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The response, evolution, and modelling of subgrid-scale (SGS) stresses during rapid
straining of turbulence is studied experimentally. Nearly isotropic turbulence with low
mean velocity and Rλ ∼ 290 is generated in a water tank by means of spinning grids.
Rapid straining (axisymmetric expansion) is achieved with two disks pushed towards
each other at rates that for a while generate a constant strain rate. Time-resolved,
two-dimensional velocity measurements are performed using cinematic PIV. The SGS
stress is subdivided to a stress due to the mean distortion, a cross-term (the interaction
between the mean and turbulence), and the turbulent SGS stress τ(T )

ij . Analysis of the

time evolution of τ(T )
ij at various filter scales shows that all scales are more isotropic

than the prediction of rapid distortion theory, with increasing isotropy as scales
decrease. A priori tests show that rapid straining does not affect the high correlation
and low square-error exhibited by the similarity model. Analysis of the evolution of
total SGS energy dissipation reveals, surprisingly, that the Smagorinsky model with
a constant coefficient (determined from isotropic turbulence data) underpredicts the
dissipation during rapid straining. While the partial dissipation −〈τ(T )

ij S̃ij〉 (due only to
the turbulent part of the stress) is overpredicted by the Smagorinsky model, addition
of the cross-terms reverses the trend. The similarity model with a constant coefficient
appropriate for isotropic turbulence, on the other hand, overpredicts SGS dissipation.
Owing to these opposite trends a linear combination of both models (mixed model)
provides better prediction of SGS dissipation during rapid straining. However, the
mixed model with coefficients determined from dissipation balance underpredicts the
SGS stress.

1. Introduction
Large-eddy simulation (LES) of turbulent flows is based on the filtered Navier–

Stokes equations

∂ũi

∂xi
= 0,

∂ũi

∂t
+ ũj

∂ũi

∂xj
= − ∂

∂xj

(
p̃

ρ
δij + τij

)
+ ν

∂2ũi

∂x2
j

. (1.1)

Here, a tilde represents a filtering operation at some scale ∆, ideally in the inertial
range of turbulence. The subgrid-scale (SGS) stress is defined as

τij = ũiuj − ũiũj , (1.2)
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and it must be modelled in terms of the resolved velocity field. Several review articles
have already appeared on the subject of LES. Rogallo & Moin (1984) give an account
of the traditional status of the subject, while Lesieur & Métais (1996) review more
recent developments in SGS modelling. Unlike the Reynolds stress, the SGS stress
is a fluctuating variable. From a statistical perspective, several averaged features
of the SGS stress are important. For instance, its mean value 〈τij〉 directly affects
transport of mean resolved momentum in non-homogeneous flows, especially if the
filter scale is not much smaller than the turbulences integral scale as is often the
case. The correlation of the stress with the strain-rate, −〈τij S̃ij〉, the SGS dissipation
rate, represents the rate at which resolved energy is ‘dissipated’ to unresolved scales
(Deardorff 1970; Leonard 1974; Piomelli et al. 1991). This term is dominant in the
turbulent kinetic energy budget at any filter scale in the inertial range. Hence, SGS
dissipation is a feature that models must reproduce accurately. We are also interested
in the spatial and temporal distribution of the stress in a given realization of the
flow, to examine its relation to local physical phenomena and models. Fundamental
properties of the SGS stress can be studied by using fully resolved turbulent fields
to calculate the real SGS stress according to its definition, and to compare it with
model predictions (a priori studies). This fully resolved turbulence can be obtained
from direct numerical simulation (DNS) data, an approach pioneered by Clark,
Ferziger & Reynolds (1979), McMillan & Ferziger (1980), or from experimental
data (e.g. Liu, Meneveau & Katz 1994). The latter approach allows investigation of
higher-Reynolds-number flows than DNS. Consequently the filter can be significantly
varied and maintained away from either end of the inertial range. For example, Liu,
Meneveau & Katz (1994, 1995) used PIV to measure a set of instantaneous turbulence
velocity fields in the far field of a round jet at a Taylor-scale Reynolds number of
Rλ ∼ 310. Cook & Riley (1994) used scalar concentration measurements to study
issues related to subgrid modelling in combustion. O’Neil & Meneveau (1997) used
hot-wire measurements in the wake of a cylinder to study the spatial distribution of
SGS dissipation across the wake.

1.1. SGS models

The most traditional and still widely used model for the SGS stress is due to Smagorin-
sky (1963). The deviatoric part of the stress, τij − 1

3
τkkδij , is modelled according to

T(S)
ij = −2(cs∆)2|S̃ |S̃ij , (1.3)

where ∆ is the filter scale and cS is the Smagorinsky coefficient. While this model has
proven to be fairly robust during simulations, it has several drawbacks: among them,
the Smagorinsky coefficient, cS , is flow dependent. Most notably, it should vanish
for wall-bounded flows near the wall (Rogallo & Moin 1984), in laminar portions of
transitional flows (Piomelli & Zang 1991), and when the filter-scale approaches the
Kolmogorov scale (Voke 1996). In shear flows, the coefficient required to yield good
predictions of mean flow properties has been found to be smaller than the coefficient
appropriate for isotropic turbulence (Rogallo & Moin 1984). These problems have
been largely overcome by the dynamic procedure (Germano et al. 1991; Lilly 1992;
Meneveau, Lund & Cabot 1996) which consists of obtaining the model coefficient from
the simulated velocity field itself, without arbitrary adjustments. Another problem that
has been observed during a priori tests, is that local and instantaneous distributions
of real stresses for a given realization of the flow are very different from those
obtained using any eddy viscosity models (Clark et al. 1977; McMillan & Ferziger
1980; Bardina, Ferziger & Reynolds 1980; Liu et al. 1994; Meneveau 1994, etc.). This
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discrepancy occurs in part due to a lack of alignment between the stress and strain-rate
tensors, a familiar problem in turbulence modelling in the Reynolds-averaged (RANS)
context (see e.g. Speziale 1991). This problem reappears in the LES context due to
the absence of scale separation between the smallest resolved and largest subgrid
flow features, which precludes the small scales from reacting to the large-scale shear
quickly enough for the eddy-viscosity closure to be justified. Other variants of the
eddy-viscosity SGS model are not exempt from this problem. Included are spectral
eddy-viscosity (Kraichnan 1976; Chollet & Lesieur 1981), the structure-function model
(Lesieur & Métais 1996), RNG-derived eddy viscosity (Yakhot, Orszag & Yakhot
1989), etc.

While the dynamic procedure interrogates the smallest resolved scales to determine a
scalar coefficient for a prescribed base model, the so-called similarity models, originally
proposed by Bardina et al. (1980) and Bardina (1983), examine the tensorial form
of the smallest resolved scales. In the Bardina model, a stress tensor is formed by
employing a repeated filtering of the resolved velocity, at the same grid scale ∆. In our
previous work (Liu et al. 1994, 1995), detailed analysis of velocity fields and energy
fluxes between different scales of motion led to the conclusion that an improved
model is obtained if the second filtering is performed at a scale 2∆ instead of ∆. This
model is written as

T(L)
ij = cLLij , Lij = ũiũj − ũiũj , (1.4)

where cL is the similarity coefficient and the overbar represents filtering at scale 2∆.
Lij is called the resolved stress. This model has provided good local agreement with
the real stress distributions (Liu et al. 1994, 1995), as quantified by their correlation
coefficient (which is about 0.6 instead of 0.1–0.2 for the Smagorinsky model). This
model can also provide backscatter, i.e. the flux of kinetic energy from subgrid to
resolved scales. It has been studied by Piomelli, Yu & Adrian (1996), who used
conditional averaging in channel-flow DNS to examine flow structures associated
with particular features of the SGS dissipation. They found that the similarity model
yielded structures that closely resemble the real conditional structures, while those
obtained with the eddy-viscosity model are considerably different. In another study
(O’Neil & Meneveau 1997), conditional averaging of high-Reynolds-number data
was employed to examine SGS dissipation in the coherent structures in the wake of
cylinder. Again, the similarity model reproduced significantly improved conditional
statistics as compared to the eddy-viscosity model. By Taylor-series expansion, the
similarity model can be related to a nonlinear model (Liu et al. 1994) which has been
further explored in Borue & Orszag (1998). Instead of specifying a fixed value for
cL, it can also be obtained using a dynamic procedure (Liu et al. 1994, 1995). For
consistency a second test filter at scale 4∆ is employed, and the coefficient is computed
from the resolved scales. As with the original Bardina model, simulations show that
the similarity model must be supplemented with a second term of the Smagorinsky
form (mixed model), in order to generate sufficient dissipation during a simulation.
The experimental data in the round jet (Liu et al. 1994, 1995) showed that the mixed
model combines the advantages of both models: the Smagorinsky part guarantees
that there is some SGS dissipation; while the dominant similarity part achieves a more
realistic description of the SGS stress field, including both forward- and backscatter
of energy. For additional a priori tests in equilibrium turbulent flows that support
the mixed model, see Vreman, Guerts & Kuerten (1994), Salvetti & Banerjee (1995),
Piomelli et al. (1996), and Ansari et al. (1998). Moreover, mixed models in various
forms (dynamic and non-dynamic) have recently been applied in a growing number
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of simulations, including recirculating flows (Zang, Street & Koseff 1993), boundary
layers (Wu & Squires 1997; Horiuti 1997), mixing layers (Vreman, Guerts & Kuerten,
1997) and jets (Kang, Ansari & Akhavan 1998), with promising results.

1.2. Rapid distortion

Most previous a priori studies of SGS models have focused on equilibrium turbulence,
i.e. flows in which turbulence time scales are comparable to changes in the mean flow.
Canonical flows such as the round jet, plane wake, fully developed channel flow, etc.
fall into this category. The goal of the present study is to examine the response of
subgrid scales, and their modelling with eddy-viscosity and similarity models, during
strong perturbation from an equilibrium state. Such modification can be achieved for
example by rapidly straining initially isotropic turbulence. A substantial amount of
work has been devoted to predicting the response of initially isotropic turbulence to
rapid straining, from the point of view of RANS variables. When the magnitude of
the applied straining is very large compared to the characteristic inverse turbulence
time scale, the short-time evolution of Reynolds stresses may be predicted using rapid
distortion theory (RDT) (Batchelor & Proudman 1954; Townsend 1976; Crow 1968
and more recently Savill 1987; Kida & Hunt 1989; and Hunt & Carruthers 1990).
Currently, the RDT-calculated response of Reynolds-averaged quantities to rapid
distortions is employed for calibrating RANS models (e.g. Speziale 1991; Kassinos
1994).

Rapid straining has been studied in the past by performing measurements at
several downstream distances along especially designed wind-tunnel contractions (e.g.
Tucker & Reynolds 1968; Gence & Mathieu 1979). Predictions from RDT have
been confirmed, for short times. For weak axisymmetric expansion, when RDT is
not applicable, Choi (1983) and Lee (1985) surprisingly obtained larger anisotropy
for the Reynolds stress than was predicted by RDT. This feature will be discussed
and compared to the present data later. Turbulence subjected to sudden shear (strain
plus rotation) has also been widely studied (Champagne, Harris & Corrsin 1970;
Sreenivasan 1985; Tavoularis & Corrsin 1981; and Tavoularis & Karnik 1989). In
addition, some research has focused on the impact of straining on coherent structures
(e.g. Devenport & Simpson 1990).

