − 1)b + 2m(m + 1)a2

p

)2(m

p

)
=

(
m

p

)
=−1.

This contradiction shows that

G = (Q2m − Qm+1) ∪ (Qm(m+1) − Q2m),

which is stronger than the required B − B = G.
Let

T = {m + 1, m(m + 1), 2m}.

If g = (a, b) ∈ G (g 6= 0), then (m − 1)b cannot equal both 2m(m + 1)a2 and
−2m(m + 1)a2. Now we consider the following three cases.

Case 1. (m − 1)b 6= 2m(m + 1)a2 and (m − 1)b 6= −2m(m + 1)a2. Then we have
g 6∈ (Qm+1−Q2m) ∩ (Q2m−Qm(m+1)) and g 6∈ (Q2m−Qm+1) ∩ (Qm(m+1)−Q2m).
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Indeed, if g ∈ (Qm+1 − Q2m) ∩ (Q2m − Qm(m+1)), by (m − 1)b 6= 2m(m + 1)a2

we have(
(−m + 1)b + 2m(m + 1)a2

p

)
= 1,

(
(−m2

+ m)b + 2m2(m + 1)a2

p

)
= 1.

Thus

1=
(
(−m + 1)b + 2m(m + 1)a2

p

)2(m

p

)
=

(
m

p

)
=−1.

Similarly, by (m − 1)b 6= −2m(m + 1)a2, we can show that

g 6∈ (Q2m − Qm+1) ∩ (Qm(m+1) − Q2m).

Hence, for g 6= 0, by Lemma 2.2,

δB(g)≤
∑

r,s∈T

δQr ,Qs (g)=
∑

r,s∈T
r 6=s

δQr ,Qs (g)+
∑
r∈T

δQr (g)≤ 2× 4+ 1× 3= 11.

Case 2. (m − 1)b = 2m(m + 1)a2 and (m − 1)b 6= −2m(m + 1)a2. Then

g 6∈ (Q2m − Qm+1) ∩ (Qm(m+1) − Q2m).

Moreover, if g ∈ Qm+1 − Q2m , then there exists (u, v) ∈ Z2
p such that

a = u − v, b = (m + 1)u2
− 2mv2. (2.1)

Thus
b = (−m + 1)v2

+ 2(m + 1)av + (m + 1)a2.

We have m − 1 6≡ 0 mod p and (m − 1)b = 2m(m + 1)a2, thus

((−m + 1)v + (m + 1)a)2 = 2m(m + 1)a2
+ (−m + 1)b = 0. (2.2)

Thus, there is a unique v satisfying (2.2), hence δQm+1,Q2m (g)= 1. Similarly, we can
show that if g ∈ Q2m − Qm(m+1), then δQ2m ,Qm(m+1)(g)= 1. Hence, for g 6= 0, by
Lemma 2.2,

δB(g)≤
∑

r,s∈T

δQr ,Qs (g)=
∑

r,s∈T
r 6=s

δQr ,Qs (g)+
∑
r∈T

δQr (g)≤ 2× 3+ 1× 5= 11.

Case 3. (m − 1)b =−2m(m + 1)a2 and (m − 1)b 6= 2m(m + 1)a2. Then

g 6∈ (Qm+1 − Q2m) ∩ (Q2m − Qm(m+1)).

Moreover, if g ∈ Q2m − Qm+1, then δQ2m ,Qm+1(g)= 1; if g ∈ Qm(m+1) − Q2m , then
δQm(m+1),Q2m (g)= 1. Hence, for g 6= 0, by Lemma 2.2,

δB(g)≤
∑

r,s∈T

δQr ,Qs (g)=
∑

r,s∈T
r 6=s

δQr ,Qs (g)+
∑
r∈T

δQr (g)≤ 2× 3+ 1× 5= 11.

This completes the proof of Lemma 2.3. 2
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REMARK 2.4. Since the number of quadratic nonresidues mod p is (p − 1)/2≥ 5
for p ≥ 11, there exists a quadratic nonresidue m such that m + 1 6≡ 0 mod p,
3m + 1 6≡ 0 mod p and m + 3 6≡ 0 mod p.

LEMMA 2.5. Let p(≥11) be prime and m be a quadratic nonresidue of p with
m + 1 6≡ 0 mod p, 3m + 1 6≡ 0 mod p and m + 3 6≡ 0 mod p. Put B = Qm+1 ∪

Qm(m+1) ∪ Q2m and B ′ = ϕ(B). Then σB′(n)≤ 16 for all n and δB′(n)≤ 11 for
all n 6= 0. Moreover, for every integer 0≤ n < 2p2, at least one of the six numbers
n − p, n, n + p, n + 2p2

− p, n + 2p2, n + 2p2
+ p is in B ′ + B ′.

