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Evolution of weak, homogeneous turbulence
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This article concerns the time-evolution, spectral structure and scaling of weak turbulence
subject to rotation and stable stratification. The flow is expressed as a combination
of particular solutions, referred to as modes, of the linearised governing equations
without viscosity or diffusion. Modes are of two types: oscillatory ones which represent
inertial-gravity waves and time-independent ones that express a non-propagating (NP)
component of the flow. The presence of the NP component, which plays an active
role in the dynamics apart from in the case of pure rotation, renders wave-turbulence
analysis problematic because the NP mode is non-dispersive. Equations are derived for
the time evolution of the modal amplitudes, evolution which is due to nonlinearity and
visco-diffusion. Subsequent analysis assumes that one or other (or both) of the Rossby and
Froude numbers is small (weak turbulence). Given this assumption, the NP component is
found to evolve independently of the wave one and a numerical scheme, similar to, though
significantly different from classical direct numerical simulation, is used to determine
its time evolution. The treatment of the wave component assumes its amplitude is large
compared with the NP one, otherwise there are seemingly intractable difficulties of closure
in the analysis. Given this further assumption, the wave component decouples from the
NP one. Evolution equations for the wave spectra are derived using wave-turbulence
analysis and are integrated numerically. As might be expected, these equations indicate
that nonlinear coupling of wave modes is dominated by resonances. Results are given for
both the NP and wave components.

Key words: wave-turbulence interactions, stratified turbulence, rotating turbulence

1. Introduction

This paper concerns decaying homogeneous turbulence in a rotating, stably stratified fluid
with constant Brunt–Väisälä frequency and assumes that the rotation vector is parallel
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to gravity. The decay is due to viscous and diffusive effects which are detailed later. We
refer the reader to the paper by Sagaut & Cambon (2018) for a wide-ranging description of
homogeneous turbulence, including, among other cases, rotation and stratification. In the
present paper, one or other (or both) of the Rossby and Froude numbers is supposed to be
small (weak turbulence), so nonlinearity is negligible over short enough time spans.

As discussed by Bartello (1995) and Cambon (2001), in the absence of nonlinearity and
visco-diffusion, the flow consists of inertial-gravity wave modes, which oscillate in time,
and a non-propagating (abbreviated to NP in what follows) mode which is steady. These
modes form a complete set and so, even in the presence of nonlinearity and visco-diffusion,
the flow can be expressed as a combination of modes. When weak nonlinearity and
visco-diffusion are allowed for, the mode amplitudes evolve with time slowly compared
to the oscillation period of the waves. The elucidation of the effects of this long-time
evolution on the turbulence statistics in the presence of both rotation and stratification is
the objective of this paper.

Weakness of turbulence has profound implications for the nonlinear dynamics,
as indicated by wave-turbulence analysis, which is the usual approach for weak
turbulence and has a long history (see e.g. Benney & Saffman 1966; Benney & Newell
1969; Zakharov, Lvov & Falkovich 1992; Nazarenko 2011; Newell & Rumpf 2011).
According to that theory, nonlinear coupling between wave modes is dominated by
resonances, non-resonant interactions being suppressed, which reduces the effectiveness
of nonlinearity. More recently, studies have been undertaken (see e.g. Deng & Hani 2021)
which aim to place the theory on a rigorous mathematical basis.

Galtier (2003) and Bellet et al. (2006) (henceforth referred to as [B]) used the
wave-turbulence approach in the case of pure rotation, but we are unaware of any previous
applications of wave-turbulence theory which allow for stratification. The difficulty is that
wave-turbulence analysis requires that modes be dispersive, which is not true of the NP
ones in the present problem. As a result, wave-turbulence analysis does not allow for
the NP component of the flow, which must be analysed separately. In the special case
N = 2Ω , where N is the Brunt–Väisälä frequency andΩ the rotation rate, the wave modes
are also non-dispersive. To allow the application of wave-turbulence analysis to the wave
component, we suppose that N is not too close to 2Ω . This condition turns out to be also
required by our treatment of the NP component.

Direct numerical simulation (DNS) of the governing equations has often been used (see
e.g. Orszag & Patterson 1972; Canuto et al. 1988) to study homogeneous turbulence, and
specifically in the present case of rotation and stratification by Coleman, Ferziger & Spalart
(1992), Smith & Waleffe (2002) and Liechtenstein, Godeferd & Cambon (2005). In this
approach, the infinite flow is approximated as spatially periodic and is represented by
Fourier series. However, DNS has difficulties when applied to the present problem if the
turbulence is weak. This is because the intervention of nonlinearity requires evolution over
many wave periods (according to wave-turbulence theory, the ratio of a typical wave period
to the nonlinear time scale behaves as the square of the small parameter characterising the
weakness of turbulence). The time step must be small compared with the wave period to
resolve the associated oscillations, hence very many steps are needed before nonlinearity
intervenes. Furthermore, the Fourier coefficients develop rapid oscillations in spectral
space at large times, oscillations which need to be resolved numerically. This requires
spatial periods considerably larger than the size of the large scales, otherwise numerical
precision is degraded; the weaker the turbulence, the larger the required spatial periods. All
of this means that the correct treatment by DNS of weak turbulence places considerable
demands on computing time and memory requirements, demands which increase as the
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Evolution of weak, homogeneous turbulence

turbulence becomes weaker. With this in mind, the analytical and numerical methods
developed here directly address the asymptotic limit of weak turbulence.

The spectral closure model EDQNM (eddy-damped, quasi-normal, Markovian) has
also been used to study purely stratified and purely rotating turbulence (see Cambon &
Jacquin 1989; Godeferd & Cambon 1994; Cambon, Mansour & Godeferd 1997; Godeferd
& Staquet 2003). EDQNM was introduced by Orszag (1970) for homogeneous, isotropic
turbulence and later extended to other cases in which there are dynamical mechanisms,
such as stratification or rotation, which render the turbulence anisotropic, even if it is
initially isotropic. For the case of pure rotation, the close relationship of EDQNM and
wave-turbulence theory is one of the principal subjects of [B], where it is shown that
the weak-turbulence limit of a particular version of EDQNM (EDQNM 3) gives the
wave-turbulence equations for the spectra. It should, however, be recognised that models
like EDQNM are based on ad hoc hypotheses, such as eddy-damping and quasi-normality,
whereas wave-turbulence theory follows from detailed asymptotic analysis of weak
turbulence (given in Appendix B for the present case), analysis which justifies closure
in that limit.

The paper is organised as follows. Section 2 concerns the governing equations of
the flow, their Fourier transforms, the definition of the modes, the results of modal
projection (i.e. the mode amplitudes) and the mode-amplitude evolution equations. It also
recognises the random nature of turbulent flow and, using ensemble averaging, defines a
spectral matrix, denoted A, whose diagonal elements represent the energy distribution in
spectral space of the different modes and whose off-diagonal elements express correlations
between modes and are less important.

Section 3 introduces the assumption of weak turbulence and presents analyses of the
consequences for the NP and wave components of the flow. In § 3.1, the NP component is
found to evolve independently of the wave one and a numerical method, closely related to
classical DNS of homogeneous turbulence, is proposed. However, although the methods
are related, the flow field is here projected onto the NP modes at each time step, which
distinguishes the present approach from the classical one. Note that, because we apply
DNS only to the NP component, which is non-oscillatory, the problems of the classical
approach, discussed above, do not arise.

Section 3.2 and Appendix B derive wave-turbulence equations which describe the time
evolution of the wave part of the spectral matrix. To avoid the seeming intractability which
the presence of the NP component entails if it is of comparable or greater magnitude than
the wave one, the derivation requires that the NP component be small compared with
the wave one. The end result is a system of equations for the diagonal elements of the
wave-component spectral matrix.

Finally, § 4 describes results of numerical calculations for both the NP component using
DNS and the wave component using the wave-turbulence equations.

2. Formulation

Consider decaying, homogeneous turbulence in a rotating, stably stratified fluid having
constant Brunt–Väisälä frequency, N, and rotation vector, Ω , which is supposed to be
parallel to gravity. It is also supposed that N and Ω = |Ω| are not both zero. When
Ω /= 0, an axial direction is defined by the unit vector e = Ω/Ω . However, if Ω = 0,
e is taken in the vertical direction. Henceforth, spatial coordinates, time and velocity are
non-dimensionalised using L, (N2 + 4Ω2)−1/2 and L(N2 + 4Ω2)1/2, where L is a length
scale characterising the initial turbulence.
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Using a rotating frame of reference and Cartesian coordinates (which will often be
taken such that e = (0, 0, 1)), as well as the summation convention, the non-dimensional
Boussinesq equations of motion are

∂ui

∂t
+ �

Ωεijkejuk + �

Nηei + ∂p
∂xi

= − ∂

∂xj
(uiuj)+ Du

∂2ui

∂xj∂xj
, (2.1)

∂ui

∂xi
= 0, (2.2)

∂η

∂t
− �

Neiui = − ∂

∂xj
(ηuj)+ Dη

∂2η

∂xj∂xj
, (2.3)

where εijk is the alternating tensor,
�

Ω = 2Ω(N2 + 4Ω2)−1/2 and
�

N = N(N2 + 4Ω2)−1/2.
Furthermore, Du = ν(N2 + 4Ω2)−1/2L−2 and Dη = κ(N2 + 4Ω2)−1/2L−2, where ν is
the kinematic viscosity and κ the diffusivity associated with the buoyancy variable η. Note

that since
�

N
2
+ �

Ω
2 = 1,

�

N = (β2 + 1)−1/2 and
�

Ω = β(β2 + 1)−1/2, where β = �

Ω/
�

N =
2Ω/N. Thus, the non-dimensional governing equations, (2.1)–(2.3), only depend on the

parameters β, Du and Dη. For simplicity’s sake,
�

Ω ,
�

N are denoted Ω , N in what follows.
Because we will only be working with non-dimensional quantities, this should not lead to
confusion. Note that the right-hand sides of (2.1) and (2.3) express nonlinearity, viscosity
and diffusion. The visco-diffusive terms dissipate energy. When N = 0 (pure rotation),
(2.1) and (2.2) decouple from (2.3), so the velocity field can be studied independently of
η, which becomes a passive scalar. In all other cases, there is coupling in both directions
between (2.1) and (2.3).

