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Abstract

A technique for the estimation of domains of local stability for difference equations is discussed.
A Liapunov function is used in the estimation. Sharper results are possible if there is only one type of
nonlinearity. when open Liapunov surfaces are possible. An example of the technique is given.

1

Liapunov's direct method is a powerful tool for the stability analysis of both
continuous and discrete systems. Significant problems arise in its application
when the Liapunov function is only decreasing on orbits of the system in an open
region about an equilibrium point. Then in general, stability is not global but a
finite stability domain exists. Typically, Liapunov functions have been used to
estimate such regions of attraction for differential equations (Noldus, Galle and
Josson (1973); Weissenberger (1968); Willems (1969)), but this approach is
difficult to apply to discrete systems (Diamond (1975); Hurt (1967)).

This note describes a method of calculating finite domains of asymptotic
stability, around the origin, for discrete autonomous systems

(1) x-i =/(*»), n= 0,1,2, •••,*„= x.

Here x is a k-vector and / a function from Rk to itself.
Let V, W be nonnegative real valued functions defined on Rk and suppose

that in a domain G containing the origin

(2) V(JC + 1 ) - V(xn)S - W(xn)S0,
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and that in G, W(x) = 0 iff x = 0. The function V will be termed a Liapunc
function on G for the system (1). Set

Vmin = min{V(x): x GbdyG],
and define

Jm ={x: V(xm)< Vmin}, m = 0 , l , 2 , - - - .

THEOREM 1. The regions Jm are domains of asymptotic stability for the syste
described by equation (1).

PROOF. If x G Jm, by (2) V(x m + n )£ V(xm)< Vmin, n = l,2, •••, and :
xn G Jm. It follows that xn approaches the set { x £ C : W(x) = 0} as n approach
infinity (Hurt (1967)). So xn can approach at most the origin and possibly son
part of the boundary of Jm. Since V(xn) is a nonincreasing function of n, tl
latter is impossible.

NOTE. The condition on W could be weakened and this would give fini
regions of attraction for the set {x E G: W(x) = 0}, rather than just the origin.

Estimates of the region of attraction can be sharpened for systems with
single type of nonlinearity:

xn + 1 = Axn + bg(s),

( 3 )

and where the Liapunov inequality holds for p < c'x < q, where p < 0 and q >
As before, x, b, c are k -vectors, c' the transpose of c, A is a k x k matrix and
a scalar function. The system (3) is a discrete analogue of a feedback loop wi
amplification g(s).

Consider the hyperplanes

Ep: c'(A -I)x + c'bg(p) = 0, Eq: c'(A - I)x + c'bg(q) = 0.

Put

VE =min{V(x): x G Ep U £ ,} ,

and define

VM = max(VE, Vmin).

Obviously VM S vmin, where Vmin is here the minimum value attained by V{.
on the hyperplanes c'x = p, c'x = q. Suppose that

clbg(p)<c'bg(q).
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The conditions and arguments of the following theorem are very much the same
if this inequality is reversed.

THEOREM 2. / /

c ' / ) (g ( j ) -g (ppO, andctb(g(s)-g(q))^O, for p < s < q,

then

Hm = {x: V(xm)< VM,p<c1x<q}

is a finite domain of asymptotic stability for the system (3).

PROOF. The case where Ep is parallel to c'x = p and the other two planes is
covered by theorem 1, with VM = Vmin, as is also the case when VE < Vmin. So in
what follows it is assumed that such a degenerate case does not occur. By
construction, every point of Ho lies between the two hyperplanes Ep, Eq. Since
x E Ho lies above Ep,

c'(A -I)x+c'bg(p)>0.

Thus

c'x, = c'Ax + c'bg(c'x)> c'x + c'b(g(c'x)- g(p))> c'x >p.

Similarly c'x,<q and so the orbits of the system cannot pass through the
hyperplanes c'x = p, c'x = q, without first passing through Ep and Eq. But the
surface V(x) = VM is, at most, tangent to one or both of Ep, Eq. The Liapunov
property ensures that the orbits cannot pass through this surface whilst p < c'x <
q, and so must remain between Ep and Eq. It follows that xn G Ho for all n and
the conclusion follows, as in Theorem 1, by observing that if xn converged to a
point y, c'y = p, then c'y,> p. Similar reasoning applies to the other Hm.

NOTES. (1) The conditions of the theorem would be satisfied by any
function which was increasing on p < s < q, provided the Liapunov property
held there.

(2) The region Ho is bounded by a closed Liapunov surface only if
VM = Vrain.

As an example, consider

and the Liapunov function

yn, yn+1 = axn + y2
n,

V(x,y)=a2x2+y2.
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Local stability regions for the example. G is the domain in which the Liapunov inequality (2) holds,
and Jo, 1\ are finite stability domains, as in Theorem 1.

Then

, y , ) - V ( x , y ) = y 2 ( a 2 - l + 2 a x

and G = {(x, y): a2 - 1 + lax + y2 < 0}. It is easy to show that Vmin = (1 - a2)2/4,

whence /„ = {(*, y): a2x2 + y 2 < (1 - a2)2/4} and

J, = {(x,y): a2x2 + (a2 + 2ax)y2 + y4 < (1 - a2)2/4}.

The regions G, Jo and /i are shown in the figure for the value a = 1/4. Note that

Ji is a significant improvement upon Ja and that both are larger than any disc in

G centred at the origin.
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