While these extensive studies have focused on Reynolds-stress evolution and spectra,
not much is known about the response of SGS stresses, SGS dissipation and models to
rapid distortion. McMillan et al. (1980) used DNS of isotropic turbulence at Rλ ∼ 40 to
study the response of SGS models to plane strain, and several observations were made
on model coefficients and correlations. We will return to their results later on. Smith
& Yakhot (1993) point out the possibility that at short times the Smagorinsky SGS
model would respond too quickly to applied shear (the notion that the eddy-viscosity
approximation fails at short times for Reynolds stresses dates further back, see e.g.
Crow 1968). LES of rapidly distorted turbulence is complicated by the appearance

of a new characteristic length scale L∗ = ε1/2S∗−3/2 (ε is the dissipation rate and
S∗ is the mean strain magnitude). One should expect the subgrid scales to respond
differently depending on ∆/L∗. In the limit ∆/L∗ → 0, the time scale associated
with the subgrid eddies is short enough for their response to be ‘fast’. Consequently,
one would expect that the applied distortion does not directly affect the subgrid
range. Indeed, Saddoughi (1993) studied energy spectra in an approximately planar
expansion and found that spectra show isotropy of small scales for wavenumbers

above k ∼ 3S∗3/2/ε1/2, and anisotropic behaviour at the larger scales. If ∆/L∗ � 1
the subgrid turbulence is ‘slow’ compared to the applied distortion, and its evolution

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

45
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004504


Rapid straining of subgrid turbulence 285

should be close to RDT predictions. An interesting regime is the transition between
these limiting cases, when ∆/L∗ ∼ O(1). In a recent paper, Kevlahan & Hunt
(1997) consider RDT with planar strains and keep the next terms in the asymptotic
expansion. Besides finding important dependences upon the detailed structure of
the initial condition, they confirm that the RDT prediction is valid only until a
scale-dependent time, which becomes short at small scales.

The present study focuses on the response of SGS variables to rapid straining.
In particular, the main objective is to examine the response of the real SGS stress
and dissipation, and of the similarity and eddy-viscosity models, to axisymmetric
straining. The results are compared with those of equilibrium isotropic turbulence. The
experiment entails the sudden generation of an irrotational distortion, consisting of a
linear mean flow with Ui = A∗ij(xj − x0

j ), where A∗ij = A∗ji = S∗ij is the spatially uniform
strain-rate tensor. For an axisymmetric expansion, S∗11 = −S∗, S∗22 = S∗33 = S∗/2, and
S∗ij = 0 if i 6= j. The turbulence and straining are generated in a facility in which
the mean convection velocity is low. The experimental setup, instrumentation, and
procedures are described in § 2. Section 3 is devoted to a detailed characterization of
the initial turbulence and of the applied straining. In § 4, RDT is used to predict the
evolution of the mean SGS stress, and the results are compared with the measurements
at different filter scales. In § 5, the time evolution of individual flow structures that are
visible in band-pass filtered velocity fields at different scales is followed. Implications
for local and averaged features of the SGS stress, as well as for the similarity model,
are described. As argued before, SGS dissipation is an important feature for LES.
Thus, in § 6, we study the evolution of real and modelled SGS dissipation and use
the results to obtain appropriate values of the coefficients. Particular attention is paid
to the mixed model. The conclusions of the study are presented in § 7. The main
findings are as follows. (a) During rapid distortion small scales remain more isotropic,
but become proportionally more energetic, than the large scales. Deviations from
the RDT predictions are observed at all scales. (b) When the applied straining is
strong, and when spatial filtering is performed in directions where the mean flow is
inhomogeneous, the mean flow has a very strong, direct effect on the SGS stress and
dissipation rate. (c) This effect leads to trends with straining and scale that are better
predicted with a mixed model than with eddy-viscosity or similarity models alone.
(d) Nevertheless, the time evolution of the mean SGS stress is not well reproduced
by any of the models considered and may imply the need for time-dependence of the
coefficients, possibly to be determined from the dynamic model.

2. Experimental setup
2.1. Facility

There are three main requirements for the experimental facility. The first is the
generation of isotropic turbulence with turbulence Reynolds number as high as
possible in a moderately sized facility. The second requirement is to apply uniform
and rapid straining on the turbulence. The straining should be maintained constant
for a duration sufficient that the turbulence has enough time to respond and evolve.
Thirdly, for convenience and for the capability to follow the same structures in time,
it is also advantageous to operate in a facility with relatively low mean velocity.

Several approaches to generate steady isotropic turbulence with low mean velocity
have been used. Hopfinger & Toly (1976) used a single oscillating grid to generate
stationary isotropic turbulence, but it was not homogeneous since the turbulence
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(a)

30 cm

Water tank

x2

70 cm

Spinning grid
and AC motor,
ω = 3200 r.p.m.

Stepping motor
and controller

Cam and disk
Laser sheet

Test area

U(t)

x1

(b)

Computer

Cu vapour laser

Disk

Laser sheet Water tank

Cam

Image shifter

Hulcher camera
(~ 33 frame/s, 35 mm film)

(c) 15 cm

4.5 cm

6 cm Test area6 cm70 cm

x3

x1

Figure 1. Schematics of experimental setup: (a) top view, (b) side view, (c) location of rotating
grids for generation of turbulence.

intensity quickly decayed with the distance from the grid. Recently, Srdic, Fernando &
Montenegro (1995) used two symmetrically located oscillating grids to produce nearly
homogenous turbulence between them. However, the turbulence microscale Reynolds
number Rλ achieved in this experiment was low. To generate isotropic turbulence
with considerably higher Reynolds number, a different approach is developed and
described below.

A schematic description of the experimental facility is shown in figure 1(a, b). It
consists of a 3 m long, 30 cm by 30 cm cross-section, transparent water tank, and two
separate mechanical systems. The first generates the turbulent flow, and the second
produces the rapid straining. Turbulence is generated by four high-speed rotating
grids located symmetrically around the centre of the water tank (see figure 1c for
more detail). They are driven by four AC motors operating at 3200 rpm. Each
of these consists of two 10 cm high and 8.8 cm wide perpendicular grids made of
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1 mm diameter wires arranged in a mesh of size M=5 mm (solidity σ = 0.36). They
are supported in the centre by 1.25 cm diameter rods and bounded on the top and
bottom by aluminium disks. The purpose of these disks is to substantially reduce the
organized axial inflow at the ends and radial outflow through the perimeter. The mean
velocity over the measurement region at the centre of the tank is about 0.04 m s−1,
low enough for our purpose. By further adjustments of the rotor locations, the mean
velocity could be further reduced, but this was not deemed necessary. As will be
shown in § 3, the high tip speed of the grid, 14.7 m s−1, creates a high turbulence
level, u′1 ∼ 6 cm s−1, u′2 ∼ 5 cm s−1 and relatively high Reynolds number, Rλ ∼ 290,
at the centre of the tank. Furthermore, turbulence spectra (see § 3) are measured to
demonstrate that the turbulence generated by this method is locally isotropic in the
central measurement region.

The uniform rapid straining is generated by two 15 cm diameter round plates facing
each other across the central portion of the tank. Each is attached to a rod actuated
by a cam (see figure 1) to produce a stagnation-point-type flow. To precisely control
the speed of the plates, the cams are driven by two 8 N-m precision stepping motors
with 1000 steps per cycle. In order to produce time-independent straining, the distance
between the plate and the stagnation point should be of the form

∆x(t) = ∆x(t0)exp[−S∗(t− t0)], (2.1)

where ∆x(t0) is the initial distance and S∗ is the strain rate. Consequently the speed
of the plates is

U(t) = S∗∆x(t). (2.2)

The shape of the cams is designed to produce the desired displacement ∆x(t). Figure
2(a) shows the desired velocity U(t) based on which the cams were designed. A
start-up phase is required to accelerate the plate from zero to the maximum speed. It
is followed by a deceleration phase during which the distance between plates and the
stagnation point should follow (2.1) to produce constant straining. The position of the
plates was measured using a movie camera (see § 2.2) during the deceleration phase,
and is shown as function of time in figure 2(b). As required for constant straining,
∆x(t) is well fitted by an exponential curve. The implied rate of strain, S∗ = 8.1 (s−1),
will be shown to be very close to strain rates measured directly from the flow field
(see § 3.2). Thus, when both cams are rotated symmetrically at the same time, uniform
axisymmetric straining of constant magnitude S∗ is generated in most of the region
between both plates except for boundary layers developing on them. As verified in
§ 3, this procedure generates nearly constant axisymmetric expansion of the flow.

2.2. Instrumentation

Particle image velocimetry (PIV) is used to measure the velocity field and its time
evolution. The measurements are performed on a horizontal plane containing the axis
of the plate and the stagnation point during straining. The sample area is a 4.5 ×
6 cm2 (see figure 1). The facility is seeded with 20 µm diameter and neutrally buoyant
spherical fluorescent particles (the particle specific gravity is around 0.95–1.05). The
light sheet is generated by a 45 W copper vapour laser with a wavelength of 511 nm
(the 578 nm is filtered), whose beam is reduced from 5.4 cm to about 1 mm and then
expanded to a thin sheet. To record the time evolution of the flow, successive images
are recorded on 35 mm Kodak TMAX 3200 film using a Hulcher movie camera
equipped with a 105 mm lens and extension tubes, at 33 frame s−1. The magnification
is around 0.55. Double-exposure images are recorded. To eliminate the problem of
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(a)
1.2

0.8

0.4

0 0.1 0.2
t (s)

U
(t

) 
(m

 s
–1

)

(b)
0.06

0 0.08
t – tref (s)

D
x(

t)
 (

m
) 0.04

0.02

0.04 0.12 0.16

Figure 2. (a) Desired velocity of plates as a function of time. (b) Circles: measured distance between
the disk and the centre of the test area during the constant straining phase. Solid line: exponential fit
of the form ∆x(t) = X∗ exp [−S∗(t− tref ) + t∗]. The fitted parameters are t∗ = 0.17 s and X∗ = 0.26 m
(an arbitrary time origin and initial distance), and S∗ = 8.1 l s−1, which corresponds to the strain
rate in the flow.

directional ambiguity, an electro-optical image shifting technique is used (Bertuccioli,
Gopalan & Katz 1996). The basic idea of this technique is to superimpose a known
displacement on the real movement of the second particle trace on the film. The
process involves rotating the polarization of light arriving at the camera using a
ferroelectric liquid crystal (FLC) and shifting the second image by a calcite crystal.
More details of this technique are described in Bertuccioli et al. (1996). The laser,
movie camera, image shifting device and the cams are synchronized by a PC.