2.1. Fourier transforms and modes
Defining the Fourier transforms

ũi(k) = 1
8π3

∫
ui(x) exp(−ik · x) d3x, (2.4)

η̃(k) = 1
8π3

∫
η(x) exp(−ik · x) d3x, (2.5)

with similar definitions of p̃, ũiuj and η̃uj, (2.1)–(2.3) yield

∂ ũi

∂t
+Ωεijkejũk + Nη̃ei + ikip̃ = −ikjũiuj − Duk2ũi, (2.6)

kiũi = 0, (2.7)

∂η̃

∂t
− Neiũi = −ikjη̃uj − Dηk2η̃, (2.8)

where k = |k|.
Appendix A examines the consequences of (2.6)–(2.8). In the absence of nonlinearity

and visco-diffusion, the right-hand sides of (2.6) and (2.8) are zero. There are then
three linearly independent solutions, referred to as modes. These solutions have time

979 A17-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1046


Evolution of weak, homogeneous turbulence

dependence exp(−isω(k)t), where s takes one of the three values s = 0, ±1,

ω(k) =
(N2k2

⊥ +Ω2k2
‖)

1/2

k
= (N2sin2θk +Ω2cos2θk)

1/2, (2.9)

k⊥ = |k × e| is the transverse wavenumber, k‖ = k · e is the axial wavenumber, and 0 ≤
θk ≤ π is the angle between k and e. The modes with s = ±1 represent inertial-gravity
waves, for which (2.9) is the dispersion relation, while that with s = 0 will be referred to
as the non-propagating (NP) mode because, when regarded as a wave, it has zero group
velocity. The modal solutions of (2.6)–(2.8) (with zero right-hand sides) are

ũi = v
(s)
i (k) exp(−isω(k)t), (2.10)

η̃ = η(s)(k) exp(−isω(k)t), (2.11)

where

v
(s)
i (k) =

2∑
l=1

u(l)s (k)e
(l)
i (k), (2.12)

e(1) = k × e
k⊥

, e(2) = k × e(1)

k
, (2.13a,b)

are unit vectors orthogonal to each other and to k,⎛⎜⎝u(1)s

u(2)s

η(s)

⎞⎟⎠ = 1

21/2(N2k2
⊥ +Ω2k2

‖)
1/2

⎛⎜⎝ −Ωk‖
is(N2k2

⊥ +Ω2k2
‖)

1/2

Nk⊥

⎞⎟⎠ , (2.14)

when s = ±1 and ⎛⎜⎝u(1)0

u(2)0

η(0)

⎞⎟⎠ = i
1

(N2k2
⊥ +Ω2k2

‖)
1/2

⎛⎝Nk⊥
0
Ωk‖

⎞⎠ . (2.15)

It follows from (2.12)–(2.15) and the definitions of k⊥ and k‖ that v(s)i (−k) = v
(−s)∗
i (k)

and η(s)(−k) = η(−s)∗(k), where * denotes complex conjugation. Note the orthonormality
relation

2∑
l=1

u(l)
∗

s u(l)s′ + η(s)
∗
η(s

′) = δss′, (2.16)

where δss′ is the Kronecker delta. Note also that the s = 0 modes, referred to as NP here,
are often described in the geophysical literature as ‘vortical modes’ or ‘potential vorticity
(PV) modes’.
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2.2. Mode-amplitude equation
The modes form a complete set for ũi, η̃ satisfying (2.7). Thus,

ũi =
∑

s=0,±1

bs(k, t)v(s)i (k), (2.17)

η̃ =
∑

s=0,±1

bs(k, t)η(s)(k), (2.18)

where, as shown in Appendix A, the modal coefficients evolve according to

∂bs

∂t
+ isωbs = −ikj(v

(s)∗
i ũiuj + η(s)

∗
η̃uj)−

∑
ŝ=0,±1

Dsŝbŝ, (2.19)

in which

Dsŝ(k) = k2

(
Du

2∑
l=1

u(l)
∗

s (k)u(l)ŝ (k)+ Dηη(s)
∗
(k)η(ŝ)(k)

)
(2.20)

is a Hermitian, positive definite matrix expressing viscosity and diffusion. Real ui and
η requires that ũi(−k) = ũ∗

i (k) and η̃(−k) = η̃∗(k), conditions which, according to
(2.17), (2.18), v(s)i (−k) = v

(−s)∗
i (k) and η(s)(−k) = η(−s)∗(k), are met provided bs(−k) =

b∗−s(k).
Using (2.17), (2.18), and the inverse transforms of (2.4) and (2.5), the total flow can be

expressed as the sum of wave and NP components:

ui = uW
i + uNP

i , η = ηW + ηNP, (2.21a,b)

where

uW
i =

∑
s=±1

∫
bs(k)v

(s)
i (k) exp(ik · x) d3k, (2.22)

ηW =
∑

s=±1

∫
bs(k)η(s)(k) exp(ik · x) d3k, (2.23)

uNP
i =

∫
b0(k)v

(0)
i (k) exp(ik · x) d3k, (2.24)

ηNP =
∫

b0(k)η(0)(k) exp(ik · x) d3k. (2.25)

Given bs(−k) = b∗−s(k), v
(s)
i (−k) = v

(−s)∗
i (k) and η(s)(−k) = η(−s)∗(k), both components

are real, the s = ±1 contributions to the wave component being complex conjugates.
If nonlinearity, viscosity and diffusion were neglected, the solution of (2.19) would have

the expected modal form bs ∝ exp(−isωt). The resulting oscillations of b±1 due to waves
can be supressed by defining as = bs exp(isωt), which evolves according to

∂as

∂t
= −ikj(v

(s)∗
i ũiuj + η(s)

∗
η̃uj) exp(isωt)−

∑
ŝ=0,±1

Dsŝ exp(i(s − ŝ)ωt)aŝ. (2.26)

In the absence of nonlinearity and visco-diffusion, the mode amplitudes as are
time-independent, whereas, when we later specialise to weak turbulence and small
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visco-diffusion, they evolve slowly with time. Here, bs(−k) = b∗−s(k) and the definition
of as imply as(−k) = a∗−s(k).

As shown in Appendix A, the nonlinear term in (2.26) can be expressed as

−ikj(v
(s)∗
i ũiuj + η(s)

∗
η̃uj) exp(isωt)

=
∑

sp,sq=0,±1

∫
N∗

sspsq
(k, p)a∗

sp
(p)a∗

sq
(−k − p) exp(iFsspsq(k, p)t) d3p, (2.27)

where

Nsspsq(k, p) = ikjv
(sq)

j (−k − p)(v(s)i (k)v
(sp)

i (p)+ η(s)(k)η(sp)(p)) (2.28)

represents nonlinear coupling between modes and

Fsspsq(k, p) = sω(k)+ spω(p)+ sqω(−k − p). (2.29)

A symmetrised version of (2.27), namely

−ikj(v
(s)∗
i ũiuj + η(s)

∗
η̃uj) exp(isωt)

=
∑

sp,sq=0,±1

∫
M∗

sspsq
(k, p)a∗

sp
(p)a∗

sq
(−k − p) exp(iFsspsq(k, p)t) d3p, (2.30)

where

Msspsq(k, p) = 1
2 (Nsspsq(k, p)+ Nssqsp(k,−k − p)) (2.31)

is also derived in Appendix A. Using either (2.27) or (2.30), (2.26) provides an evolution
equation for as. Both versions are employed in what follows. Note the symmetries
Msspsq(k,−k − p) = Mssqsp(k, p) and Fsspsq(k,−k − p) = Fssqsp(k, p). Note also that the
wave vectors p and q = −k − p, which appear in (2.27) and (2.30), satisfy the usual
condition, k + p + q = 0, for formation of a triad with k.

2.3. The spectral matrix and energy
Here and henceforth, the random nature of turbulent flow is recognised and ensemble
averaging introduced. The flow is assumed statistically homogeneous, i.e. its statistical
properties are the same at all spatial locations, in particular, any one-point average is
independent of position. Averaging (2.1) and (2.3) eliminates the nonlinear, pressure and
visco-diffusive terms, while the average of (2.2) is automatically satisfied. We have in mind
that there is no mean flow, i.e. ui = 0, where the overbar denotes ensemble averaging,
hence the average of (2.1) gives η̄ = 0. Here, ui = η̄ = 0 leads to as = bs = 0, while
(2.22)–(2.25) imply that the wave and NP components are both of zero mean. Those
components also inherit the statistical homogeneity of the total flow.
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The ensemble-averaged, non-dimensional energy density in physical space is the sum
of kinetic and potential energies:

1
2 uiui︸ ︷︷ ︸
Kinetic

+ 1
2η

2︸︷︷︸
Potential

. (2.32)

Given statistical homogeneity,

ũ∗
i (k)ũi(k′) = Φu(k)δ(k − k′), η̃∗(k)η̃(k′) = Φη(k)δ(k − k′), (2.33a,b)

in which δ represents the Dirac function. Hence, using the inverse transform of (2.4),

1
2

uiui = 1
2

∫ ∫
ũ∗

i (k)ũi(k′) exp(i(k′ − k) · x) d3k′ d3k

= 1
2

∫
Φu(k) d3k, (2.34)

which indicates that the kinetic-energy density in spectral space is eK(k) = Φu/2.
Similarly, the potential-energy density in spectral space is eP(k) = Φη/2.

Again, using statistical homogeneity,

a∗
s (k)as′(k′) = Ass′(k)δ(k − k′), (2.35)

where Ass′ is the spectral matrix and s, s′ run over the values −1, 0 and +1; Ass′ is
Hermitian and positive semi-definite. In particular, the diagonal elements of Ass′ are real
and non-negative. Also, given as(−k) = a∗−s(k), Ass′(−k) = A−s′,−s(k). Using (2.12),

(2.17), (2.18), (2.35), e(l)i (k)e
(l′)
i (k) = δll′ and bs = as exp(−isωt) to evaluate the averages

in (2.33),

eK = 1
2

∑
s,s′=0,±1

Ass′(u(1)
∗

s u(1)s′ + u(2)
∗

s u(2)s′ ) exp(i(s − s′)ωt), (2.36)

eP = 1
2

∑
s,s′=0,±1

Ass′η
(s)∗η(s

′) exp(i(s − s′)ωt). (2.37)

Note that (2.16) implies

e = eK + eP = 1
2

∑
s=0,±1

Ass, (2.38)

for the total energy density. Thus, Ass′ determines the energy densities in spectral space, but
it contains considerably more statistical information than that: any second-order, two-point
moment involving ui and η can be obtained knowing Ass′ .

The diagonal elements of Ass′ can be interpreted as the energy densities of the different
modes and will often be referred to as spectra, whereas the off-diagonal ones represent
correlations between modes. As usual, it can be shown that the nonlinear term in (2.26)
conserves the total energy, which decays due to visco-diffusion according to

d
dt

∫
e(k) d3k = −Re

(∫ ∑
s,ŝ=0,±1

D∗
sŝ(k) exp(i(ŝ − s)ω(k)t)Aŝs(k) d3k

)
. (2.39)

Finally, a spherically averaged spectrum, E(k), can be defined by averaging e(k) over
the sphere |k| = k, then multiplying by 4πk2. When integrated over k, E(k) gives the
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total energy. It represents the energy distribution in spectral space, without regard for
anisotropy. Obviously, E(k) contains less information than e(k).

The energy density in spectral space, given by (2.38), can be split into wave and NP
contributions as e = eW + eNP, where

eW = 1
2

∑
s=±1

Ass, eNP = 1
2

A00. (2.40a,b)

The spherically averaged spectrum can also be split into wave and NP contributions as
E = EW + ENP, where EW and ENP are obtained from eW and eNP in the same way that E
follows from e.

3. Weak turbulence

From here on, we suppose that ui and η are small. This means that linear theory applies
over time intervals of O(1). Small nonlinearity can nonetheless have significant cumulative
effects over longer time scales, effects whose quantification is the aim of this article.
However, this requires sufficiently small visco-diffusive dissipation, otherwise it will
kill the turbulence before nonlinearity can intervene. Given weak turbulence and small
visco-diffusion, we consider large t.