PROOF. Let g, g′, h, h′ ∈ B. It is easy to verify that ϕ(g)+ ϕ(g′)= ϕ(h)+ ϕ(h′)
is possible only if g + g′ = h + h′ and that ϕ(g)− ϕ(g′)= ϕ(h)− ϕ(h′) is possible
only if g − g′ = h − h′. That is, ϕ cannot increase the values of σ and δ. By
Lemma 2.3, we have σB′(n)≤ 16 for all n and δB′(n)≤ 11 for all n 6= 0.

Now take an arbitrary n ∈ [0, 2p2) and write it in the form

n = a + 2pb, 0≤ a ≤ 2p − 1, 0≤ b ≤ p − 1.

We can find (x, y) ∈ B and (x ′, y′) ∈ B such that

a ≡ x + x ′ mod p, b ≡ y + y′ mod p.

We have

−(2p − 1)≤ x + x ′ − a ≤ 2(p − 1),

−(p − 1)≤ y + y′ − b ≤ 2(p − 1),

thus x + x ′ − a =−p, 0, p and y + y′ − b = 0, p.

Case 1. x + x ′ − a =−p and y + y′ − b = 0. Then

n − p = a + 2pb − p = x + 2py + x ′ + 2py′ ∈ B ′ + B ′.

Case 2. x + x ′ − a = 0 and y + y′ − b = 0. Then

n = a + 2pb = x + 2py + x ′ + 2py′ ∈ B ′ + B ′.

Case 3. x + x ′ − a = p and y + y′ − b = 0. Then

n + p = a + 2pb + p = x + 2py + x ′ + 2py′ ∈ B ′ + B ′.

Case 4. x + x ′ − a =−p and y + y′ − b = p. Then

n + 2p2
− p = a + 2pb + 2p2

− p = x + 2py + x ′ + 2py′ ∈ B ′ + B ′.

Case 5. x + x ′ − a = 0 and y + y′ − b = p. Then

n + 2p2
= a + 2pb + 2p2

= x + 2py + x ′ + 2py′ ∈ B ′ + B ′.

Case 6. x + x ′ − a = p and y + y′ − b = p. Then

n + 2p2
+ p = a + 2pb + 2p2

+ p = x + 2py + x ′ + 2py′ ∈ B ′ + B ′.

This completes the proof of Lemma 2.5. 2

https://doi.org/10.1017/S0004972710000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000353


[6] A note on a result of Ruzsa, II 345

LEMMA 2.6. Let p(≥11) be prime and m be a quadratic nonresidue of p with
m + 1 6≡ 0 mod p, 3m + 1 6≡ 0 mod p and m + 3 6≡ 0 mod p. Put B = Qm+1 ∪

Qm(m+1) ∪ Q2m , B ′ = ϕ(B) and V = B ′ + {0, 2p2
− p, 2p2, 2p2

+ p}. Then V ⊂
[0, 4p2) is a set with |V | ≤ 12p and satisfies [4p2, 6p2)⊆ V + V, σV (n)≤ 256 for
all n and δV (n)≤ 176 for all n with at most 11 exceptions.

PROOF. Note that B ′ ⊂ [0, 2p2
− p), thus V ⊂ [0, 4p2). In addition |V | ≤ 4|B ′| =

4|B| ≤ 12p.
Since

V + V = B ′ + B ′ + {0, 2p2
− p, 2p2, 2p2

+ p, 4p2
− 2p,

4p2
− p, 4p2, 4p2

+ p, 4p2
+ 2p},

by Lemma 2.5, we have [4p2, 6p2)⊆ V + V , and V is the union of four translated
copies of B ′, hence

max σV (n)≤ 16 max σB′(n)≤ 16× 16= 256.

Since

V − V = B ′ − B ′ + {0,±(2p2
− p),±2p2,±(2p2

+ p),±p,±2p},

by Lemma 2.5,
δV (n)≤ 16×max δB′(n)≤ 16× 11= 176,

unless n = 0,±(2p2
− p),±2p2,±(2p2

+ p),±p,±2p.
This completes the proof of Lemma 2.6. 2

LEMMA 2.7. Let X be a finite set of integers and p(≥11) be a prime. There is a set Y
such that

Y ⊂
(7p2

8
, 5p2

)
, |Y | ≤ 12p,

[
6p2,

31
4

p2
)
⊂ Y + Y, (2.3)

and

D(X ∪ Y ) < D(X)+
96
p
|X |3 + 864|X |2 + 6672p|X | + 73728p2. (2.4)

PROOF. Let V be the set of Lemma 2.6 and put Y = V + t where t is an integer in
(7p2/8, p2

]. Equation (2.3) holds for any choice of t ; we show that (2.4) holds for a
suitable choice of t .