During each run, with the turbulence generators running, the Hulcher camera starts
recording two images of the turbulent flow field before straining. Then, the cams are
activated, the round disks are accelerated to U(t0) = ∆x(t0)S

∗, and then decelerated
exponentially (as in (2.1)) imposing constant and uniform rapid straining on the flow.
The Hulcher camera continues to record pictures during the straining phase. Each
data set consists of 10 images and the time delay between 2 images is 0.03 s. Results
of 10 such experiments are used during data analysis. The negatives are scanned
using a Nikon 3500, 35 mm slide scanner. Each image is converted to a 2048× 3072
pixels array which is then filtered and enhanced (Dong, Chu & Katz 1992; Roth,
Hart & Katz 1995). The autocorrelation method is used to compute the velocity. The
interrogation window is 64× 64 pixels, which corresponds to a 1.4× 1.4 mm window
in the actual flow. The velocity is evaluated every 32 pixels (50% overlap) providing a
grid spacing of d = 0.68 mm. Sub-pixel accuracy (about 0.2–0.4 pixels) is achieved by
interpolating between the discretely computed values of the auto-correlation function
(Dong et al. 1992; Roth et al. 1995). The relative error of the velocity is about 1%
which means that the uncertainty in rate of strain determined from the velocity is of
the order of 10% (Ganapathy & Katz 1995). To quantify the isotropy of the initial
turbulence, we also measure the velocity field on a vertical plane perpendicular to the
original test area.

3. Flow characterization
The basic flow characterization is described in this section. Figure 3(a) shows a

sample vector map of the turbulent flow field before the straining starts and figure
3(b) is the flow at a certain time during the rapid straining. The superposition of
turbulence and strong stagnation-point flow is clearly evident.
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(a)  t = 0 (s) (b)  t = 0.272 (s)

4

2

0 1 2 3 4

4

2

0 1 2 3 4

x 2
 (

cm
)

x1 (cm) x1 (cm)

Figure 3. Vector maps of velocity field (a) before straining, at t = 0 s, (b) during straining at
t = 0.272 s. The reference vector at the top has magnitude 0.5 m s−1. The mean velocity over the
image has been subtracted.

3.1. Turbulence before straining

3.1.1. Basic scales

The mean velocity prior to straining computed over 20 images is 〈u1〉 ≈ 0.043 m s−1

and 〈u2〉 ≈ 0.013. These values are significantly smaller than velocity magnitudes
prevalent during rapid straining. The r.m.s. values are u′1 ≈ 0.06 m s−1 and u′2 ≈
0.051 m s−1, indicating a 15% anisotropy of the large-scale turbulence. To quantify
anisotropy at scales smaller than or equal to the image size, the mean velocity of
each image is subtracted before averaging the variance. The resulting r.m.s. values are
u′′1 ≈ 0.038 m s−1 and u′′2 ≈ 0.04 m s−1, an indication that turbulence is nearly isotropic
at scales smaller than the image size. Estimates of the energy dissipation rate and
the Kolmogorov scale from the r.m.s. velocity require knowledge of the integral scale
`, which we cannot measure from the present data set. Therefore, we obtain the
dissipation rate by matching the measured energy spectrum with the prediction of
the Kolmogorov spectrum. This procedure is discussed below in detail.

The radial two-dimensional spectrum of both components is obtained from the PIV
data, as described in Liu et al. (1994). It involves subtracting the mean velocity over
the image, windowing the data (using a Welch window), applying FFT, and averaging
the modulus over annuli of radius k. For statistical convergence, the spectra are
averaged over 20 images. The results are shown in figure 4 (left scale). The insert
shows the radial spectra premultiplied with k5/3. As a reference, a straight line with a
Kolmogorov slope of − 5

3
is also plotted. This plot shows that the slope of the spectrum
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Figure 4. Kinetic energy spectra of turbulence before straining. Left scale: two-dimensional radial
spectra: E11(k) (open circles), E22(k) (open squares). Right scale: one-dimensional spectra. Circles:
E11(k1), squares: 3

4
E22(k1), triangles: 3

4
E11(k2), rhombs: E22(k2). Solid lines: Kolmogorov spectra with

CK = 1.6 and ε0 = 0.0023 m2 s−3. Inset: premultiplied radial spectra.

of both velocity components is near − 5
3

in most of the resolved range except at the
smallest scales where some deviation occurs due to measurement uncertainty (for a
more detailed discussion of this issue, see Liu et al. 1994). To estimate the energy
dissipation, we can match the universal Kolmogorov spectrum,

Eαα(k) = 0.535ckε
2/3k−5/3 (no summation over α), (3.1)

with our experimental data. The factor 0.535 in (3.1) is the coefficient appropriate for a
two-dimensional spectrum (Liu et al. 1994). When the standard value for the universal
Kolmogorov constant, ck = 1.6, is used, ε0 ≈ 2.3×10−3 m2 s−3 for ε in (3.1) yields good
agreement with the data. The integral length scale estimated using ε0 ∼ u′1/`, with
u′1 ≈ 0.06 m s−1 as velocity scale, is ` ≈ 9.3 cm. The Kolmogorov scale, calculated from
η = (ν3/ε0)

1/4, is 0.14 mm, and the Taylor microscale, λ, is λ = u′1(15ν/ε0)
1/2 ≈ 4.8 mm.

It follows that the turbulence microscale Reynolds number is Rλ ≈ 290. This value
is substantially higher than that of the DNS data previously used to study rapid
distortion of turbulence (Lee 1989; McMillan & Ferziger 1980).

3.1.2. Isotropy and homogeneity

To further quantify the level of isotropy of the turbulence in the test region prior
to straining, one-dimensional spectra in different directions are computed. The mean
velocity along each line is subtracted, and a one-dimensional Welch window is used.
Spectra are averaged over all the 20 data sets corresponding to the initial undisturbed
state. Both longitudinal and transverse spectra are computed. In the inertial range,
the transverse and longitudinal spectra are related by (Monin & Yaglom 1971)

E22(k1) = 4
3
E11(k1). (3.2)
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Figure 5. Kinetic energy spectra of turbulence before straining in the (x2, x3)-plane. Left
scale: two-dimensional radial spectra: E2v2v(k) (open circles), E33(k) (open squares). Right scale:
one-dimensional spectra. Circles: E22v(k2), squares: 3

4
E33(k2), triangles: 3

4
E22v(k3), rhombs: E33(k3).

Solid lines: Kolmogorov spectra with CK = 1.6 and ε0 = 0.0023 m2 s−3.
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Figure 6. Velocity root-mean-square values computed at each point of the vector maps over
20 realizations: (a) u′1, (b) u′2. Results are not statistically converged.

Figure 4 (right scale) shows E11(k1), E22(k2),
3
4
E11(k2), and 3

4
E22(k1), as well as the

Kolmogorov longitudinal spectrum

E11(k1) = ck
18
55
ε

2/3
0 k

−5/3
1 (3.3)

with ck = 1.6 and ε0 = 0.0023 m2 s−3. Fairly good agreement exists among the various
curves, although some discrepancies are observed at large wavenumbers.

To document flow properties in the x3-direction, we also measure the velocity field
in the vertical plane (perpendicular to the plane which is used for most of the data
analysis). This plane provides the velocity components in the x2- and x3-directions,
u2v (the subscript v represents the component in the x2-direction but in the vertical
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Figure 7. Mean rate-of-strain components as function of time. Circles: 〈S11〉, squares: 〈S22〉,
triangles: 〈S12〉. Solid lines indicate the mean values during the constant straining stage.

plane) and u3. Seven images are used. To reduce the processing time, these images are
digitized into 1000× 1500 pixels, half of the resolution used in the horizontal planes.
Thus, each image is converted to 48 × 32 vectors. The r.m.s. values of the velocity
in the vertical plane are u′2v ≈ 0.058 m s−1 and u′3 ≈ 0.051 m s−1. Figure 5 (left scale)
shows the radial spectra for the vertical plane compared to the Kolmogorov spectrum
using ck = 1.6 and ε0 = 0.0023 m2 s−3. One-dimensional spectra are also shown in
figure 5 (right scale). Taken together with the results of figure 4, we conclude that the
turbulence is near a locally isotropic state.

The spatial inhomogeneity of turbulence is quantified by calculating the spatial
distribution of r.m.s. velocity using ensemble averaging over the 20 data sets. The
results are shown in figure 6. They display considerable fluctuations, which are
probably caused by the insufficient statistical convergence, a result of using only 20
independent samples. While there are noticeable humps in the distribution, they occur
over length scales that are smaller than one would expect for variations in the mean
flow. Also, the humps oscillate around a mean value that does not appear to have
an obvious trend of spatial variation across the region. We conclude that the flow is
sufficiently homogeneous to allow us to evaluate averages over the sample area, as
well as over realizations.

3.2. Applied straining

In order to verify that the mean flow generated by the disks is an axisymmetric,
time-independent straining, the velocity gradients are calculated from the data at
the 10 times, using centre finite differencing. The rate-of-strain tensor is obtained
according to its definition

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (3.4)

Figure 7 shows the mean rate of strain (averaged in space and over 10 realizations) as
a function of time. For the first two data points, at t 6 0.03 s, the straining is essentially
zero. Thus, data generated during this stage of the experiment represents undisturbed
turbulence. The next two points correspond to the acceleration stage. Once the disks
start decelerating after t = 0.12 s, the rate of strain remains nearly constant. At the
developed stage (t > 0.12 s), the compressive rate of strain 〈S11〉 ≈ −8.6 l s−1 is about
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twice the expanding strain 〈S22〉 ≈ −4.35 l s−1 (in magnitude). This ratio is expected
for an axisymmetric expansion, for which the strain-rate tensor is given by

〈Sij〉 = | 〈S11〉 |
 −1 0 0

0 1
2

0
0 0 1

2

 . (3.5)

Later on, it will be of interest to separate the turbulence from the applied straining.
The latter, linear velocity field is given by

U1(x1, x2) = 〈S11〉 (x1 − x0
1), U2(x1, x2) = 〈S22〉 (x2 − x0

2), (3.6)

where x0 is the coordinate of the stagnation point. To compare the applied strain-rate
magnitude to the turbulence, we evaluate the non-dimensional strain number S ′ =
S ∗k0/ε0, where S∗ = | 〈S11〉 | for the constant straining phase and k0 is the turbulent
kinetic energy prior to straining. The turbulence turnover time is k0/ε0 ≈ 2.0 s, while
the characteristic time scale of the applied straining is 1/S∗ ≈ 0.12 s. Their ratio,
S ′ ∼ 17, is quite large, making the applied straining ‘rapid’ compared to the large
scales of turbulence.

4. Subgrid stress during rapid straining
4.1. Definitions

The filtered velocity field at time t is defined in terms of the measured two-dimensional
data as

ũi(x1, x2; t) =

∫ ∫
ui(x

′
1, x
′
2; t)F∆(x1 − x′1, x2 − x′2)dx′1dx′2 (i = 1, 2), (4.1)

where F∆(x1, x2) is a spatial low-pass filter with characteristic width ∆. In this study,
a top-hat filter is used. It is defined as F∆(x1, x2) = B for |x1| < ∆/2 and |x2| < ∆/2,
and zero otherwise. The coefficient B is a normalization factor which ensures that the
integral of F∆(x1, x2) equals unity (in the discrete sense). Similarly, the SGS stress, τij ,
is computed from

τij(x1, x2; t) =

∫ ∫
ui(x

′
1, x
′
2; t)uj(x

′
1, x
′
2; t)F∆(x1 − x′1, x2 − x′2)dx′1dx′2

−ũi(x1, x2; t)ũj(x1, x2; t) (i, j = 1, 2). (4.2)

The resolved velocity-gradient tensor

Ãij = ∂ũi/∂xj (4.3)

is calculated by central finite differences. The resolved rate-of-strain elements are

S̃ij = 1
2
(Ãij + Ãji). (4.4)

During the analysis process, adverse end effects are eliminated by not including strips
of width ∆/2 along the boundaries.