As discussed in the introduction, wave-turbulence analysis is the usual approach to
describe weak turbulence in the presence of waves. However, it requires that the waves
be dispersive. Since the frequency of the NP mode is zero, it has zero group velocity
and hence is non-dispersive, which rules out direct application of the wave-turbulence
approach to the flow as a whole. Furthermore, when Ω = N, ω(k) = Ω = N is constant,
in which case the wave mode is also non-dispersive, while if |Ω − N| is small, but
non-zero, it is only weakly dispersive. Many of the steps in the analysis require |Ω −
N| � t−1, an assumption which is made from here on. This assumption opens the way
for wave-turbulence theory of the wave modes, but care is still needed because of the
non-dispersive character of the NP mode. Wave-turbulence analysis cannot be applied to
the NP component of the flow, which is analysed separately.

The weakness of turbulence is expressed by small parameters, ε and εNP, which
respectively measure the amplitudes of the wave and NP components. The parameters
need not have the same order of magnitude. Indeed, to close the system of equations for
the wave component, we will later suppose that εNP is small compared with ε.

In the following analysis, we suppose that neither N nor Ω are zero, which excludes
pure rotation or stratification. This avoids having to deal with special cases where, rather
than being strictly positive, ω(k) is zero for particular values of θk (θk = π/2 when N = 0,
θk = 0,π whenΩ = 0). We will nonetheless later give results for the limiting cases N = 0
and Ω = 0.

3.1. Evolution of the NP component
Applying (2.26) with s = 0,

∂a0

∂t
= −ikj(v

(0)∗
i ũiuj + η(0)

∗
η̃uj)−

∑
ŝ=0,±1

D0ŝ exp(−iŝω(k)t)aŝ. (3.1)
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Using the decomposition into wave and NP components, (2.21),

uiuj = uNP
i uNP

j︸ ︷︷ ︸
NP-NP

+ uW
i uW

j︸ ︷︷ ︸
wave-wave

+ uW
i uNP

j + uNP
i uW

j︸ ︷︷ ︸
wave-NP

, (3.2)

ηuj = ηNPuNP
j︸ ︷︷ ︸

NP-NP

+ ηWuW
j︸ ︷︷ ︸

wave-wave

+ ηWuNP
j + ηNPuW

j︸ ︷︷ ︸
wave-NP

. (3.3)

Thus, there are three contributions to the nonlinear term in (3.1): NP-NP, wave-wave and
wave-NP.

The right-hand side of (3.1) represents nonlinearity and visco-diffusion. As discussed
above, both are negligible over time spans of O(1), but can have significant cumulative
effects over the longer time scales considered here. The wave component has oscillations
of periods O(1), whereas the NP one is steady on such time scales. Thus, the wave-NP
contributions to (3.2) and (3.3) are oscillatory and their cumulative effect following
evolution according to (3.1) remains small and is neglected. Furthermore, the ŝ = ±1
contributions to the visco-diffusive term are also oscillatory and hence negligible. Thus,
we obtain the approximation

∂a0

∂t
+ D00a0 = −ikj(v

(0)∗
i

˜uNP
i uNP

j + η(0)
∗

˜ηNPuNP
j )+ f , (3.4)

where the first term on the right-hand side expresses nonlinear interactions between NP
modes and

f (k, t) = −ikj(v
(0)∗
i

˜uW
i uW

j + η(0)
∗
˜ηWuW

j ) (3.5)

represents forcing of the NP mode by the wave component.
Following the procedure which led to (2.30), but without the NP contributions,

f (k, t) =
∑

sp,sq=±1

∫
M∗

0spsq
(k, p)a∗

sp
(p)a∗

sq
(−k − p) exp(iF0spsq(k, p)t) d3p. (3.6)

Using (2.29), F0spsq(k, p) = spω(p)+ sqω(−k − p). Since ω > 0, the exponential in
(3.6) is oscillatory when sp = sq and such terms are therefore neglected. Assuming |Ω −
N|t is large, if sp = −sq, the exponential is oscillatory with period O(1) for p away from
the surface ω(p) = ω(−k − p). Neglecting such p, we focus on p close to the surface,
where the exponential oscillates slowly, potentially allowing significant cumulative effects
at long times. However, although we have been unable to show it analytically, numerical
calculations with different values of β /= 1, k and p show that M0,s,−s(k, p) is zero to IEEE
double precision when s /= 0 and ω(p) = ω(−k − p). Assuming this result, which is a
priori far from obvious, is exactly true, slow oscillations are suppressed and we suppose
the forcing term in (3.4) is negligible.

Recall from (2.40) that the energy density in spectral space can be split into wave and
NP contributions and that the NP contribution is

eNP = 1
2 A00. (3.7)

Appendix D (Supplementary material is available at https://doi.org/10.1017/jfm.2023.
1046) shows that the first term on the right-hand side of (3.4), representing nonlinear
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Evolution of weak, homogeneous turbulence

interactions between NP modes, conserves the total energy of the NP component, which,
neglecting the forcing term, decays due to visco-diffusive dissipation according to

d
dt

∫
eNP(k) d3k = −2

∫
D00(k)eNP(k) d3k. (3.8)

Let εNP be a small parameter measuring the amplitude of the NP component, thus ûNP
i =

uNP
i /εNP and η̂NP = ηNP/εNP are O(1). Equations (2.24) and (2.25) with b0 = a0 give

ûNP
i (x) =

∫
â0(k)v

(0)
i (k) exp(ik · x) d3k, (3.9)

η̂NP(x) =
∫

â0(k)η(0)(k) exp(ik · x) d3k, (3.10)

where â0 = a0/εNP. Without the forcing term, (3.4) yields

∂ â0

∂ t̂
+ D̂00â0 = −ikj(v

(0)∗
i

˜ûNP
i ûNP

j + η(0)
∗

˜

η̂
NPûNP

j ), (3.11)

where t̂ = εNPt is time, scaled appropriately for evolution of the NP component, and
D̂00 = D00/εNP. Thus, the NP component evolves according to (3.9)–(3.11). Assuming
visco-diffusion is sufficiently small that it does not kill the turbulence before nonlinearity
intervenes, the time scale for NP evolution is O(ε−1

NP). This time scale is generally distinct
from that of O(ε−2), which, as we will see later, characterises the wave component
according to wave-turbulence theory.

Before going further, we should discuss the close relationship between the theory of the
NP component described here and quasi-geostrophic (QG) theory (see Pedlosky 1987),
which is one of the cornerstones in the study of atmospheric and oceanic flows since its
development by Charney (1948, 1971). NP modes represent geostrophic flows (i.e. the
Coriolis and pressure-gradient terms in the horizontal momentum equation balance) and
the NP component of the real flow can be regarded as its mathematical projection onto
such idealised flows. With this in mind, it can be shown that, for the present problem,
(3.9)–(3.11) are equivalent to the three-dimensional QG approximation, thus providing
support for the present approach.

Embid & Madja (1998) give asymptotic analysis of (2.1)–(2.3) for small Froude number
and consider two cases. In the first, the Rossby number is small, and they conclude that
the flow consists of oscillatory waves and a slowly varying component which evolves
according to the quasi-geostrophic approximation, in agreement with the present results.
In the second case, the Rossby number is of order one, corresponding to a small value
of β. This makes N ∼ 1 and Ω ∼ β, thus the wave frequency, (2.9), is small for small
θk, i.e. waves having wave vectors near the axis k⊥ = 0 are slowly varying. Given such
modes, one might question the neglect of the wave-NP contribution to (3.1), which was
based on oscillatory waves and led to (3.4). For Rossby numbers of order one, Embid and
Majda supposed the slow, horizontal component of the flow to be the sum of two parts
(see their (3.31)), one of which is the so-called VSHF (vertically sheared horizontal flow),
which is independent of x1 and x2, and can be considered as a combination of wave modes
with k⊥ = 0. They derived evolution equations for both parts of the flow (see their (3.33)
and (3.34)) and found that the VSHF component entered into the equation for the other
part. This corresponds to coupling of the wave and NP components, and neglect of the
wave-NP contribution to (3.1) does not capture such coupling. However, the assumed form
of the flow places significant wave energy precisely on the axis, k⊥ = 0, which is not the
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situation we have in mind. Instead, we envisage a continuous distribution of energy over
wave vectors. In that case, we believe that the neglect of the wave-NP contribution to (3.1)
is justified at small β by the smallness of the region in θk for which the wave frequency is
small. Whether or not the flow will eventually evolve towards a state close to that assumed
by Embid and Majda is unclear.

Equation (3.11) is integrated numerically. Equations (3.9) and (3.10) yield ûNP
i (x) and

η̂NP(x) as inverse Fourier transforms. Then, ûNP
i ûNP

j and η̂NPûNP
j can be calculated in

physical space, while forward transformation gives ˜ûNP
i ûNP

j and ˜

η̂
NPûNP

j for use in (3.11).
This resembles classical DNS of homogeneous turbulence and the numerical method
employed here is based on that approach and is described in Appendix F (Supplementary
material). However, as noted in the introduction, it differs significantly from classical DNS
because of the projection onto the NP modes at each time step, a projection which is
implicit in (3.11).

3.2. Evolution of the wave component
Terms in the sum of (2.26) with ŝ /= s are oscillatory and hence negligible for the long-time
evolution of as. Adopting this approximation and using (2.30), (2.26) becomes

∂as(k)
∂t

+ Dss(k)as(k)

=
∑

sp,sq=0,±1

∫
M∗

sspsq
(k, p)a∗

sp
(p)a∗

sq
(−k − p) exp(iFsspsq(k, p)t) d3p. (3.12)

Appendix B describes wave-turbulence analysis based on (3.12). It is assumed that
|Ω − N|t is large. Furthermore, to obtain closed equations for the wave component, it
is supposed that the amplitude of the NP component is small compared with that of the
wave component. The result is (B52) for evolution of the wave elements (Ass′ , s, s′ /= 0) of
the spectral matrix. Since the wave-component spectral energy density is given by the first
of (2.40), the most interesting application of (B52) is s′ = s, hence (B53), which involves
Cauchy principal-value integrals. However, somewhat remarkably, it is found that the sum
of such contributions is zero, as is the sum of sq = 0 contributions to the first term on the
right-hand side of (B53). The final result is

∂Âss(k)
∂T

+ 2D̂(k)Âss(k) = 2π
∑

sp,sq=±1

∫
Ssspsq (k)

Âspsp(p)

|spcg(p)+ sqcg(k + p)|

× (λsspsq(k, p)Âsqsq(−k − p)+ Re(ζsspsq(k, p))Âss(k)) d2p, (3.13)

for s /= 0, where T = ε2t is time, scaled appropriately for evolution of the wave
component, Âss = Ass/ε

2 are the O(1) scaled wave spectra, D̂ = D/ε2,

D(k) = k2
Du(N2k2

⊥ + 2Ω2k2
‖)+ DηN2k2

⊥
2(N2k2

⊥ +Ω2k2
‖)

(3.14)

is the damping coefficient of wave modes (i.e. Dss(k) = D(k) for s /= 0),

cg(k) = ∇kω(k) (3.15)
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Evolution of weak, homogeneous turbulence

gives the group velocity of the wave modes as scg,

λsspsq(k, p) = 2|Msspsq(k, p)|2, (3.16)

ζsspsq(k, p) = 4Msspsq(k, p)M∗
sqssp

(−k − p,k), (3.17)

and Ssspsq(k) is the surface in p-space defined by Fsspsq(k, p) = 0. As is apparent
from (2.29), the surface Ssspsq(k) is such that sω(k)+ spω(p)+ sqω(−k − p) = 0. This
condition represents triadic resonances, triadic since it involves three wave vectors, k,
p and −k − p which sum to zero, and resonant because it says that the sum of modal
frequencies is zero. For this reason, Ssspsq(k) will be referred to as the resonant surface.
If there are no such resonances for given k, s, sp and sq (i.e. Fsspsq(k, p) = 0 has no
solutions in p-space), Ssspsq(k) is the empty set and the surface integral in (3.13) should be
interpreted as zero.