Let Z = X ∪ Y. D(Z) is the number of quadruples (z1, z2, z3, z4) of elements of Z
satisfying

z1 + z2 = z3 + z4. (2.5)

We split Equation (2.5) into the following five classes.

(a) All four unknowns are from X . This gives the term D(X).
(b) One comes from Y , three from X . Equation (2.5) can be written as

t = x1 + x2 − x3 − v, v ∈ V .

https://doi.org/10.1017/S0004972710000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000353


346 M. Tang [7]

Let St be the number of solutions,∑
7p2/8<t≤p2

St ≤ 12p|X |3.

Hence
(p2/8) ·min St <min St ·

∑
7p2/8<t≤p2

1≤ 12p|X |3,

thus

min St ≤
96|X |3

p
.

(c) Two come from Y , two come from X .

Case 1. The unknowns y1 and y2 are on the same side. Equation (2.5) can be written
as

y1 + y2 = x1 + x2, yi ∈ Y, xi ∈ X.

By Lemma 2.6, for every pair x1, x2, there are at most 256 solutions which give a total
of 256|X |2. According to the position of the ys in (2.5), the contribution of this term
is at most 2× 256|X |2 = 512|X |2.

Case 2. The unknowns y1 and y2 are on different sides, that is,

y1 − y2 = x1 − x2, yi ∈ Y, xi ∈ X.

By Lemma 2.6, if x1 − x2 is none of the 11 exceptional numbers, then the contribution
of this term is at most 2× 176|X |2 = 352|X |2; if x1 − x2 is one of the 11 exceptional
numbers, then after fixing the value of x1 − x2, the numbers x1 and y1 determine x2
and y2 uniquely, thus the contribution of this term is at most 4× 11× |X | × |Y | ≤
528p|X |.

(d) Three come from Y , one comes from X . Equation (2.5) can be written as

y1 + y2 = y3 + x, yi ∈ Y, x ∈ X.

In this case, the contribution of this term is at most 2× 256× |X | × 12p = 6144p|X |.

(e) Four unknowns are from Y . The contribution of this term is at most 2× 256×
(12p)2 = 73728p2.

Hence

D(X ∪ Y ) < D(X)+
96
p
|X |3 + 864|X |2 + 6672p|X | + 73728p2.

This completes the proof of Lemma 2.7. 2

PROOF OF THEOREM 1.1. By Lemma 2.1, for x ≥ 1342, there is a prime p for
which x < p < 1.0147x . Thus we can take a sequence p1, p2, . . . of primes such that

p1 = 1361 and 1.12pi < pi+1 ≤ 1.0147× 1.12pi <

√
31
24 pi for all i , that is, 1.12<

pi+1�pi <

√
31
24 for all i . This ensures that the intervals [6p2

i ,
31
4 p2

i ) overlap and
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together cover [6p2
1,+∞). Applying Lemma 2.7 to p = pi , we get the set Yi . Let

X0 = [0, 6p2
1] and X i = X i−1 ∪ Yi . Then A =

⋃
∞

i=0 X i will be a basis of N.
For N ≥ 7.628 517 798× 1027 > 1

2 (6p1
2
+ 1)4, there exists an i > 1 such that

p2
i < 2N < p2

i+1, so

|X i−1| ≤ |X0| + 12(p1 + p2 + · · · + pi−1)

= |X0| + 12pi (
25
28 + · · · + (

25
28 )

i−1)

< 101pi .

By Lemma 2.7,

D(X i ) = D(X i−1 ∪ Yi )

< D(X i−1)+
96
pi
|X i−1|

3
+ 864|X i−1|

2
+ 6672pi |X i−1| + 73 728p2

i

< D(X i−1)+ 108 470 160pi
2.

By induction,

D(X i ) < D(X0)+ 108 470 160(p2
i + · · · + p2

1)

= D(X0)+ 108 470 160p2
i (1+ (

25
28 )

2
+ · · · + ( 25

28 )
2i−2)

< (6p2
1 + 1)4 + 534 846 576p2

i

< 534 846 577p2
i .

Therefore, ∑
n≤N

σ 2
A(n)≤ D(X i ) < 534 846 577p2

i ≤ 1 069 693 154N .

This concludes the proof. 2

References
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