4.2. Time evolution of SGS stresses

Figure 8 shows several instantaneous realizations of τ11 at different times at a filter
size of ∆/η = 30. In these contour plots it is quite apparent that the SGS stress
is intensified during the straining. Also, the contours corresponding to intermediate
stresses appear to become slightly more elongated in the extending (x2) direction.
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Figure 8. Contour plots of SGS stress τ11 at different times. The filter scale is ∆/η = 30.
(a) tS∗ = 0, (b) tS∗ = 1.30, (c) tS∗ = 2.09.
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Figure 9. Time evolution of mean SGS stresses normalized by the filter size and energy dissipation,
according to the Kolmogorov scaling of the SGS stress. (a) 〈τ11〉, (b) 〈τ22〉. Vertical bars join results
obtained from the first six and last six images, and give an indication of the level of statistical
convergence. Circles: ∆/η = 20, squares: ∆/η = 40, triangles: ∆/η = 60.

Figures 9(a) and 9(b) show the evolution of the mean normal SGS stresses (〈τ12〉 ∼ 0
due to the symmetry of the flow, and is not shown). The results are normalized by
(ε0∆)2/3, the inertial-range Kolmogorov scaling for the SGS stress; ε0 is the energy
dissipation at the initial stage, as estimated in § 3. The average stresses are evaluated
over the entire sample area and the 10 realizations. In order to indicate the degree
of statistical convergence, figure 9 includes vertical bars. Their extreme points are
determined by averaging the first six samples (k = 1, 2, . . . , 6) and the last six samples
(k = 5, 6, . . . , 10). Before straining, 〈τ11〉 and 〈τ22〉 are similar in magnitude, since the
turbulence is nearly isotropic. Consistent with the Kolmogorov scaling, different scales
collapse to the same value. When the straining starts, 〈τ11〉 becomes scale-dependent,
but 〈τ22〉 does not. To understand these trends, it is useful to decompose the velocity
field into a turbulence part and the applied straining part according to

ui(x, t) = u
(T )
i (x, t) +Ui(x, t), (4.5)
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where Ui(x, t) is defined in (3.6). Based on this decomposition, we can separate the
SGS stress into three parts: turbulence part, cross-term and the applied straining part,
as follows:

τij(x, t) = τ
(T )
ij (x, t) + τ

(C)
ij (x, t) + τ

(M)
ij (x, t), (4.6)

where

τ
(T )
ij (x, t) =

︷ ︸
u

(T )
i u

(T )
j − ũ(T )

i ũ
(T )
j (4.7)

is the turbulence SGS stress. The second part,

τ
(C)
ij (x, t) =

(︷ ︸
u

(T )
i Uj − ũ(T )

i Ũj

)
+

(︷ ︸
Uiu

(T )
j − Ũiũ

(T )
j

)
(4.8)

is the cross-term which represents direct interactions between the applied straining
and the turbulence. The third part

τ
(M)
ij (x, t) =

︷ ︸
UiUj − ŨiŨj =

∆2

12

∂Ui

∂xm

∂Uj

∂xm
(4.9)

is caused by the mean strain. Since the mean rate of strain is spatially uniform, τ(M)
ij

is also uniform. It can be expressed in terms of the applied straining according to

τ
(M)
11 (t) =

∆2

12

〈
S̃11

〉2
, τ

(M)
22 (t) =

∆2

12

〈
S̃22

〉2
, τ

(M)
12 (t) = 0. (4.10)

The relative effect of each term on the total stress for different ∆ is shown in figure
10. The plots contain averages of the absolute values in order to include information
about the cross-term which vanishes on average. The magnitudes of the turbulent
stresses scale like 〈|τ(T )|〉 ∼ ∆2/3, which is compatible with Kolmogorov scaling, and
agrees with the results of Liu et al. (1995) for unstrained turbulence. Thus, the
applied straining does not have a significant impact on the scaling of the turbulent
SGS stress. The cross-parts scale approximately like 〈|τ(C)|〉 ∼ ∆, a trend for which
we have no explanation. As can be expected from (4.10), the straining part scales
as 〈|τ(M)|〉 ∼ ∆2. It is evident from figure 10 that at large scales, 〈τ(M)

11 〉 and 〈|τ(C)
11 |〉

become comparable to the turbulent stress. Thus, in the present range of ∆, 〈τ(M)
11 〉

is sufficiently large to modify trends in the total stress (see figure 9a). As will be
seen in the following sections, τ(C)

ij and τ
(M)
ij also have considerable impact on the

energy dissipation from resolved to subgrid scales. Conversely, in the 22-component,
the mean and cross- terms are considerably smaller than the turbulence stress, since
〈S22〉2 = 1

4
〈S11〉2. Consistent with figure 9b, the normalized 〈τ22〉 does not vary much

with scale.

4.3. Rapid distortion theory

As outlined in § 1.2, RDT has been used in the past to predict the time evolution
of Reynolds stresses when the applied straining S∗ was very large compared to the
turbulent large-scale strain. Here, RDT is used to predict the short-time evolution
of the mean SGS stresses instead of the Reynolds stresses. The ensemble-average
turbulent SGS stress can be written as

〈τ(T )
ij 〉 = 〈

︷ ︸
u

(T )
i u

(T )
j 〉 − 〈ũ(T )

i ũ
(T )
j 〉 =

︷ ︸
〈u(T )
i u

(T )
j 〉 − 〈ũ(T )

i ũ
(T )
j 〉 (4.11)

since filtering and averaging commute. Next, for homogeneous turbulence, 〈u(T )
i u

(T )
j 〉

is uniform in space. Then

︷ ︸
〈u(T )
i u

(T )
j 〉 = 〈u(T )

i u
(T )
j 〉 is equal to the Reynolds stress. On
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Figure 10. Magnitude of different SGS stress terms as a function of filter size, at tS ∗ = 2.34.
Triangles: turbulent stress, squares: cross-stress, crosses: mean straining part. Results are normalized
with the large-scale velocity (ε0L)1/3, where L is the integral scale.

the other hand, we can write

〈ũ(T )
i ũ

(T )
j 〉 =

∫
|F̂∆(k)|2Φij(k, t)dk3, (4.12)

where F̂∆(k) is the filter’s Fourier transform (in the case of the experimental data a
two-dimensional filter), and Φij(k, t) is the spectral tensor of the turbulent velocity
field. Therefore,

〈τ(T )
ij 〉 =

∫
(1− |F̂∆(k)|2)Φij(k, t)d3k. (4.13)

Using the RDT expression for Φij(k, t) of Lee (1989) for axisymmetric expansion, and

using a two-dimensional filter expression for F̂∆(k), the mean turbulence SGS stress
can be evaluated. While the experimental data are analysed using a top-hat filter, the
integration in wavespace is greatly simplified if a spectral cutoff filter is used. Since
one does not expect significant discrepancies in the mean stress to arise from different
filter shapes, we use the cutoff filter. We first consider the case of three-dimensional
filtering and then proceed to two-dimensional filtering. The spherical cutoff filter in
Fourier space for three-dimensional filtering is given by

|F̂∆(k)|2 =

{
1 if |k| 6 π/∆
0 otherwise.

(4.14)

Using spherical coordinates, the SGS stress is given by〈
τ

(T )
ij

〉
3D

(t) =

∫ ∞
π/∆

dk

∫ π

0

dθ

∫ 2π

0

dφΦij(k, t). (4.15)
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For rapid axisymmetric expansion, equation (3.5), the short-time evolution of Φij(k, t)
is given in Lee (1989), and expressed as function of the accumulated applied straining

c(t) = exp

(∫ t

0

S(t′)dt′
)
. (4.16)

The results are

Φ11(k, t) =
E(k)

4π

c2(k2
2 + k2

3)

(c3k2
1 + k2

2 + k2
3)2
, (4.17)

Φ22(k, t) =
E(k)

4π

c−1
(
(c6k2

2 + k2
3)− (1− c3)2k2

1k
2
3/k

2
)

(c3k2
1 + k2

2 + k2
3)2

, (4.18)

and

Φ12(k, t) = −E(k)

4π

c7k1k2

(c3k2
1 + k2

2 + k2
3)2
, (4.19)

where E(k) is the energy spectrum of isotropic turbulence at t = 0, and k = |k|. These
results are substituted in (4.15) with k1 as the axial direction, and a ≡ c3 − 1. The
radial integration factors out (see e.g. Batchelor & Proudman 1954; Lee 1989) and
one obtains the same result as for Reynolds stresses, up to a dimensional prefactor:〈

τ
(T )
11

〉
3D

(t) = cK π−2/3 3
4
(ε∆)2/3 (a+ 1)2/3

a

(
1 +

a− 1

a1/2
arctan a1/2

)
, (4.20)

〈
τ

(T )
22

〉
3D

(t) = cK π−2/3 3
8
(ε∆)2/3 (a+ 1)5/3

a

(
1

a1/2
arctan a1/2 +

a− 1

(a+ 1)2

)
; (4.21)

〈τ(T )
12 〉(t) = 0 at all times. We have used the Kolmogorov spectrum for E(k), but since

the radial integration factors out, the ratio 〈τ(T )
11 〉3D(t)/〈τ(T )

11 〉3D(0) is independent of the
shape of the radial spectrum, and equals that of the Reynolds stresses (Lee 1989).

In the two-dimensional filtering process used for the two-dimensional experimental
data, the filtering is performed only in the x1- and x2-directions with a box filter. This
process is approximated here with a cylindrical cutoff filter. Now the axial direction
is taken in the k3-direction (perpendicular to the data plane), and the SGS stresses
can be written as

〈τ(T )
ij 〉2D(t) =

∫ π

0

dθ

∫ ∞
π/(∆ sin θ)

dk

∫ 2π

0

dφΦij(k, t). (4.22)

Replacing the RDT spectra (4.17)–(4.17) and the Kolmogorov radial spectrum for
the initial condition, both the k and φ integrations can be done analytically. The
result is

〈τ(T )
11 〉2D(t) = cKπ

−2/3 3
8
(ε∆)2/3(1 + a)2/3

∫ π

0

sin5/3 θ
2 + (a− 1) sin2 θ

(1 + a sin2 θ)3/2
dθ, (4.23)

〈τ(T )
22 〉2D(t) = cKπ

−2/3 3
8
(ε∆)2/3(1 + a)−1/3

×
∫ π

0

sin5/3 θ
a(a− 1) sin4 θ + (3a− 1) sin2 θ + 2

(1 + a sin2 θ)3/2
dθ, (4.24)

and 〈τ(T )
12 〉2D(t) = 0. Notice that here the radial integration does not factor out, so this

result is limited to an inertial-range energy spectrum. The θ-integrals are computed
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Figure 11. Comparison of normalized SGS stresses (symbols) computed according to (4.25) and
averaged over ten vector fields, with RDT prediction (lines) for the 11-component (a) and the
22-component (b). Vertical bars join results obtained from the first and last six fields. Solid lines are
for two-dimensional filtered RDT results, dotted lines are three-dimensional filtered RDT results.
Squares: ∆/η = 30, rhombs: ∆/η = 50, stars: ∆/η = 280.

by numerical integration using MathematicaTM; a(t) = c(t)3−1, where c(t) is obtained
from (4.16) with S(t) replaced by the measured mean strain magnitude, |〈S11(t

′)〉| (see
figure 7). The trapezoidal rule is used for the time integration. Results are compared
with measurements in the next section.