It is perhaps interesting to discuss (3.13) in the context of EDQNM. Eddy damping does
not appear (for the case of pure rotation, it was shown in [B] that it vanishes in the limit
of weak turbulence). Quasi-normality is a consequence of wave-turbulence analysis and
is apparent in (3.13) via the products of spectra on the right-hand side which represent
fourth-order spectral moments. The fact that, according to (3.13), the spectrum at time t
evolves according to its values at the same instant justifies the final, Markovian, closure
hypothesis of EDQNM. An important difference between wave-turbulence theory and
EDQNM is that the nonlinear term in (3.13) is a surface integral over resonant triads,
whereas it is a volume integral over all triads, including non-resonant ones, according
to EDQNM. For the case of pure rotation, it was shown in [B] that the volume integral
of EDQNM is dominated by resonant triads in the limit of weak turbulence, hence the
wave-turbulence result is approached.

Appendix E (Supplementary material) analyses the energetics of the wave component
based on (3.13). It is shown that the right-hand side of (3.13) conserves the total
wave-component energy, which evolves according to

d
dt

∫
eW(k) d3k = −2

∫
D(k)eW(k) d3k. (3.18)

Taking the sum of (3.8) and (3.18),

d
dt

∫
e(k) d3k = −2

∫
(D00(k)eNP(k)+ D(k)eW(k)) d3k. (3.19)

This result may be compared with the exact energy equation (2.39). In the weak-turbulence
limit considered here, terms in the sum of (2.39) with ŝ /= s are oscillatory and hence
negligible. Dropping these terms gives (3.19). Thus, as regards the total energy, the present
approximations agree with the weak-turbulence limit of the exact result.

Appendix C concerns the existence of solutions of Fsspsq(k, p) = 0, where s, sp and
sq take one of the values ±1. It is shown that the resonant surface does not exist if s =
sp = sq or 1/2 ≤ β ≤ 2 (a result in agreement with Smith & Waleffe (2002), § 6.1). Thus,
when 1/2 ≤ β ≤ 2, the right-hand side of (3.13) is zero according to the present theory.
Nonlinear interactions between wave modes are then absent at the order to which we are
working, suggesting the need to go to higher order. However, that lies beyond the scope
of the present work. When β < 1/2 or β > 2, the resonant surface exists for sp = sq /= s
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provided

ω(k) > 2 min(Ω,N), (3.20)

and for sp = −sq when

ω(k) < |Ω − N|. (3.21)

If β < 1/3 or β > 3, one or other of (3.20) or (3.21) is satisfied for all k, hence resonant
surfaces can always be found for such values of β. However, when 1/3 < β < 1/2 or
2 < β < 3, there are directions of k for which neither (3.20) nor (3.21) hold, hence no
resonant surfaces. Such wave vectors are decoupled from all others according to (3.13),
which predicts that these modes simply decay under visco-diffusive dissipation. Thus,
spectral space can be divided into two regions. In the first (referred to as A), either (3.20)
or (3.21) applies and there is nonlinear coupling between wave modes within that region. In
the second (B), such coupling is absent. This distinction expresses different dynamics for
the two types of modes, but is only significant for 1/3 < β < 1/2 or 2 < β < 3, otherwise
all modes are of type A. Note that the extent of the region in which inter-mode coupling
occurs shrinks down to zero as either β ↗ 1/2 or β ↘ 2, which is the way in which
nonlinearity of the order considered here disappears as those boundaries are approached.

Consider a wave vector for which there is one or more resonant surfaces and suppose
visco-diffusive dissipation small enough (D ≤ O(ε2)) that it does not kill the wave
component before nonlinearity intervenes, the time scale for evolution of the wave
component implied by (3.13) is t ∼ O(ε−2), the usual one for wave turbulence. If there is
no resonant surface, we expect the nonlinear evolution time to be longer. As noted earlier,
the time scales for evolution of the wave and NP components are generally distinct.

Appendix G (Supplementary material) describes the numerical method used to solve
(3.13) for the statistically axisymmetric case. The procedure is essentially that of Bellet
(2003), who used the wave-turbulence equations for the case of pure rotation. For the
applications described in the next section, the initial Ass(k) are not just axisymmetric,
but also symmetric under reflection in the plane k‖ = 0. This corresponds to statistical
symmetry of the underlying flow under reflection in any plane perpendicular to the rotation
axis, a symmetry which, like axisymmetry, is preserved by time evolution according
to the governing equations. As a result, Ass(k) remains reflection symmetric. Together,
Ass(−k) = A−s,−s(k), axisymmetry and reflection symmetry imply Ass(k) = A−s,−s(k),
hence A11(k) = A−1,−1(k) = eW(k) according to the first of (2.40).

Although, for the sake of simplicity in the analysis, the case N = 0 (pure rotation) was
earlier excluded, it may be interesting to consider that case because, to our knowledge, it is
the only one for which wave-turbulence theory has previously been applied to the present
problem. According to (2.10), (2.12), (2.14) and (2.15), if N = 0, the velocity field is carried
solely by the wave modes, while the scalar field, η, consists of NP modes alone, i.e. there
is a precise correspondence between velocity and wave modes, and η and NP ones. As
discussed towards the beginning of § 2, when N = 0, the velocity field decouples from the
scalar η, hence a corresponding decoupling of the wave modes from the NP ones. Under
these circumstances, it is natural to leave the NP component to one side and consider the
wave component alone. Furthermore, since the wave component is exactly decoupled from
the NP one, the wave-turbulence equations are closed without the need for the assumption
εNP  ε made in the general case.

Focusing on the wave component, as N → 0, (3.13) approaches the wave-turbulence
equations used by Galtier (2003) and [B] for the case of pure rotation. Numerical
integration of those equations by [B] indicate that the wave energy density, eW(k),
develops an infinite, but integrable, singularity at the plane k‖ = 0. This is the point of
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view of wave-turbulence theory, i.e. ε = 0. However, for small, but non-zero ε, there is
energy transfer towards the plane k‖ = 0 (see Waleffe 1991), leading to large, but bounded,
values of eW for small k‖. Thus, we see how the wave-turbulence result is approached in
the limit ε → 0. That the singularity of eW(k) is integrable in that limit is significant
because it implies that the contribution of small k‖ to the total energy is small, rather than
dominant, as suggested by some authors (e.g. Hossain 1994).

4. Numerical results

Here, we describe results of numerical solutions of (3.9)–(3.11) for the NP component and
(3.13) for the wave one for different values of β = Ω/N. It should be borne in mind that the
derivations of (3.9)–(3.11) and (3.13) suppose that |Ω − N|t is large, hence the avoidance
of Ω = N(β = 1) in what follows. As usual in theoretical studies of turbulence, we aim
for dissipation to have as little effect as possible, but it cannot be entirely removed in
a numerical study because the minimum numerically resolvable length scale in physical
space is non-zero. If there is an energy cascade towards smaller scales, it requires mopping
up by dissipation, otherwise it accumulates at the smallest scales. Furthermore, the time
scale for evolution of small scales tends to decrease as they become smaller, yielding
potential problems of numerical instability if the minimum scale is insufficiently limited
by dissipation.

The initial (t = 0) distribution of energy of the different modes is chosen to be

Âss(k) = k2 exp(−k2), (4.1)

where Â00 = A00/ε
2
NP is the O(1) scaled NP spectra, while, as before, Âss = Ass/ε

2 for s =
±1 are the scaled wave spectra. Note that the spherically averaged spectra resulting from
(4.1) have the form k4 exp(−k2), a form often used in theoretical studies of turbulence.
Because visco-diffusion is small, we expect time evolution to result in the creation of
an inertial range (by which we mean a range of large k, resulting from nonlinear energy
transfer from small to large k and in which nonlinearity dominates dissipation, but which
is not necessarily associated with an energy cascade), followed by the establishment of a
dissipative range which limits the spectral extent.

The above considerations suggest the use of a hyperviscosity to extend the inertial
range (see e.g. Haugen & Brandenburg 2004). Based on numerical experimentation,
the numerical visco-diffusive coefficient used in the NP calculations was chosen as
D̂00(k) = d0k6, while the wave-component ones employ D̂(k) = dk4, the lesser exponent
for the wave component being the result of the higher maximum wavenumber attainable for
that component (due to the logarithmic wavenumber distribution for the wave-turbulence
equations, described in Appendix G (Supplementary material), but which is unavailable
in DNS). The values of d0 and d, as well as those of the other numerical parameters, are
given at the end of Appendices F and G (Supplementary material).

Results are first presented for the NP component, then for the wave one. When
considering these results, it should be borne in mind that the total flow is the sum of
both components. Each component alone only gives a partial view of the end result.

4.1. DNS results for the NP component

Let us begin with figure 1, which gives log-log plots of the scaled NP spectra, Â00 =
A00(k, θk)/ε

2
NP, where θk is the angle between k and e, as a function of k for different

values of β and θk. Perhaps the most striking feature is the wiggles in the curves. These
are due to two traditional limitations of DNS. First, the results are based on a single run
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of DNS, not the many runs which would be needed to accurately compute the ensemble
average required by the definition of A00, runs which would render the calculations too
computationally expensive. Thus, there are random fluctuations about the smooth curves
which would presumably result from averaging. Second, DNS discretises the wave vector
k, leading to the considerable jumping around apparent for smaller values of k. These
problems decrease in importance as k increases and we focus on k having larger values.

Figures 1(a)–1(h) represent the scaled, NP spectra for t̂ = 8 (recall that t̂ = εNPt is the
scaled time for the NP component) for the different values of β given in the figure caption.
Each figure shows results for eight equally spaced values of θk between π/32 and 15π/32.
The dashed line represents the power law k−5 and has the same location in all figures.
For those readers more used to plots of spherically averaged spectra, we recall that the
k−5 for the spectral density shown here corresponds to behaviour like k−3 of ENP(k). The
symmetry A00(k, θk) = A00(k,π − θk) allows the results for values of θk above π/2 to be
deduced from those given.

In most cases, an inertial range with power-law exponent close to −5 is apparent. In
particular, this applies for the values of β represented by figure 1(b–g) for all θk and for
figure 1(a) (pure stratification), apart from θk = π/32. Such generic near constancy of the
exponent is remarkable. However, for β = 10 (near to pure rotation), the situation is rather
different and harder to interpret, since the power law observed in the other cases is no
longer apparent. Indeed, it is hard to discern large-k power laws from these results and the
limit of small N merits further study of the NP component. Furthermore, the lack of a k−5

range in figure 1(a) for θk = π/32 suggests that the case of small Ω and small θk is also
worth further investigation.

In addition to the inertial-range exponent, figure 1 gives information on anisotropy
of the small scales. For the β of figures 1(a)–1(d), the large-k spectra decrease as θk
increases, thus the small-scale NP energy is concentrated towards the poles, θk = 0 and
θk = π. When β = 1.4 (figure 1e), the energy distribution is almost isotropic, whereas for
larger β, the energy is concentrated towards the equator, θk = π/2. This is in agreement
with the general consensus that dominant stratification favours energy transfer towards the
poles, whereas dominant rotation sends it towards the equator. However, it should again be
recalled that we are only considering one component of the flow here.

Figure 2 provides another view of anisotropy in which contours of Â00 are plotted in
the k⊥ − k‖ plane for the cases β = 0.1 and β = 10. We once again see that close to
pure stratification, the NP energy density tends towards the axial direction, whereas it
concentrates near the equator as the case of pure rotation is approached.

As regards time evolution, figure 3 shows a representative example (β = 0.5) of the
spherically averaged NP energy spectrum ENP(k), defined earlier, at 17 equally spaced
times from t̂ = 0 to t̂ = 4. It will be seen that, at early times, there is energy transfer
from large to small scales, thus forming the inertial and dissipative ranges. At later times,
the spectral peak moves slowly towards smaller k. The inertial range has approximate
power-law behaviour close to k−3, corresponding to the k−5 of figure 1(c) and agreeing
with the spectral power law proposed by Charney (1971).

The total NP energy decreases with time by an amount which depends on the value of
β. The decrease from t̂ = 0 to t̂ = 8 is 0.7 % for β = 0.7 and β = 1.4, 1 % when β =
0.5 and β = 2, 3 % for β = 0.25 and β = 4, 11 % when β = 0.1, 13 % for β = ∞, 16 %
when β = 10 and 33 % for β = 0. Considering that these small to moderate decreases
correspond to a time, t̂ = 8, much greater than the establishment time of the dissipative
range, it appears that there is no energy NP energy cascade. This conjecture is reinforced
by log-log plots (not shown here) of the total NP energy as a function of time which give
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Figure 1. Log-log plots of the scaled NP spectra for t̂ = 8 and (a) β = 0, (b) β = 0.25, (c) β = 0.5,
(d) β = 0.7, (e) β = 1.4, ( f ) β = 2, (g) β = 4 and (h) β = 10. Each figure shows curves for eight equally
spaced values of θk between π/32 and 15π/32. The dashed line corresponds to the power law Â00 ∝ k−5. If
required, N and Ω follow from β using N = (β2 + 1)−1/2 and Ω = β(β2 + 1)−1/2. 979 A17-17
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Figure 2. Contour plots of Â00 as functions of k⊥ and k‖ for t̂ = 8 and (a) β = 0.1, (b) β = 10. There are ten
contours, whose heights are logarithmically spaced from 10−8 to 1.
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Figure 3. Log-log plots of the scaled, spherically averaged NP spectra for β = 0.5 and times t̂ =
0, 0.25, 0.5, . . . , 3.75, 4. The arrow indicates the direction in which the large-k spectral curves move with
increasing time in the early stages.

no indication of the power laws which might be expected if there were an energy cascade.
The absence of a cascade is in agreement with Charney (1971).

In conclusion, our results for the NP component are consistent with the theoretical
predictions of Charney (1971), both in terms of power laws and the lack of a cascade.
They also provide detailed information on spectral anisotropy and its variation with β.
It has been suggested (see e.g. Herbert, Pouquet & Marino 2014) that the absence of
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a cascade of energy to large k is because the cascade is towards small k (an inverse
cascade). This is related to the existence of two QG invariants, namely energy and potential
enstrophy, in the absence of visco-diffusion. The theoretical basis of the inverse cascade
for three-dimensional QG turbulence is analogous to that of the classical two-dimensional
case. Several DNS studies (e.g. Marino et al. 2013) have claimed that the inverse cascade
is strongest in the range 1/2 < β < 2, though why this should be, given that this condition
appears to refer to the wave component, is unclear.

4.2. Results for the wave component
Results for 1/2 ≤ β ≤ 2 are not given, because, as discussed earlier, there are no nonlinear
effects on the evolution of the wave spectra according to the present theory, hence
pure linear dissipation, leading to negligible time evolution given the small dissipation
coefficient used here. Two quantities, not previously introduced, are the total wave energy

Etot
W (T) =

∫
eW d3k, (4.2)

and the angular spectrum

Eang(θk, T) = 2π sin θk

∫ ∞

0
k2eW dk, (4.3)

which represents the angular distribution of wave energy, the total energy being the integral
of Eang(θk, T) over 0 ≤ θk ≤ π. As discussed earlier, when 1/3 < β < 1/2 or 2 < β < 3,
there are two distinct types of mode having decoupled and different dynamics. For this
reason, the integral in (4.2) is decomposed as Etot

W = EA
W + EB

W , where, as defined earlier,
A denotes modes which are coupled by nonlinearity and B represents those which are
not. Whereas EB

W is nearly constant, thanks to small modal damping of the large scales,
A-modes undergo significant dissipation. Recall that, unless 1/3 < β < 1/2 or 2 < β <

3, all modes are of type A, hence EB
W = 0 and EA

W = Etot
W , there being no need for the

distinction between EA
W and Etot

W . In what follows, it should also be recalled that T = ε2t,
the scaled time variable appropriate to the wave component.

Beginning with the case of pure rotation, N = 0(β = ∞), allows comparisons with [B].
Figure 4 shows a log-log plot of the total wave energy, Etot

W , as a function of time. In the
early stages, before the dissipative range is established, the energy is very nearly constant.
Subsequently, a power law close to T−0.7 is evident, suggesting an energy cascade. The
exponent is not far from the value, −0.8, found by [B]. Figure 5 shows the energy spectra
as a function of k for T = 1 and the same angles as figure 1. An inertial range is apparent
and there are approximate power laws close to k−4, the exponent identified in [B] for θk
near π/2. The figure also illustrates the expected concentration of energy density near the
equator.

Figure 6 shows a plot of Eang(θk) in which the infinite singularity at θk = π/2, identified
by [B], is apparent. Of course, the existence of this singularity means that the precision
of numerical results for angles close to θk = π/2 is likely to be poor. To what extent this
affects results away from the equator is unclear. Since the total energy is the integral of
Eang(θk), i.e. the area under the curve in figure 6, it is evident that the contribution of the
singularity to the total energy is small, as concluded in [B].

For cases other than N = 0, the assumption εNP  ε is required for closure of the
wave-turbulence equations. Furthermore, if 1/3 < β < 1/2 or 2 < β < 3, the distinction,
discussed earlier, is made between modes which undergo nonlinear coupling (component
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Figure 4. Log-log plot of the total scaled wave energy as a function of time for the case of pure rotation
(β = ∞). The dashed line represents the power law Etot

W ∝ T−0.7.
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Figure 5. Log-log plots of the scaled wave energy spectra for N = 0, T = 1 and the same angles as figure 1.
The dashed line represents the power law eW ∝ k−4, which corresponds to k−2 for the spherically averaged
spectrum.

A) and others (component B) which do not. Figure 7 shows log-log plots of the total wave
energy of component A (EA

W) as a function of time for different values of β, including
the case of pure rotation, already covered by figure 4, but which is reproduced here for
comparison with the other cases. The exclusion of decoupled modes (component B) due
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Figure 6. Scaled angular spectrum for N = 0, T = 0.25.
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Figure 7. Log-log plots of the total scaled energy of A-modes as a function of time for different values of (a)
β > 2 and (b) β < 1/2. The straight-line asymptotes of the curves for large T imply power laws of the form
T−α . (a) From left to right (decreasing β), α has values close to 0.7, 0.3, 0.3, 0.5 and 0.5, (b) α is close to 0.4
for β = 0 and to 0.5 for the other values of β.

to their different dynamics results in the lower initial value when β = 2.5 and β = 0.4. For
all values of β, there is a range of times in which the total energy is very nearly constant,
during which an inertial range is created by transfer from small to large wavenumber,
followed by a transition to a power law, T−α , once the dissipative range is established. This
behaviour suggests the existence of an energy cascade for the wave component. The scaled
time required for creation of the dissipative range increases as β decreases for β > 2,
whereas it does not vary greatly for β < 1/2.

Figure 8 shows plots of the angular spectrum for different values of β and, for each β, a T
sufficiently large that the dissipative range is established. Perhaps the most striking feature
is the discontinuity in figure 8(b–i) at the boundaries of the range of θk defined by (3.20).
This occurs because the resonant surface with sp = sq = −s is present when (3.20) holds,
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Figure 8. Angular spectra for (a) β = 0, (b) β = 0.1, (c) β = 0.2, (d) β = 0.3, (e) β = 0.4, ( f ) β = 2.5,
(g) β = 3, (h) β = 5, (i) β = 10. Panels (a–e), (h) and (i) are for T = 2, ( f ) is for T = 30 and (g) for T = 10.
Panels (b–i) show the range of θk for which (3.20) applies, while panels (e) and ( f ) also indicate the range,
B, of decoupled modes, for which neither (3.20) nor (3.21) hold. Concerning (3.20) and (3.21), it may help to
recall that N = (β2 + 1)−1/2, Ω = β(β2 + 1)−1/2 and ω(k) = (N2sin2θk +Ω2cos2θk)

1/2.
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Figure 9. Log-log plot of the scaled spectra as a function of k for β = 3, T = 10 and the same angles as
figure 1. The dashed straight line represents the power law eW ∝ k−4.

but is absent once the boundary is crossed. This discontinuity would no doubt be revealed
to be a region of rapid spectral variation by asymptotic analysis of the limit ε → 0 close to
the boundary, but this is not attempted here. Also note the range of θk in figures 8(e) and
8( f ) indicated by B. This corresponds to the decoupled modes discussed earlier. Given
small dissipation, such modes maintain their initial value, Eang(θk) = 3π3/2ε2 sin θk/4.

Figure 8(a) (pure stratification) shows the expected large energy density near the poles,
though, recalling that the total wave energy is the integral of Eang, those regions do not
dominate the total energy. Figures 8(b)–8(i) indicate that the energy density is considerably
lower when (3.20) is satisfied, leading to the expected concentration near the poles when
β < 1/2 and near the equator when β > 2. Taken together, figures 8(a–i) and 6 illustrate
the evolution of the wave component as β increases.

Figure 9 shows a representative log-log plot of the wave spectrum as a function of k for
different values of θk. The density of dashes on the curves increases with θk, allowing the
identification of particular θk, while the dashed straight line represents the power law eW ∝
k−4. Similar results are obtained for all β > 2, but the picture, as regards power laws with
respect to k, is less clear when β < 1/2, as illustrated by figure 10. Here, inertial-range
power laws as a function of k are hard to distinguish and are, at best, rough approximations.
For some values of β < 1/2, there are clearer power laws, but, overall, the results indicate
that the wave spectra cannot be relied on to even follow approximate inertial-range power
laws with respect to k when β < 1/2.

In summary, temporal power laws for the total wave energy are quite clear and suggest
an energy cascade, while the angular spectra show that the existence/non-existence of the
resonant surface with sp = sq = −s leads to polar concentration of energy density when
β < 1/2 and equatorial concentration for β > 2. However, inertial-range power laws for
the k-spectra are, at best, approximate.