4.4. Experimental results vs. RDT prediction

The turbulence SGS stresses 〈τ11〉 and 〈τ22〉 are computed from the data by averaging
over all points of an image, and are normalized by their values at t0 = 0.03 s,
taken here as the initial reference time. The ratios are then averaged over all the 10
realizations available for the same time,

rij(t) =

〈 〈τ(T )
ij (t)〉a

〈τ(T )
ij (t0)〉a

〉
b

, (4.25)

where 〈.〉a indicates a spatial average over each image, and 〈.〉b refers to ensemble
averaging over all images. This process is repeated for different filter sizes, ∆/η =
280, 80, 40, and 20. The results are compared to the two-dimensional filtered RDT
prediction (solid lines) in figures 11(a) and 11(b). Dashed lines are the RDT prediction
using a three-dimensional radial filter, which is equivalent to the classical result (see
Lee 1989). Vertical bars indicate, as in figure 9, convergence uncertainty by displaying
the results from the first six and last six experiments. Both r11 and r22 increase more
rapidly at small scales than at large scales. The results fall below the RDT line for
the 11-component, and around the RDT line for the 22-component. In other words,
the results are more isotropic than the RDT prediction. In figure 11(a), r11 is closer to
the RDT line at small scales than at larger filter scales. Conversely, in figure 11(b) it
appears that r22 falls closer to the RDT line at large scales. While we do not have an
explanation for such an effect, it must be recognized that the error bars are significant
at the later times.

In order to directly assess the isotropy of the SGS stress tensor, we cast the results
in terms of the anisotropy tensor, bij , where

bij =
rij

rkk
− 1

3
δij . (4.26)
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Figure 12. Anisotropy tensor bij of normalized stress rij . Solid line and upper set of symbols:
11-component; dashed line and lower set of symbols: 22-component. Stars: ∆/η = 280, rhombs:
∆/η = 80, triangles: ∆/η = 40, circles: ∆/η = 20; lines: two-dimensional filtered RDT prediction.

The trace, rkk , can be obtained from the experimental data by assuming that r33 = r22

due to axisymmetry. As shown in figure 12, bij becomes increasingly more isotropic
with decreasing scale. However, even at the largest scale considered (280η), bij is
still less anisotropic than the RDT prediction. To verify that these results are not
influenced by the noise present at the smallest scales (see figure 4), which could
increase isotropy, several filtering operations that remove the noise floor are applied
to the data. Analysis based on these filtered data (not shown) yields almost identical
SGS stresses and trends.

From the discussion above, one can conclude that during rapid straining, the small
scales remain more isotropic than the large ones, i.e. deviate more from the RDT
prediction. This trend is not surprising if one estimates the characteristic time scale

for eddies of size ∆ as T∆ = ε
−1/3
o ∆2/3. For the smallest filter-scale considered the

time scale is T∆= 20η = 0.15 s. This value is already on the order of the inverse time
scale of the applied strain rate, 1/S∗ = 0.12 s. Thus, the basic assumption of RDT
(1/S∗ � T∆) does not hold for the smaller scales in this flow.

It should be pointed out that for Reynolds stresses undergoing slow axisymmetric
expansion, anisotropy larger than the RDT prediction has been observed in the past
(Choi 1983; Lee 1985). Since the distortion applied in our experiment is slow relative
to the time scale of the small scales, there is an apparent contradiction. To understand
possible causes for the different trends, note that average SGS stresses and Reynolds
stresses are variables whose evolution equations differ substantially. Among others,
it is simple to show that the evolution equation for the mean SGS stress contains
production terms of the form 〈τ(T )

ik ∂ũ
(T )
j /∂xk〉, which have no analogue in the Reynolds

stress equation. Differences also exist in the pressure–strain correlation terms.
We have attempted to compute the Reynolds stresses from the unfiltered data

during straining in order to directly compare the behaviour of SGS and Reynolds
stresses in the present data. Unfortunately, only ten vector maps are available at each
time during the straining (as opposed to 20 for the initial turbulence). Furthermore, as
can be seen in figure 4, the peaks of the spectra at large scales are not resolved. These
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limitations cause large variabilities, making it very difficult to identify clear trends.
Convergence of the large-scale properties is more difficult than the normalized SGS
properties since in the latter case there are more independent events to average over.
For SGS stresses there are about ∼ n (L/∆)3 events, where n is the number of vector
maps, L is the image size, and ∆ the filter size. For the Reynolds stresses there are
only about n independent large-scale events. Consequently, results for the unfiltered
Reynolds stresses are not presented.

5. Scale similarity during straining
So far, we have focused on the average SGS stress, and its dependence on time

and filter scale. This section focuses on the local features of the total SGS stress. In
the previous section, the SGS stress was separated into three terms, for the purpose,
among others, of comparing them to RDT. However, during LES of complex flows, it
is usually impossible to separate the turbulence from the mean, and it is thus common
to treat the total SGS stress as one single term that needs to be modelled.

To gain insight about local features of the flow at different scales, in Liu et al.
(1994) the velocity field was decomposed into several bands of scales. Particular local
flow structures were found to be present simultaneously in consecutive bands, which
led to the scale-similarity model of (1.4). To ascertain if this ‘structure coherence’
persists during the rapid straining, this analysis is repeated using the present data.
The measured velocity field is decomposed into contributions from separate scale
bands, according to

ui(x) =

N∑
n=1

u
(n)
i (x), (5.1)

where the velocity field in each band, u(n)
i (x), is given by

u
(n)
i (x) = ũi(x)− ui(x). (5.2)

The tilde filtering is at a scale ∆ = 2−nW , where W denotes the image width in the
x1-direction (W ≈ 320η) and n = 1 to 5. As before, the overbar denotes filtering at
a scale 2∆ = 2−(n−1)W . To be consistent with information that would be available
during LES and to avoid overlap of information, ũi(x) is sampled on a grid of size ∆.
Bilinear interpolation is employed to generate a smooth field between grid points only
for graphical illustration purposes; ui(x) is determined from ũi(x), but it is sampled
on a coarser grid of spacing 2∆ = 2−(n−1)W . Again, a smooth field is generated by
bilinear interpolation.

Figure 13 is the band velocity field for n = 3 and 4 prior to straining, when the
turbulence is still nearly isotropic. The structure coherence is evident, i.e. a num-
ber of common features can be observed in both plots (e.g. the highlighted vortical
structures). It should be remarked that using wavelet analysis of two-dimensional
turbulence, Farge & Rabreau (1988) also found significant correlation between scales
for coherent structures. Figure 14 displays a sequence of band velocity fields at con-
secutive times during straining. The top figures show the larger scale (band n = 3)
and the bottom ones display the smaller scale (band n = 4). Several qualitative ob-
servations can be made from these data. First, by comparing figures 13 and 14, it is
quite apparent that the turbulence is intensified in both bands due to the straining.
Second, to highlight the time evolution of these fields during straining, attention is
drawn to particular flow features, such as a saddle, a node and two ‘jetting’ regions.
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Figure 13. The band velocity field at two scales, (a) n = 3 and (b) n = 4, at tS ∗ = 0, when the
flow is nearly isotropic and homogeneous. A reference vector is plotted on the top-left corner,
corresponding to 0.1 m s−1, and vortical structures are highlighted. Only a quarter of the whole
field is plotted.

These regions are defined here by visual inspection, as more sophisticated classifi-
cations of flow regions, such as by Hunt, Wray & Moin (1988), require knowledge
of the three-dimensional local flow-structure. At tS∗ = 1.82 the chosen regions are
surrounded by rectangles. The vertices are then convected by time integration of ui.
Bilinear interpolations in space and time are employed to evaluate ui(x) from the
data. As can be seen from the vector maps at successive times (at n = 3), some of
the highlighted flow features are convected by the two measured components of ui, in
particular the two jetting regions and the saddle. However, the node is convected at a
different velocity, possibly due to the fact that u3 is not accounted for. Also, the local
flow structures are distorted. These qualitative observations are consistent with what
can be deduced from the evolution equation of u(n)

i . It is obtained by subtracting the
equation for ui from that of ũi, and reads

∂u
(n)
i

∂t
+ uj

∂u
(n)
i

∂xj
= −u(n)

j

∂ui

∂xj
− ∂Qij

∂xj
, (5.3)

where Qij = (p̃ − p)/ρδij − τij + Tij + u
(n)
i u

(n)
j , and Tij is the SGS stress at scale

2∆. According to (5.3), the band velocity u(n)
i is convected by ui, but is also distorted

(stretched and tilted) by ∂ui/∂xj and affected by the transport term Qij . The distortion

term −u(n)
j ∂ui/∂xj vanishes for critical points where u(n)

i = 0 (such as the saddles and
nodes). But, they can still be affected by ∂Qij/∂xj . Thus, we expect considerable
changes in the local flow structure as it is convected by the larger scales.

The third observation involves comparing data filtered at two consecutive scales.
Structures that appear at the larger scale are likely to appear also in the smaller
scales. For example, at tS∗ = 2.09, a ‘vortex’ at x1 ∼ 0.25 cm and x2 ∼ 3.5 cm is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

45
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004504


3
0
2

S
.

L
iu

,
J
.

K
a
tz

a
n
d

C
.

M
en

evea
u

(a)

4.4

3.4

2.9

0.5 1.0 1.5 2.0

x 2
 (

cm
)

x1 (cm)
0

3.9

4.9

5.4

5.9

4.4

3.4

2.9

x 2
 (

cm
)

3.9

4.9

5.4

5.9

(b)

4.4

3.4

2.9

0.5 1.0 1.5 2.0

x1 (cm)
0

3.9

4.9

5.4

5.9

4.4

3.4

2.9

3.9

4.9

5.4

5.9

(c)

4.4

3.4

2.9

0.5 1.0 1.5 2.0

x1 (cm)
0

3.9

4.9

5.4

5.9

4.4

3.4

2.9

3.9

4.9

5.4

5.9

n = 3

n = 4

Figure 14. The band velocity field at different times during straining ((a) tS ∗ = 1.82, (b) tS∗ = 2.09, (c) tS∗ = 2.36).
The reference vector is 0.1 m s−1. Only a quarter of the whole field is plotted. Vertices of shaded regions are convected
by the large-scale velocity field u (with n = 3). The same shadings refer to the same fluid elements.
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clearly evident at both scales. So is the jetting region at x1 ∼ 1.1 cm and x2 ∼ 5.1
cm. There are many other similar examples (but some counter examples as well).
Thus, it appears that the coherence between turbulent structures at different scales
persists during the straining process. This means that the foundation for the similarity
model, as described in Liu et al. (1994), should also apply to turbulence under rapid
straining. Following the same logic, for a filter scale ∆ one can argue that the real
SGS stress, τij , is dominated by the velocity in band n. The resolved stress, Lij , is
dominated by the velocity in band n − 1. Given the similarity in the velocity fields,
there should also be similarity between τij and Lij .