5. Conclusions

To our knowledge, this is the first analytically based study of weak rotating/stratified
turbulence, other than those of Galtier (2003) and [B] for the case of pure rotation. The
results depend strongly on the ratio, β, of twice the rotation rate to the Brunt–Väisälä
frequency. The theory in § 2 uses Fourier analysis and modal decomposition to express
the flow as a sum of wave (s = ±1) and NP (s = 0) components, resulting in the mode
amplitude equation (2.26), which has terms representing nonlinear interactions between
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Figure 10. Log-log plot of the scaled spectra as a function of k for β = 0, T = 2 and the same angles as
figure 1. The dashed straight line represents the power law eW ∝ k−4.

modes and visco-diffusive dissipation. The nonlinear term can be expressed in terms of
the modal amplitudes, as, using either (2.27) or (2.30), equivalent expressions which are
both employed at different points in the analysis, as is the original expression in (2.26).

Section 2 also introduces the spectral matrix, Ass′(k), where k is the wave vector
resulting from Fourier transformation. The diagonal elements of this matrix represent the
energy density of the different modes in spectral space, whereas the off-diagonal ones
correspond to modal correlations and are of lesser importance. The wave and NP spectral
energy densities are given by (2.40).

The consequences of weakness of the turbulence are examined in § 3. To avoid
difficulties in the analysis, we suppose that β is not close to 1. It is found that the NP
component evolves according to (3.9)–(3.11) independently of the wave component. These
equations are equivalent to the three-dimensional, quasi-geostrophic approximation, which
is one of the cornerstones in the study of atmospheric and oceanic flows. The wave
component is treated using wave-turbulence analysis in Appendix B. To rid the wave
equations of the NP spectra, and hence close the equations for the wave component, the
NP amplitude, εNP, is assumed small compared to that of the waves, ε. The result is (3.13).

Section 4 gives results of numerical solution of the evolution equations derived in § 3,
namely (3.9)–(3.11) for the NP component and (3.13) for the wave one. Both (3.11) and
(3.13) involve dissipation coefficients, D̂00(k) for (3.11) and D̂(k) for (3.13). As usual in
studies of turbulence, dissipation is chosen small for the large scales (k = |k| = O(1)),
but increases with k. Hyperviscous dissipation is used in an attempt to extend the expected
inertial ranges. The initial conditions are expressed by (4.1), where Â00 = A00/ε

2
NP and

Âss = Ass/ε
2 for s = ±1 are the NP and wave spectra, scaled to be of order 1. Such scaling

is also used for time, the scaled time being t̂ = εNPt for the NP component and T = ε2t
for the wave one. From a numerical point of view, the advantage of these scaled variables
is that the amplitudes, εNP and ε, are eliminated from the problem.

Figures 1–3 show NP results. Figure 1 gives results for the NP spectra as a function
of k at sufficiently large scaled time that the dissipative range is established and different
values of β and θk, the angle between the wave vector and the axis of rotation. With a
few exceptions, noted in the discussion of the figure, it indicates an inertial range close to
k−5 for the NP energy density. The exceptions include the case β = 10, near to the case of
pure rotation, a limit which may merit further study of the NP component. Figure 1 also
indicates that dominant stratification favours energy transfer towards the poles in k-space,
whereas dominant rotation sends it towards the equator. Figure 2 gives a different view
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of the same trend, while figure 3 illustrates the formation of the inertial and dissipative
ranges by energy transfer from large to small scales.

Perhaps the most significant conclusion concerning the NP component arises from the
observation that the overall energy dissipation is generally small, even when the dissipation
range is very well developed. This suggests that there is no energy cascade associated
with this component. If true, this implies it can persist to much longer times than might
otherwise be thought given the time scaling t ∼ ε−1

NP for its evolution. Both the lack of a
cascade and the appearance of k−5 power laws are in agreement with the theoretical results
of Charney (1971) for the three-dimensional, quasi-geostrophic approximation.

Section 4.2 gives results for the wave component, the validity of which depend on the
assumption εNP  ε unless N = 0 (β = ∞, pure rotation). In the latter case, our results
are in general agreement with those of [B]. In particular, figure 4 shows the total wave
energy as a function of time. In the early stages, before the dissipative range is established,
the energy is very nearly constant. Subsequently, a power law close to T−0.7 is evident,
suggesting an energy cascade. The exponent is not far from the value, −0.8, found by [B].
Figure 5 indicates inertial-range behaviour with a power law close to k−4, the exponent
identified in [B] for θk near π/2. The figure also shows the expected concentration of
energy density near the equator. This concentration is even more evident in figure 6, which
plots the angular spectrum of the wave mode, Eang(θk), defined by (4.3) and whose integral
over 0 ≤ θk ≤ π gives the total wave energy. The figure illustrates the infinite singularity
found by [B] and also the conclusion that it does not dominate the total energy (the area
under the curve).

Turning to cases other than pure rotation, it is important to recognise that the nonlinear
terms in the wave-turbulence equation (3.13), which governs the wave component
according to the present theory, are integrals over the resonant surfaces, Ssspsq , defined
in § 2. When 1/2 ≤ β ≤ 2, there are no such surfaces (as shown previously by Smith &
Waleffe 2002), hence pure linear dissipation. Given small dissipation of the large scales,
time evolution is negligible and results for such values of β are not shown. The vanishing
of the nonlinear terms for this range of β suggests going to higher order in ε, but this is
beyond the scope of this article. If 1/3 < β < 1/2 or 2 < β < 3, there are values of θk for
which resonant surfaces do not exist. Thus, there are modes which are nonlinearly coupled
to others, type A, while the remainder, type B, are decoupled. Type-B modes undergo pure
linear dissipation, hence negligible spectral time evolution.

Figure 7 shows the time evolution of the total energy of component A for different values
of β. Component B is excluded, in recognition of the different dynamics of components
A and B, the energy of component B being nearly constant. This exclusion only matters
for β = 2.5 and β = 0.4, since all modes are of type A for the other cases covered by the
figure. In all cases, there is a range of times in which the energy is very nearly constant
and during which an inertial range is created by transfer from small to large wavenumber,
followed by a transition to a temporal power law once the dissipative range is established.
This behaviour suggests the existence of an energy cascade for the wave component. The
time required for creation of the dissipative range increases significantly as β decreases
for β > 2, whereas it does not vary greatly for β < 1/2.

Figure 8 shows angular spectra for different β at scaled times sufficiently large that
the inertial and dissipative ranges are established. Modes of type B exist for β = 2.5 and
β = 0.4 and, as expected, the spectra are very nearly equal to their initial values in the
corresponding ranges of θk (see figures 8e and 8f ). For β = 0 (pure stratification), the
spectrum is largest near the poles, though the contribution to the total energy from other
angles is comparable. When β /= 0, there are spectral discontinuities at the boundaries of
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the range defined by (3.20), the range of θk in which the resonant surface sp = sq = −s
exists. Exiting the given range, that resonant surface abruptly ceases to exist, leading to
the discontinuity. Of course, we do not expect a real spectral discontinuity, but rather a
narrow range of θk, whose width tends to zero as ε → 0 (analogous to a shock wave in a
compressible fluid as the dissipation goes to zero). One might expect similar behaviour to
arise from the resonant surfaces sp = −sq at the boundaries of the range (3.21). However,
it can be shown that the surface sp = sq = −s disappears by going to |p| → ∞, whereas,
when sp = −sq, the surfaces shrink down to a point. The latter behaviour makes the
contributions to (3.13) tend to zero as the boundaries of (3.21) are approached, hence no
discontinuity arises, whereas the former allows the integral in (3.13) with sp = sq = −s to
tend to a non-zero limit at the boundaries of (3.20), leading to a discontinuity.

As apparent from figure 8, for β /= 0, the energy density is considerably greater outside
the range defined by (3.20). This leads to the expected higher density near the poles for
β < 1/2 and near the equator when β > 2. However, the cause identified here, namely
the appearance/disappearance of the resonant surface with sp = sq = −s, is perhaps
surprising. It appears that the presence of that surface leads to energy transfer away from
the corresponding k.

Concerning the behaviour of the developed wave spectra as a function of k, there are
rough power laws eW ∼ k−4 when β > 2, as illustrated by figure 9. However, such power
laws are hard to identify for β < 1/2 (see e.g. figure 10). In conclusion, inertial-range
power laws for the wave k-spectra are approximate at best.

Finally, there remain at least two open questions. First, what happens to the wave
component of weak turbulence if the condition εNP  ε, used for closure of the
wave-turbulence equations (unless N = 0), does not apply? Given the apparent lack of
an energy cascade for the NP component and sufficiently small dissipation, it maintains
its energy, while, according to the present results, the wave component decays due to a
cascade. Starting from initial conditions such that εNP  ε, it appears that ε will eventually
become comparable with εNP, at which point the treatment of the wave component used
here no longer applies. The fate of the wave component is also unclear when εNP ∼ ε

or εNP � ε initially. However, the results concerning the NP component are unaffected
because they do not depend on the assumption εNP  ε.

Another question concerns the behaviour of the wave component at or near the case of
pure rotation (large β). As discussed earlier, in the case of pure rotation and according
to wave-turbulence theory, there is an infinite singularity of the wave energy density at
k‖ = 0. This suggests that the limit of small Rossby number is singular for k‖/k⊥  1
without stratification. When small stratification is included, it seems likely that the infinite
singularity is removed, but the detailed asymptotics in the double limit in which the Rossby
number goes to zero and β → ∞ remain an open question. In fact, to our knowledge, even
the small-Rossby-number limit with pure rotation has yet to be clarified analytically.

Supplemental material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.1046.
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Evolution of weak, homogeneous turbulence

Appendix A. Modal projection

Since the unit vectors e(1) and e(2), given by (2.13), are orthogonal to each other and to k,
(2.7) implies

ũi =
2∑

l=1

ũ(l)e(l)i , (A1)

where ũ(l) = e(l)i ũi. Multiplying (2.6) by e(l)i (l = 1, 2), and using ũ(l) = e(l)i ũi and e(l)i ki =
0 gives

∂ ũ(l)

∂t
+Ωe(l)i εijkejũk + Nη̃e(l)i ei = R(l), (A2)

where
R(l) = −ikje

(l)
i ũiuj − Duk2ũ(l). (A3)

The rotational term in (A2) can be simplified using (2.7), (2.13) and the vector identity
(k × a) · (e × ũ) = (k · e)(a · ũ)− (k · ũ)(a · e). Thus, we obtain

e(1)i εijkejũk = k‖
k⊥

eiũi, (A4)

e(2)i εijkejũk = k‖
k

e(1)i ũi = k‖
k

ũ(1). (A5)

Equation (2.13) implies e(2) = (kk⊥)−1k × (k × e). Using the vector identity a × (b ×
c) = (a · c)b − (a · b)c gives e(2) = (kk⊥)−1(k‖k − k2e), hence eie

(2)
i = (kk⊥)−1(k2

‖ −
k2) = −k⊥/k, where we have used k2 = k2

⊥ + k2
‖. Employing (A1) and eie

(1)
i = 0 (which

follows from the first of (2.13)), we find eiũi = −k⊥ũ(2)/k so (A4) gives

e(1)i εijkejũk = −k‖
k

ũ(2). (A6)

Thus, the rotational term in (A2) can be expressed using (A5) and (A6). Here e(1)i ei = 0
and e(2)i ei = −k⊥/k also allow the evaluation of the term in (A2) which represents
stratification. The result is

∂ ũ(1)

∂t
− Ωk‖

k
ũ(2) = R(1), (A7)

∂ ũ(2)

∂t
+ Ωk‖

k
ũ(1) − Nk⊥

k
η̃ = R(2). (A8)

Finally, eiũi = −k⊥ũ(2)/k and (2.8) yield

∂η̃

∂t
+ Nk⊥

k
ũ(2) = R(3), (A9)

where
R(3) = −ikjη̃uj − Dηk2η̃. (A10)

The quantities ũ(l) and η̃ evolve according to (A7)–(A9).
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In the absence of nonlinearity, viscosity and diffusion, the right-hand sides of (A7)–(A9)
are zero. Looking for solutions of the form exp(−iσ t) gives the eigenvalue problem⎛⎝ 0 iΩk‖/k 0

−iΩk‖/k 0 iNk⊥/k
0 −iNk⊥/k 0

⎞⎠⎛⎝ũ(1)

ũ(2)

η̃

⎞⎠ = σ

⎛⎝ũ(1)

ũ(2)

η̃

⎞⎠ . (A11)

Given that the matrix is Hermitian, the eigenvalues are real and there is a complete set of
orthogonal eigenvectors. The eigenvalues are σ = sω(k), where s takes one of the three
values s = 0, ±1 and ω(k) is given by (2.9). The normalised eigenvectors are given by
(2.14) and (2.15), while (2.16) reflects orthogonality and normalisation. Using (A1), we
obtain (2.10) and (2.11), hence the modal solutions described in the main text.