Next, τij and Lij are compared quantitatively during rapid straining. As in Liu et al.
(1994), special care is taken in how Lij is computed. In order to use only information
that would be available for LES computations on a grid with scale ∆, ũi is coarsely
sampled on such a grid (i.e. the velocity in a cell of size ∆ is replaced by its average in
that cell) before the second filtering is performed. Such a procedure effectively renders
the small-scale field (the difference between the real and the piecewise-constant large-
scale field) orthogonal to the large-scale field, eliminating any trivial overlap of
information between resolved and subgrid scales. When evaluating Lij the planar
filtering at scale 2∆ of a coarse-grained variable ã is performed according to

ã(m,n) = 1
4
ã(m,n) + 1

8

[
ã(m+1,n) + ã(m−1,n) + ã(m,n+1) + ã(m,n−1)

]
+ 1

16

[
ã(m+1,n+1) + ã(m−1,n+1) + ã(m+1,n−1) + ã(m−1,n−1)

]
, (5.4)

where ã(m,n) is the variable at node (m, n) (ã can be ũi or ũiũj), and the distance between
nodes is ∆.

Traditional a priori tests have often employed correlation coefficients to quantify the
local agreement between real and modeled SGS stresses. The correlation coefficient
between two variables a and b is defined as usual:

ρ(a, b) =
〈ab〉 − 〈a〉〈b〉

(〈a2〉 − 〈a〉2)1/2(〈b2〉 − 〈b〉2)1/2
. (5.5)

Figure 15(a) shows the time evolution of the correlation coefficients between the
real stress and the similarity model for ∆/η ∼ 30. The correlation coefficient is
computed separately for each tensor element, i.e. ρ(ταβ, τ

mod
αβ ), with no summation

over indices since for the present application not all tensor elements are known. The
figure shows that the correlation coefficients are essentially constant throughout the
straining process, for all measured tensor components. Again, the vertical bars denote
the variability in convergence as defined in the previous figures. Tests at different ∆
(not shown) yield similar correlations. The relatively elevated value of the correlation
throughout the straining confirms the qualitative observations about scale coherence.
Next, the correlations associated with the Smagorinsky model are considered. Since the
model only attempts to reproduce the deviatoric part of the stress, we must correlate
the Smagorinsky prediction to (τij − 1

3
τkkδij). However, since τ33 is not measured, we

substitute τ33 = τ22 locally. Then, the 11-component of the Smagorinsky model is
compared to 2

3
τ11 − 2

3
τ22, and the 22-component to 1

3
τ22 − 1

3
τ11. The results are also

plotted in figure 15(a) (dashed lines). During the isotropic turbulence phase before
straining, the correlation is very low (below 0.2) for all three components, consistent
with previous results (Clark et al. 1979; Liu et al. 1994, etc.). During straining, the
correlation for the 11- and 22-components increases slightly, while the correlation for
the 12-component remains low. They are still lower than results for the similarity
model.
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Figure 15. (a) Correlation coefficients between SGS stress and similarity (symbols and solid lines),
and Smagorinsky model (symbols and dotted lines). Circles: 11-component, squares: 22-component,
triangles: 12-component. The filter-scale is ∆/η = 30. Very similar results are obtained at other
filter scales. Vertical bars join results obtained from the first and last six vector maps. (b) Global
square-error between real and modelled SGS force. Similarity model: symbols and lines, Smagorinsky
model: symbol and dotted lines. Circles: f1 component; Squares: f2 component.

Adrian (1990) and, more recently, Moser & Adrian (1998) show that for a LES to
reproduce the short-time evolution of the large scales, it is of interest to consider the
square-error

E(fα, f
mod
α ) =

〈
(fα − fmod

α )2
〉
, (5.6)

where fi and fmod
i are the real and modeled SGS force, respectively. The SGS force is

defined as the divergence of the SGS stress, i.e. fi = ∂τij/∂xj . Adrian (1990) and Moser
& Adrian (1998) point out the interesting fact that the least-square-error is achieved if
a model reproduces the conditional average 〈fi|V 1,V 2, . . .VN〉, where {V 1,V 2, . . .VN}
represents a given configuration of the entire velocity field at all (N) points in the
flow. Moreover, this condition is sufficient for LES to reproduce the entire multipoint
p.d.f. of the resolved scales (S. B. Pope 1997, personal communication). Interestingly,
it thus closes the hierarchy of statistical conditions derived in Meneveau (1994) which
were necessary, but not sufficient, conditions at any finite order of moments. However,
since the conditioning is based on an entire multipoint configuration of the resolved
velocity field, tests for 〈fi|V 1,V 2, . . .VN〉 are not easily performed in practice without
resorting to a number of assumptions. Nevertheless, models can be compared more
simply on the basis of their ability to reduce the global error E(fα, f

mod
α ). Models for

which E(fα, f
mod
α ) is smaller will be closer to an optimal SGS model.

The SGS force cannot be computed from the planar data since gradients and
tensor elements in the x3-direction are unavailable. Thus, in the present study only
two terms of the stress divergence are used for the comparison,

f2D
1 =

∂τ11

∂x1

+
∂τ12

∂x2

, f2D
2 =

∂τ12

∂x1

+
∂τ22

∂x2

. (5.7)

The differentiation is performed using centred finite differences on the coarse mesh
of size ∆, and the error is computed according to (5.6). To properly scale the results,
the error E(a, b) is normalized as follows:

E∗(a, b) =
E(a, b)

σ2
a + σ2

b + (〈a〉 − 〈b〉)2
, (5.8)

where σ2
a and σ2

b are the variances of a and b, respectively. It is simple to show that
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the normalized error and the correlation coefficient ρ(a, b) are related according to

E∗(a, b) = 1− 2σaσb

σ2
a + σ2

b + (〈a〉 − 〈b〉)2
ρ(a, b), (5.9)

so that if both variables a and b have the same mean and variance, E∗ = 1 − ρ.
Otherwise, E∗ > 1− ρ.

Figure 15(b) shows the time evolution of the normalized error for the Smagorinsky
model and the similarity model. As can be seen, the error is almost the maximum
value near 1 for the Smagorinsky model (this is consistent with recent DNS results
for isotropic turbulence (R. D. Moser 1998, personal communication)). This large
error is related to two effects: (i) the correlation between the real and Smagorinksy
SGS force is low (we obtain typical values around ρ(f2D

i , f
2D
i

smag
) ∼ 0.3), and (ii) the

variances differ significantly (see Liu et al. 1995). The error for the similarity force

is about E∗(f2D
i , f

2D
i

sim
) ∼ 0.6, smaller than that of the Smagorinsky model although

still large.
We conclude that both criteria, the correlation coefficient and the square-error,

indicate that the similarity model is a relative improvement over the Smagorinsky
model for both strained and unstrained turbulence. This conclusion is valid for the
box filter. As in Liu et al. (1994), analysing the data using a spectral cutoff filter leads
to very low correlation coefficients (and thus large errors) for the similarity model.
Although the spectral filter’s long tail in physical space introduces significant errors
due to boundary effects, we believe this conclusion is correct as it agrees with previous
findings from DNS (Meneveau, Lund & Moin 1993).

6. SGS energy dissipation and model coefficients
Probably the most important feature of the SGS stress is that it interacts with the

large scales to exchange, and typically dissipate, kinetic energy on average. In this
section, we focus on averaged and localized features of the SGS dissipation during
rapid straining. We also evaluate the coefficients in the Smagorinsky and similarity
models by balancing the real and modelled SGS dissipation.

6.1. Subgrid energy dissipation

Neglecting the viscous terms, the evolution equation for mean resolved kinetic energy
reads

∂

∂t

〈
1
2
ũ2
i

〉
+ 〈ũj〉 ∂

∂xj

〈
1
2
ũ2
i

〉
= − ∂

∂xj

(〈
ũj

1
2
ũ2
i

〉− 〈ũj〉 〈 1
2
ũ2
i

〉 〈p̃ũj〉+ 〈ũiτij〉)+
〈
τij S̃ij

〉
.

(6.1)
It shows that the SGS stress affects the mean kinetic energy through two mech-

anisms: the transport term 〈ũiτij〉 and the dissipation term Π(t) ≡ − 〈τij S̃ij〉. For
typical, near-equilibrium flows in which turbulent strains at scale ∆ are larger than
the mean velocity gradients, the SGS dissipation becomes increasingly dominant over
the transport term as ∆ decreases. Since the two terms scale differently with ∆, they
are usually considered separately, and most attention is given to the dissipation term,
Π(t). Thus, we shall also focus on Π(t), its time evolution and modeling. In general,
the dissipation term consists of two contributions:〈

τij S̃ij
〉

=
〈
τij
〉〈
S̃ij
〉

+
〈
τij S̃

(T )
ij

〉
, (6.2)

where S̃
(T )
ij = S̃ij − 〈S̃ij〉 is the fluctuating part of the resolved strain-rate tensor.
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Since during rapid straining, 〈S̃ij〉 is typically as large as, or larger than S̃
(T )
ij , we

expect the first term to contribute significantly to the total dissipation. However, for
the present case of rapid straining of homogeneous turbulence, 〈τij〉 〈S̃ij〉 is exactly

balanced by the term (∂/∂xj) 〈ũiτij〉 = (∂/∂xj)〈ũ(T )
i τij〉 + 〈τij〉〈S̃ij〉 = 〈τij〉〈S̃ij〉, since

〈ũ(T )
i τij〉 is spatially uniform for homogeneous turbulence. Thus, for homogeneous

turbulence, the net effect of τij on the resolved kinetic energy can be expressed by the
net dissipation term

Π∗(t) = −〈τij S̃ (T )
ij 〉 (6.3)

involving only the fluctuating strain rate. Therefore, we also consider the behaviour
of Π∗(t).

6.2. Assumption of subgrid axisymmetry and simplifications

One frequently needs to evaluate the contraction of two tensors, such as the SGS
dissipation, the strain-rate magnitude |S̃ | = (2S̃ij S̃ij)

1/2, etc. Unfortunately, the two-
dimensional PIV data provide only two velocity components, u1 and u2, and three
tensor components of the rate of strain, S̃11, S̃22, S̃12, and SGS stress, τ11, τ22, τ12.
Therefore, certain assumptions and approximations have to be made in order to
evaluate the tensor contractions. For example〈

τij S̃ij
〉

=
〈
τ11S̃11

〉
+
〈
τ22S̃22

〉
+
〈
τ33S̃33

〉
+ 2

(〈
τ12S̃12

〉
+
〈
τ13S̃13

〉
+
〈
τ23S̃23

〉)
. (6.4)

Owing to isotropy before straining and to axisymmetry during straining, one can
assume that

〈
τ13S̃13

〉
=
〈
τ12S̃12

〉
,
〈
τ33S̃33

〉
=
〈
τ22S̃22

〉
. During straining, the

〈
τ23S̃23

〉
term is not available even assuming axisymmetry. Therefore, this term is not included
and the dissipation is approximated by〈

τij S̃ij
〉 ≈ 〈τ11S̃11

〉
+ 2

〈
τ22S̃22

〉
+ 4

〈
τ12S̃12

〉
. (6.5)

For isotropic turbulence before straining, it can be proven that the 23-term contributes
20% of the total amount of dissipation. During straining, the 11- and 22-components
are significantly larger than other terms. Therefore, the error introduced by not
including the 23-term is 20% initially, and below 20% during straining. A similar
approximation is made for the rate-of-strain magnitude:

|S̃ | ≈ (2S̃2
11 + 4S̃2

22 + 8S̃2
12

)1/2
. (6.6)

All the subsequent analysis is based on the approximation of discarding the 23-
component.