Completeness of the eigenvectors of (A11) implies⎛⎝ũ(1)

ũ(2)

η̃

⎞⎠ =
∑

s=0,±1

bs(k, t)

⎛⎝u(1)s

u(2)s
η(s)

⎞⎠, (A12)

hence (2.17) and (2.18) according to (A1). Using (A11) and (A12), (A7)–(A9) imply

∑
s′=0,±1

(
∂bs′

∂t
+ is′ωbs

)⎛⎜⎝u(1)s′

u(2)s′

η(s
′)

⎞⎟⎠ =
⎛⎝R(1)

R(2)

R(3)

⎞⎠ . (A13)

Left-multiplying (A13) by the row vector (u(1)
∗

s , u(2)
∗

s , η(s)
∗
) and using the

orthonormality relation (2.16),

∂bs

∂t
+ isωbs =

2∑
l=1

u(l)
∗

s R(l) + η(s)
∗
R(3). (A14)

Employing (A3), (A10) and (A12) gives (2.19).
It remains to derive (2.27) and (2.30). The inverse transform of (2.4) and real ui imply

ui(x) =
∫

ũi
∗(p) exp(−ip · x) d3p, (A15)

hence

uiuj =
∫ ∫

ũ∗
i (p)ũ

∗
j (q) exp(−i(p + q) · x) d3q d3p

=
∫ ∫

ũ∗
i (p)ũ

∗
j (−k − p) exp(ik · x) d3k d3p

=
∫ ∫

ũ∗
i (p)ũ

∗
j (−k − p) d3p exp(ik · x) d3k. (A16)

It follows that

ũiuj =
∫

ũ∗
i (p)ũ

∗
j (−k − p) d3p, (A17)

and, similarly,

η̃uj =
∫
η̃∗(p)ũ∗

j (−k − p) d3p. (A18)

Employing (2.17) and (2.18), (A17), (A18) and the definition of as give (2.27).
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Evolution of weak, homogeneous turbulence

Changing the integration variable in (2.27) to −k − p, using Fsspsq(k,−k − p) =
Fssqsp(k, p) and permuting the summation indices sp ↔ sq,

−ikj(v
(s)∗
i ũiuj + η(s)

∗
η̃uj) exp(isωt)

=
∑

sp,sq=0,±1

∫
N∗

ssqsp
(k,−k − p)a∗

sp
(p)a∗

sq
(−k − p) exp(iFsspsq(k, p)t) d3p. (A19)

Taking the sum of (2.27) and (A19) and dividing by two gives (2.30).

Appendix B. Wave-turbulence analysis

Statistical homogeneity implies

as(k)asp(p)asq(k
′′) = Θsspsq(k, p)δ(k + p + k′′). (B1)

The ensemble average of the complex conjugate of (3.12) multiplied by as′(k′) gives

∂a∗
s (k)
∂t

as′(k′) = (τss′(k)− Dss(k)Ass′(k))δ(k − k′), (B2)

where

τss′(k) =
∑

sp,sq=0,±1

∫
Msspsq(k, p)Θs′spsq(k, p) exp(−iFsspsq(k, p)t) d3p. (B3)

In deriving (B2), (2.35), (B1) and the fact that Dss is real have been used, while, given the
Dirac function in (B2),Θs′spsq(k

′, p) has been replaced byΘs′spsq(k, p) in (B3). Permuting
s ↔ s′ and k ↔ k′, the complex conjugate of (B2) yields

a∗
s (k)

∂as′(k′)
∂t

= (τ ∗
s′s(k

′)− Ds′s′(k′)Ass′(k′))δ(k − k′)

= (τ ∗
s′s(k)− Ds′s′(k)Ass′(k))δ(k − k′), (B4)

where we have employed the Hermitian character of Ass′ and reality of Ds′s′ . Taking the
time derivative of (2.35), (B2) and (B4) imply

∂Ass′(k)
∂t

+ (Dss(k)+ Ds′s′(k))Ass′(k) = τss′(k)+ τ ∗
s′s(k). (B5)

Equation (B5) governs the evolution of the spectral matrix, evolution which we expect
to be slow for weak turbulence with small visco-diffusion. Thus, we consider large t.
The appearance of the third-order spectral moments, represented by Θ in (B3), is a
consequence of the usual turbulence closure problem.
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The time derivative of (B1) yields

δ(k + p + k′′)
∂Θs′spsq(k, p)

∂t
= ∂as′(k)

∂t
asp(p)asq(k

′′)

+ ∂asp(p)

∂t
as′(k)asq(k

′′)+ ∂asq(k
′′)

∂t
as′(k)asp(p). (B6)

Using (3.12) and (B1),

∂as′(k)
∂t

asp(p)asq(k
′′) =

∑
s′p,s′q=0,±1

∫
M∗

s′s′ps′q(k, p′) exp(iFs′s′ps′q(k, p′)t)

× a∗
s′p
(p′)a∗

s′q
(−k − p′)asp(p)asq(k

′′) d3p′ − δ(k + p + k′′)Ds′s′(k)Θs′spsq(k, p).

(B7)

The fourth-order moments in (B7) are treated as follows.
Suppose, as is often done in theoretical studies of homogeneous turbulence, that

turbulent quantities are statistically independent at sufficiently large separations and
consider fourth-order, four-point moments of ui(x) and η(x). Let r denote the largest
of the distances between two points. The four-point moments go to zero as r → ∞,
unless the points form two pairs, each pair having bounded separation as the distance
between the pairs goes to infinity. In that case, the four-point moments are the product
of two-point moments, one from each pair, hence a quasi-normal limit applies at large r.
The four-point moments can thus be written as the sum of their quasi-normal values and
another component, often referred to as the cumulant correction, which tends to zero as
r → ∞. In spectral terms, the corresponding result is

a∗
s′p
(p′)a∗

s′q
(−k − p′)asp(p)asq(k

′′) = a∗
s′p
(p′)a∗

s′q
(−k − p′) asp(p)asq(k

′′)

+ a∗
s′p
(p′)asp(p) a∗

s′q
(−k − p′)asq(k

′′)+ a∗
s′p
(p′)asq(k

′′) a∗
s′q
(−k − p′)asp(p)

+ Ks′ps′qspsq(k, p, p′)δ(k + p + k′′), (B8)

where Ks′ps′qspsq represents the cumulant correction and the remainder of the right-hand
side is the quasi-normal contribution. Using (2.35) and as(−k) = a∗−s(k),

a∗
s′p
(p′)a∗

s′q
(−k − p′) asp(p)asq(k

′′)

= As′p,−s′q(p
′)A−sp,sq(−p)δ(k)δ(p + k′′), (B9)

a∗
s′p
(p′)asp(p) a∗

s′q
(−k − p′)asq(k

′′)

= As′psp(p
′)As′qsq(−k − p′)δ(p′ − p)δ(k + k′′ + p′), (B10)

a∗
s′p
(p′)asq(k

′′) a∗
s′q
(−k − p′)asp(p)

= As′psq(p
′)As′qsp(−k − p′)δ(p′ − k′′)δ(k + p + p′), (B11)

are the quasi-normal contributions to (B8).
Equations (B8)–(B11) are used in (B7). Given the factor δ(k) in (B9), the corresponding

contribution to (B7) depends on the value of Ms′s′ps′q(k, p′) at k = 0, which is zero
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Evolution of weak, homogeneous turbulence

according to (2.28) and (2.31). Equation (B10) gives

δ(k + p + k′′)
∑

s′p,s′q=0,±1

M∗
s′s′ps′q(k, p) exp(iFs′s′ps′q(k, p)t)As′psp(p)As′qsq(−k − p), (B12)

while (B11) yields

δ(k + p + k′′)
∑

s′p,s′q=0,±1

M∗
s′s′ps′q(k,k′′) exp(iFs′s′ps′q(k,k′′)t)As′psq(k

′′)As′qsp(−k − k′′).

(B13)

Given the Dirac function, k′′ is replaced by −k − p inside the sum of (B13). Using
the relations Ms′s′ps′q(k,−k − p) = Ms′s′qs′p(k, p) and Fs′s′ps′q(k,−k − p) = Fs′s′qs′p(k, p),
permutation of the summation indices s′

p and s′
q shows that (B13) equals (B12), hence

the total quasi-normal contribution to (B7) is δ(k + p + k′′)ΞQN
s′spsq

(k, p), where

Ξ
QN
s′spsq

(k, p) = 2
∑

s′p,s′q=0,±1

M∗
s′s′ps′q(k, p) exp(iFs′s′ps′q(k, p)t)As′psp(p)As′qsq(−k − p).

(B14)
Including the cumulant and dissipative contributions, (B7) gives

∂as′(k)
∂t

asp(p)asq(k
′′) = δ(k + p + k′′)(Ξs′spsq(k, p)− Ds′s′(k)Θs′spsq(k, p)), (B15)

where

Ξs′spsq(k, p) = Ξ
QN
s′spsq

(k, p)

+
∑

s′p,s′q=0,±1

∫
M∗

s′s′ps′q(k, p′) exp(iFs′s′ps′q(k, p′)t)Ks′ps′qspsq(k, p, p′) d3p′. (B16)

Equation (B15) provides the first term on the right-hand side of (B6). The other two also
follow from (B15) as

∂asp(p)

∂t
as′(k)asq(k

′′) = δ(k + p + k′′)(Ξsps′sq(p,k)− Dspsp(p)Θsps′sq(p,k)),

(B17)

∂asq(k
′′)

∂t
as′(k)asp(p) = δ(k + p + k′′)(Ξsqs′sp(k

′′,k)− Dsqsq(k
′′)Θsqs′sp(k

′′,k)).