6.3. Evolution of subgrid energy dissipation

The SGS dissipation Π(t) is evaluated by taking averages over the 10 instantaneous
distributions available for each time step. Π(t) is a third-order moment, which requires
many samples to achieve statistical convergence, and ten two-dimensional data sets at
each time is insufficient for full convergence. However, the main trends can already be
identified in figure 16(a), which shows Π(t) at different scales as a function of time. As
in previous figures, the extremes of the vertical bars represent averages over subsets
of the data (first six and last six sets). During the initial stage of isotropic turbulence,
the SGS dissipation is smaller than the dissipation rate ε0 estimated from the energy
spectrum in § 3 (the difference is partially a result of neglecting the 23-term, but may
also be due to two-dimensional filtering). A similar discrepancy was observed in the
jet measurements of Liu et al. (1994).

As the plates are accelerated, the SGS dissipation increases rapidly because of the
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Figure 16. (a) Time evolution of total SGS energy dissipation from resolved to subgrid scales for
different filter sizes. As in figure 15, vertical bars indicate (for ∆/η = 20 and 40) partial averages
from the first and last six vector maps. (b) Time evolution of net dissipation Π∗(t). Circles: ∆/η = 20,
squares: ∆/η = 30, triangles: ∆/η = 40.

increase of the applied strain rate, and the response of turbulence to it. Figure 16(a)
shows that at the initial stage, Π(t) is independent of filter size, as expected for the
SGS dissipation in the inertial range (while the SGS stress scales as ∆2/3, the resolved
rate of strain scales as ∆−2/3). After the straining starts, the SGS stress is larger than
the 2/3 power of scale (see figure 10), while the rate of strain is less dependent on
scale because of the strong and uniform straining. Thus, Π(t) increases with ∆. Figure
16(b) shows the net dissipation Π∗(t), which also increases with applied straining and
scale, but less than Π(t) since the mean is not included in the strain rate.

Next, we compare the spatial distribution of the measured total (local) SGS energy
dissipation −τij S̃ij with that predicted by the Smagorinsky and similarity models.
The local and modelled SGS dissipation are evaluated using (6.5) and (6.6), but
without spatial or ensemble averaging. Note that without averaging, the assumptions
of isotropy and axisymmetry do not hold. However, we work under the assumption
that qualitative features are not significantly affected. To evaluate the modelled SGS
dissipation, one must fix the model coefficients cs and cL. For now, we use the values
found in Liu et al. (1995), namely cs = 0.1 and cL = 1. As will be shown later, these
coefficients depend on the straining. Figures 17 and 18 show the contour plots of
the real and modelled SGS dissipation before and during straining (at tS∗ = 1.82).
In both cases, the similarity model reproduces coarse features of the distribution of
real SGS dissipation. Energy backscatter is predicted in approximately the correct
regions, although some discrepancies are evident. The Smagorinsky model predicts
some of the positive regions of −τij S̃ij about as well as the similarity model. However,
by construction, it does not reproduce any backscatter.

6.4. Model coefficients by SGS dissipation balance

6.4.1. Similarity model

From the condition that a model provides the correct rate of SGS energy dissipation,
the coefficient in the similarity model can be evaluated according to

cL =

〈
τij S̃ij

〉〈
LijS̃ij

〉 , (6.7)

where Lij is the resolved stress tensor as defined in (1.4). As seen in figure 19(a)
before straining starts, cL ≈ 1, in agreement with previous findings (Liu et al. 1995).
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Figure 17. Contour plots of SGS dissipation fields from one data set before straining, at tS ∗ = 0. Filter size is ∆/η = 40. (a) Real SGS dissipation.
(b) Prediction of the similarity model. (c) Prediction of the Smagorinsky model. Darkest contour level: 0.025 m2 s−3, increment between lines:
−0.005 m2 s−3. The white regions are negative, corresponding to backscatter.

https://doi.org/10.1017/S0022112099004504 Published online by Cambridge University Press

https://doi.org/10.1017/S0022112099004504


R
a
p
id

stra
in

in
g

o
f

su
b
g
rid

tu
rb

u
len

ce
3
0
9

(a)

5

4

2

x 2
 (

cm
)

x1 (cm)
2 4

3

1

(b)

x1 (cm)
2 4

(c)

x1 (cm)
2 4

Figure 18. As figure 17 but at tS∗ = 1.82. Darkest contour level: 0.15 m2 s−3, increment between lines: −0.03 m2 s−3.

https://doi.org/10.1017/S0022112099004504 Published online by Cambridge University Press

https://doi.org/10.1017/S0022112099004504


310 S. Liu, J. Katz and C. Meneveau

(a)
1.50

1.25

1.00

0.75

0.50

0.25

0 0.5 1.0 1.5 2.0 2.5

cL

(b)
0.025

0.020

0.015

0.010

0.005

0 0.5 1.0 1.5 2.0 2.5

c s
2

tS*

Figure 19. (a) Similarity model coefficient and (b) Smagorinsky model coefficient deduced from
total SGS dissipation balance, at ∆/η = 20 (circles), ∆/η = 30 (squares) and ∆/η = 40 (triangles).
Vertical bars: same as in figure 16.

After the straining starts, cL decreases rapidly and maintains a constant value of
approximately cL ≈ 0.45 during the constant straining stage. Thus, according to
this a priori test, the model with cL = 1 would over-predict SGS dissipation. It is
possible that this trend is caused by the increasing importance of mean and cross-
stresses with increasing ∆, which would raise Lij more than τij . The observed strain
dependence of the coefficient presents a basic problem for simulations in which fixed
coefficients are used. Also, note that during straining cL decreases with increasing
∆. Such scale-dependence of the coefficient poses difficulties for the dynamic model,
which assumes scale-invariance (Meneveau & Lund 1997, see Porté-Agel, Meneveau
& Parlange 1998 for a scale-dependent dynamic model).

If one requires the model to match the net dissipation Π∗, the coefficient should be
evaluated according to

c∗L =
〈τij S̃ (T )

ij 〉
〈LijS̃ (T )

ij 〉
. (6.8)

The results (not shown) display trends similar to cL, only that c∗L decreases to about
0.6, instead of 0.45.
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6.4.2. Smagorinsky model

For the Smagorinsky model the coefficient may be evaluated according to

c2
s =

− 〈τij S̃ij〉
2∆2

〈|S̃ |S̃ij S̃ij〉 , (6.9)

where the mean total SGS dissipation is averaged in space and over all realizations
at a given time. As shown in figure 19(b), before the straining starts the model
coefficient, which varies between 0.06 to 0.14 (with a representative value cs ∼ 0.09),
is close to the result of Liu et al. (1995). However it is lower than the standard value
for isotropic turbulence (cs ∼ 0.16) possibly due to the effects of two-dimensional,
instead of three-dimensional, filtering (Scotti, Meneveau & Lilly, 1993). During the
acceleration phase the Smagorinsky coefficient increases, and then varies very little
during the constant straining stage. Similar results (not shown) are obtained from a
balance of net dissipation. The increase in coefficient implies that if one uses a constant
model coefficient appropriate for isotropic turbulence, the Smagorinsky model would
underpredict the dissipation. This trend contradicts the common expectation that the
Smagorinsky model should over-dissipate in highly strained flows (see McMillan &
Ferziger 1980; Smith & Yakhot 1993). To explain this contradiction, we examine the
contributions of the turbulent, cross- and the applied straining parts of the SGS stress
separately. These contributions are evaluated according to

c2
s−T =

−〈τ(T )
ij S̃ij〉

2∆2〈|S̃ |S̃ij S̃ij〉 , c2
s−C =

−〈τ(C)
ij S̃ij〉

2∆2〈|S̃ |S̃ij S̃ij〉 , c2
s−M =

−〈τ(M)
ij S̃ij〉

2∆2〈|S̃ |S̃ij S̃ij〉 , (6.10)

where

c2
s = c2

s−T + c2
s−C + c2

s−M. (6.11)

As shown in figure 20, these three coefficients have opposing trends. For the
turbulent part, c2

s−T drops during straining, in agreement with McMillan & Ferziger
(1980) who also computed the SGS stress solely in terms of the velocity fluctuations.
Conversely, the dissipation associated with the cross-term increases substantially, and
does not appear to depend on ∆. The applied straining part increases during the
acceleration phase, and slightly decreases during the constant straining stage. The
latter trend occurs since

〈|S̃ |S̃ij S̃ij〉 increases due to the increasing turbulence during

straining (figure 11 and RDT). Furthermore, c2
s−M increases with scale and at small

∆, c2
s−M is significantly smaller than the other terms.

The direct effect of the mean velocity gradient on the SGS stress arises because
we are filtering in directions of mean velocity gradient, which gives rise to the cross-
and mean terms. Obviously, these contributions would be absent if one filters only
in directions in which the mean velocity is homogeneous, such as planes parallel to
the wall in channel flow. In such a case, trends as in figure 21(a) should be expected.
However, in typical simulations the entire c2

s is used, and the effects of cross- and
mean terms are important.

6.5. Mixed model

We have seen in § 6.4 that if one uses constant isotropic turbulence coefficients
during rapid straining, the similarity model overpredicts the energy dissipation, while
the Smagorinsky model underpredicts it. Thus, neither model can be regarded as
universally valid for distorted turbulence. Their opposing trends motivate us to
explore whether the mixed model (Bardina et al. 1980; Liu et al. 1994) can reproduce
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Figure 20. Contribution of the different terms to the Smagorinsky model coefficient: (a) tur-
bulence term, (b) cross-term, (c) applied straining term. Symbols are the same as in figure 19.

the correct SGS energy dissipation with fixed coefficients, i.e. whether a mixed model
is more universal than its constitutive parts. Let us write the mixed model as follows:

Tmix
ij = αcLiLij − 2(1− α)c2

si∆
2|S̃ |S̃ij , (6.12)

where cLi = 1 and csi = 0.09 are the isotropic turbulence coefficients (see figure
19); α is a weight with value between 0 and 1 that is determined by matching with
the data. Figures 21(a), 21(b) and 21(c) compare the real and modelled total SGS
dissipation for α = 1 (similarity), α = 0 (Smagorinsky), and an adjusted value α = 0.3
(mixed), respectively. As expected from figure 19, α = 1 overpredicts and α = 0
underpredicts the dissipation during straining. However, the fitted value α = 0.30
does a remarkable job in predicting the correct total dissipation throughout the entire
experiment, including the acceleration stage. We have repeated the analysis for the
net dissipation, Π∗, and compared results with the mixed model using α = 0.35. The
conclusions are similar: at least in the present axisymmetric rapid straining, the mixed
model with constant coefficients yields results that are significantly better than either
the similarity or Smagorinsky models with fixed coefficients.

Figure 22(a) compares the dissipation by the turbulent stress ΠT = −〈τ(T )
ij S̃ij〉, with

that of the cross- and mean stress, ΠC+M = −〈(τ(C)
ij + τ

(M)
ij )S̃ij〉. Figure 22(b) compares

the modeled dissipation produced by the similarity and Smagorinsky terms of the
mixed model with α = 0.30. Prior to straining, both the similarity and Smagorinsky
terms contribute to the total dissipation, but during straining each term seems to
assume a different role. The similarity term increases in a fashion which resembles
the increase of ΠC+M , while the change in the Smagorinsky term is similar to the
dissipation by the turbulent stress. The fact that ΠC+M evolves in a similar fashion to
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Figure 21. Real (triangles and solid line) and modeled (circles) total energy dissipation, using (a) the similarity model (mixed model with
α = 1 and a constant similarity coefficient), (b) the Smagorinsky (mixed model with α = 0 and a constant Smagorinsky coefficient), (c) the
mixed model with α = 0.3.
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Figure 22. (a) Contributions of dissipation due to turbulent stress, ΠT (t) (squares), and due to
combined cross- and mean stresses, ΠC+M(t) (circles), to the total real SGS dissipation (triangles).
∆/η=30. Vertical bars indicate partial averages from the first and last six vector maps. (b) Contri-

butions to the modelled SGS dissipation from the similarity term, ΠL(t) = −α cLi 〈Lij S̃ij〉 (circles)

and Smagorinsky term ΠS (t) = (1 − α) c2
Si 2∆2

〈|S̃ |S̃ij S̃ij〉 (squares) in a mixed model with α = 0.3.
Triangles: total modelled dissipation ∆/η=30.
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Figure 23. Real and modelled mean SGS stress, for α = 0.3. Circles and solid line: real stress.
Solid line: modelled stress using the mixed model with α = 0.3. Dotted line: contribution from the
similarity model. Short-dashed line: contribution from the Smagorinsky model. (a) Evolution of
〈τ11〉. Long dashed line is the average of the absolute value. (b) Evolution of 〈|τ12|〉.

− 〈LijS̃ij〉 is not too surprising if one considers that Lij may by itself be decomposed
into contributions from mean, cross- and turbulent stresses. The mean and cross-
stresses contain the mean flow in a similar fashion to the corresponding terms in the
SGS stress, possibly accounting for some of the similar behaviour of the dissipation. In
fact, it has often been argued (Zang et al. 1993; Salvetti & Banerjee 1995; Kang et al.
1998) that the role of the similarity term is to model the cross-stresses that arise in the
Leonard decomposition of the SGS stress (Leonard 1974), while the eddy-viscosity
term’s role is to model the purely small-scale contributions. Presently observed trends
are consistent with this view, even though there are differences between the present
and Leonard’s (1974) definition of cross-stresses. The latter involve the difference
between full and filtered velocities, as opposed to the present definition involving the
difference between full and mean velocities.

While reproducing the correct mean SGS dissipation is a very important require-
ment for a model, one may also be interested in determining how well the models
reproduce the mean value, 〈τij〉, and the mean magnitude, 〈|τij |〉, of the stress. For
the present data in homogeneous turbulence, the mean stress is spatially uniform
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and therefore does not affect the mean flow. Its study is nevertheless of interest,
to determine how much of the real SGS physics is captured by the models since
in applications to non-homogeneous flows the stress divergence contributes to the
mean resolved momentum flux. The mean values of the different contributors to
the modelled τ11 are compared with the real mean value in figure 23(a). As can be
seen, the modelled stress is dominated by the similarity term, which is significantly
larger than the Smagorinsky term throughout the straining process. Since the mean
of the Smagorinsky model is zero for unstrained, isotropic turbulence, we also plot
the average of its absolute value. The results, also shown in figure 23(a), illustrate
that the mean magnitude of this term is low as well. This fact preserves the high
correlation (and smaller square error) of the similarity term with the real stress also
for the mixed model during the entire straining process. However, the modelled mean
value of the total SGS stress is considerably lower than the real value. Figure 23(b)
shows similar trends for the mean absolute values of the off-diagonal, 12-component
of the SGS stress. As a result, an α-value that models the correct dissipation leads to
an underprediction of the mean stress and its mean magnitude. A value α = 1 would
yield the correct stress magnitude and dissipation for isotropic, unstrained turbulence
(Liu et al. 1995; Cook 1997), but would overpredict the dissipation and its trends
during the rapid straining. The fact that a single similarity model coefficient is unable
to simultaneously reproduce the magnitude of stress and SGS dissipation during
rapid straining demonstrates that there still exists significant room for improvement
of the similarity and mixed models.

Finally, the value of α found here for both axisymmetric straining and isotropic
turbulence may not be generally valid for other flows. The dynamic procedure applied
to the mixed model (Liu et al. 1995; Vreman et al. 1994; Salvetti & Banerjee 1995;
Ansari et al. 1998) has the potential of determining the appropriate coefficients. We
have attempted to study the dynamic model based on the present data. However, owing
to the large spatial extent of the test filter (4∆ for the dynamic similarity and mixed
models), treatment of end-effects has forced us to eliminate large amounts of data
along the border of the vector maps (about 80% for ∆ = 30η). The concomitant rise
in uncertainty due to poor statistical convergence rendered the results inconclusive. A
study of dynamic versions of the models considered here must therefore await larger
data sets.

7. Summary and conclusions
7.1. Experimental apparatus to generate isotropic turbulence and rapid straining:

A special test facility for studying the response of isotropic turbulence to rapid
straining has been constructed. Its design decouples the strain rate and the mechanism
for generating turbulence, and as a result provides the capability for generating the
desired high levels of turbulence and rapid straining independently. The turbulence
is generated by four spinning grids located symmetrically around the sample area.
Cinematic PIV is used for measuring the velocity distribution. Performance tests lead
to the following conclusions:

(a) There is very little mean flow in the sample area, which allows one to follow
the evolution of the same flow structure over relatively long periods of time.

(b) The turbulence spectra in all three directions are similar, all having a − 5
3

slope
over a substantial fraction of the spectrum.

(c) The turbulence is reasonably homogeneous in space over the sample area,
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although more data sets will be required to obtain better-converged statistics at every
point to better ensure homogeneity.

(d) A relatively elevated Reynolds number (Rλ ∼ 290) is achieved, without the need
for high flow rates.

Axisymmetric rapid straining is produced by pushing two disks towards each other,
creating a stagnation point flow. The time-dependent velocity of the disks is set so as
to produce a nearly steady and uniform strain rate in the flow, after an acceleration
period.

(a) The tests confirm that the induced mean velocity field conforms to these
requirements.

(b) The non-dimensional straining achieved is S∗k0/ε0 ∼ 17.
Thus, the tests show that the desired flow conditions are achieved in this experi-

mental facility.

7.2. Evolution of subgrid scales during straining:

A priori tests of subgrid motions and SGS stresses in the rapidly strained turbulence
lead to the following conclusions:

(a) During rapid straining, the measured normalized SGS stresses (their turbulent
part) are significantly more isotropic than the prediction of RDT. The isotropy
increases as the filter scale decreases. While small scales remain more isotropic, they
become proportionally more energetic than the large scales.

(b) Differences between subgrid and Reynolds stresses could not be explored in
detail owing to a lack of statistical convergence.

(c) Scale similarity persists during rapid straining. Consequently, the similarity
model improves upon the Smagorinksy model as quantified by both the correlation
coefficient between real and modeled stress elements, and by the square-error between
the real and modelled SGS force (a two-dimensional approximation).

(d) The distortion has a strong effect on the SGS dissipation at all filter sizes
considered. This result is consistent with the very strong, direct effect of sudden,
large-scale forcing on inertial-range energy transfer observed in DNS of initially
isotropic turbulence (Yeung & Brasseur 1991).

(e) Large-scale rapid straining introduces three types of stresses, identified in this
paper as turbulent stress, cross-stress, and mean-straining stress. Each displays differ-
ent trends with scale. As a result, their relative impact on the SGS energy dissipation,
Π(t), model coefficients, etc., depends on scale.

(f) During the distortion, Π(t) is found to strongly increase with scale. More energy
is fed to the large scales than to the small scales, setting up a strong non-equilibrium
in the cascade process. Similar conclusions are reached based on the ‘net’ dissipation
Π∗, which takes into account the cancellation that arises from the divergence term in
the resolved kinetic energy equation.

(g) Model coefficients determined from dissipation in undistorted isotropic tur-
bulence are inappropriate during rapid straining. The similarity model with fixed
coefficient overpredicts, and the Smagorinsky model underpredicts the SGS dissipa-
tion. The latter surprising effect occurs because when the mean velocity is included
in the definition of τij , and one is filtering in the direction of mean velocity gradient,
the cross- and mean-straining terms contribute substantially to the real dissipation.
Since in LES the mean velocity field is usually unknown a priori, one seeks to model
the entire SGS stress, including the cross- and mean-straining terms.

(h) A mixed model that cancels the opposing trends of the similarity and Smagorin-
sky models does remarkably well in determining the dissipation during the entire
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straining process, at all filter scales considered. Note that these (a priori) observations
are based on the real data and not on what may occur (a posteriori) in LES. In
simulations, the model may respond differently since it is then based on possibly
unrealistic data of the numerically simulated resolved field.

(i) In terms of the SGS stress, the Smagorinsky term is much smaller than the
similarity term throughout the distortion. Consequently the correlation coefficient of
the mixed model with the real stress remains essentially as large as that of the similarity
model. Nevertheless, the modelling of the mean value of the SGS stress is surprisingly
poor during the distortion. The mixed (or similarity) model optimized for accurate
prediction of SGS dissipation severely underpredicts 〈τij〉 during the distortion. For
〈τ11〉, there is a discrepancy of nearly a factor of 3. Further improvements in the
modelling are clearly needed.

The present results are obtained by separating large from small scales using a
physical-space box filter. Some sensitivity of the present results to the type of filtering
cannot be ruled out. Moreover, the conclusions reached in this work are derived from
turbulence undergoing rapid axisymmetric expansion at a single strain rate. Further
studies should be undertaken to consider other strain-rate magnitudes, and other
types of distortions such as axisymmetric contraction, plane strain, rapid rotation,
and the return to isotropy once the distortion has ended. Non-equilibrium effects
in non-homogeneous flows are also of interest. Recently, Piomelli, Coleman & Kim
(1997) examined the Smagorinsky and similarity models in channel flow undergoing
two types of perturbations: rapid streamwise acceleration, and sudden lateral motion
of the wall. Consistent with our present findings, the mixed model was found to
realistically reproduce the SGS dissipation. An interesting difference is that in their
study the filtering is done in planes parallel to the wall where the flow is spatially
homogeneous even in the mean. Thus, as opposed to our case, there is no direct
contribution from the mean shearing to the SGS stress. Our results show that even in
cases where there is such a direct contribution (and we show that it can be large for
rapid distortion) the mixed model performs well in predicting the SGS dissipation,
but not the mean stress.
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