(B18)

Given the Dirac function in (B18),

∂asq(k
′′)

∂t
as′(k)asp(p) = δ(k + p + k′′)(Ξsqs′sp(−k − p,k)− Dsqsq(−k − p)Θsqs′sp(−k − p,k)).

(B19)

According to (B1),Θsps′sq(p,k) = Θsqs′sp(−k − p,k) = Θs′spsq(k, p), hence (B6), (B15),
(B17) and (B19) yield
∂Θs′spsq(k, p)

∂t
+ DΘs′spsq

(k, p)Θs′spsq(k, p) = Ξs′spsq(k, p)+Ξsps′sq(p,k)+Ξsqs′sp(−k − p,k),

(B20)
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where
DΘs′spsq

(k, p) = Ds′s′(k)+ Dspsp(p)+ Dsqsq(−k − p). (B21)

The solution of (B20) is

Θs′spsq(k, p, t) = exp(−DΘs′spsq
(k, p)t)Θs′spsq(k, p, 0)

+ Γs′spsq(k, p, t)+ Γsps′sq(p,k, t)+ Γsqs′sp(−k − p,k, t), (B22)

where

Γs′spsq(k, p, t) =
∫ t

0
Ξs′spsq(k, p, t′) exp(DΘs′spsq

(k, p)(t′ − t)) dt′, (B23)

and we have used the fact that DΘsps′sq
(p,k) = DΘsqs′sp

(−k − p,k) = DΘs′spsq
(k, p), which

follows from (B21).
Using (B3), the contribution of the final term in (B22) to τss′(k) is∑

sp,sq=0,±1

∫
Msspsq(k, p)Γsqs′sp(−k − p,k, t) exp(−iFsspsq(k, p)t) d3p. (B24)

Employing Msspsq(k, p) = Mssqsp(k,−k − p) and Fsspsq(k, p) = Fssqsp(k,−k − p),
changing the integration variable to −k − p, and permuting the summation indices sp
and sq show that the contributions to τss′(k, t) of the final two terms of (B22) are equal.
Thus, (B3) and (B22) give

τss′(k) =
∑

sp,sq=0,±1

∫
Msspsq(k, p)Θs′spsq(k, p, 0)

× exp(−(iFsspsq(k, p)+ DΘs′spsq
(k, p))t) d3p

+
∑

sp,sq=0,±1

∫
Msspsq(k, p)Γs′spsq(k, p, t) exp(−iFsspsq(k, p)t) d3p

+ 2
∑

sp,sq=0,±1

∫
Msspsq(k, p)Γsps′sq(p,k, t) exp(−iFsspsq(k, p)t) d3p. (B25)

We henceforth suppose that s and s′ are non-zero, i.e. we specialise to the wave
component, so (B5) gives

∂Ass′(k)
∂t

+ 2D(k)Ass′(k) = τss′(k)+ τ ∗
s′s(k), (B26)

where D(k), given by (3.14), is the damping factor of wave modes. Up to now, the only
approximation used was the replacement of the dissipative term in (2.26) to obtain (3.12).
From here on, we use large t to derive the wave-turbulence equations and, to avoid killing
the turbulence by visco-diffusion prior to the given time, the modal damping coefficient is
assumed comparable to or smaller than t−1 for the large scales of turbulence. Furthermore,
to obtain closed wave-turbulence equations from (B26), we suppose the amplitude, εNP,
of the NP component small compared with that of the wave component, ε, and consider
the effect of each of the terms on the right-hand side of (B25) on the long-term evolution
of Ass′ according to (B26).
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Evolution of weak, homogeneous turbulence

Given large t and (2.29), the integrand of the first term on the right-hand side of (B25)
has rapid, self-cancelling oscillations with respect to p unless sp = sq = 0. Neglecting
non-zero sp and sq leaves

exp(−isω(k)t)
∫

Ms00(k, p)Θs′00(k, p, 0) exp(−DΘs′00(k, p)t) d3p, (B27)

as the contribution to τss′ . Since s /= 0, (B27) has temporal oscillations of period O(1)
and hence does not contribute significantly to the long-term evolution of Ass′ according to
(B26). Thus, the first term in (B25) is negligible.

Concerning the cumulant contribution, the integrand in (B16) has rapid, self-cancelling
oscillations with respect to p′ unless s′

p = s′
q = 0, hence other terms are dropped. Using

(B23), the resulting contribution to (B25) is∑
sp,sq=0,±1

∫ t

0

∫ ∫
Msspsq(k, p)M∗

s′00(k, p′)K00spsq(k, p, p′, t′)

× exp(is′ω(k)t′ + DΘs′spsq
(k, p)(t′ − t)− iFsspsq(k, p)t) d3p d3p′ dt′

+ 2
∑

sp,sq=0,±1

∫ t

0

∫ ∫
Msspsq(k, p)M∗

sp00(p, p′)K00s′sq(p,k, p′, t′)

× exp(ispω(p)t′ + DΘsps′sq
(p,k)(t′ − t)− iFsspsq(k, p)t) d3p d3p′ dt′. (B28)

Avoidance of rapid oscillations with respect to p leads to

exp(−isω(k)t)
∫ t

0

∫ ∫
Ms00(k, p)M∗

s′00(k, p′)K0000(k, p, p′, t′)

× exp(is′ω(k)t′ + DΘs′00(k, p)(t′ − t)) d3p d3p′ dt′

+ 2 exp(−isω(k)t)
∑

sp=0,±1

∫ t

0

∫ ∫
Mssp0(k, p)M∗

sp00(p, p′)K00s′0(p,k, p′, t′)

× exp(ispω(p)(t′ − t)+ DΘsps′0(p,k)(t′ − t)) d3p d3p′ dt′. (B29)

Since s′ /= 0, the integrand of the first term of (B29) is oscillatory with respect to t′, so that
term does not grow with t and has order of magnitude determined by K0000 = O(ε4

NP). The
resulting contribution to (B26) can, at most, induce a change of O(ε4

NPt) in Ass′ over the
time span t. However, as we shall see, the appropriate time scale for evolution of Ass′ is
t ∼ ε−2, giving a change in Ass′ due to the first term in (B29) of at most O(ε4

NPε
−2), which

is negligible since Ass′ = O(ε2) and εNP  ε.
The sp /= 0 components of the second term in (B29) have integrands which have

rapid oscillations with respect to p unless t − t′ = O(1). Neglecting other t′, the order
of magnitude of the sp /= 0 contributions is determined by K00s′0 = O(ε3

NPε), implying
negligible effects on the evolution of Ass′ when t ∼ ε−2 because εNP  ε. Finally, the
sp = 0 component of the second term in (B29) has oscillations of period O(1) due to
the term exp(−isω(k)t). The amplitude of these oscillations is O(ε3

NPεt). The solution
of (B26) inherits these oscillations, but the result is negligible when t ∼ ε−2 because
εNP  ε. In summary, thanks to εNP  ε, the cumulant contribution is negligible, but
there remains the quasi-normal one, which we now investigate.
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Employing (B14) and (B23), the quasi-normal contribution to the second term on the
right-hand side of (B25) is

2
∑

sp,sq=0,±1
s′p,s′q=0,±1

∫ t

0

∫
Msspsq(k, p)M∗

s′s′ps′q(k, p)

× exp(i(Fs′s′ps′q(k, p)t′ − Fsspsq(k, p)t)+ DΘs′spsq
(k, p)(t′ − t))

× As′psp(p, t′)As′qsq(−k − p, t′) d3p dt′. (B30)

Given

Fs′s′ps′q(k, p)t′ − Fsspsq(k, p)t

= (s′t′ − st)ω(k)+ (s′
pt′ − spt)ω(p)+ (s′

qt′ − sqt)ω(−k − p), (B31)

there are rapid, self-cancelling oscillations with respect to p of the integrand in (B30)
unless s′

p = sp, s′
q = sq. The case s′

p = s′
q = sp = sq = 0 gives the contribution

2 exp(−isω(k)t)
∫ t

0

∫
Ms00(k, p)M∗

s′00(k, p)A00(p, t′)A00(−k − p, t′)

× exp(is′ω(k)t′ + DΘs′00(k, p)(t′ − t)) d3p dt′. (B32)

Since s′ /= 0, the integrand is oscillatory with respect to t′ and, given A00 = O(ε2
NP), (B32)

is of order O(ε4
NP), hence inducing negligible effects on the evolution of Ass′ according to

(B26). However, when s′
p = sp, s′

q = sq and one or other of sp and sq is non-zero, there
are rapid oscillations with respect to p of the integrand of (B30) unless t − t′ = O(1). The
latter condition has two consequences. The first is that, given the small visco-diffusive
dissipation needed to stop it killing the turbulence before nonlinearity is effective, the
visco-diffusive term in the exponential of (B30) can be neglected. The second follows from
the slow evolution of the spectral matrix A, which allows the approximation A(t′) = A(t).
Thus, (B30) becomes

2
∑

sp,sq=0,±1

∫ t

0

∫
Msspsq(k, p)M∗

s′spsq
(k, p)

× exp(i(Fs′spsq(k, p)t′ − Fsspsq(k, p)t))Aspsp(p, t)Asqsq(−k − p, t) d3p dt′, (B33)

where the sum excludes the term sp = sq = 0. The integral over t′ can now be evaluated
giving

2 exp(i(s′ − s)ω(k)t)
∑

sp,sq=0,±1

∫
Δs′spsq(k, p, t)Msspsq(k, p)M∗

s′spsq
(k, p)

× Aspsp(p, t)Asqsq(−k − p, t) d3p (B34)

for the second-term on the right-hand side of (B25), where again sp = sq = 0 is excluded
from the sum,

Δs′spsq(k, p, t) = 1 − exp(−iFs′spsq(k, p)t)

iFs′spsq(k, p)
, (B35)

and Fsspsq(k, p) = Fs′spsq(k, p)+ (s − s′)ω(k) has been used.
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Evolution of weak, homogeneous turbulence

Turning attention to the quasi-normal contribution to the final term of (B25), we employ
similar reasoning to that used above. The equivalent of (B30) is

4
∑

sp,sq=0,±1
s′p,s′q=0,±1

∫ t

0

∫
Msspsq(k, p)M∗

sps′ps′q(p,k)

× exp(i(Fs′psps′q(k, p)t′ − Fsspsq(k, p)t)+ DΘsps′sq
(p,k)(t′ − t))

× As′ps′(k, t′)As′qsq(−k − p, t′) d3p dt′, (B36)

where we have used Fsps′ps′q(p,k) = Fs′psps′q(k, p). Avoidance of rapid oscillations with
respect to p requires s′

q = sq. The case sp = s′
q = sq = 0 gives the contribution

4 exp(−isω(k)t)
∑

s′p=0,±1

∫ t

0

∫
Ms00(k, p)M∗

0s′p0(p,k)As′ps′(k, t′)A00(−k − p, t′)

× exp(is′
pω(k)t

′ + DΘ0s′0(p,k)(t′ − t)) d3p dt′. (B37)

When s′
p /= 0, the integrand is oscillatory and the result has order of magnitude ε2

NPε
2,

hence negligible effects on the evolution of Ass′ for t ∼ ε−2. For s′
p = 0, there are

oscillations of period O(1) and amplitude O(ε3
NPεt). These oscillations are inherited by

Ass′ via (B26), but are negligible because εNP  ε.
Finally, when s′

q = sq, and one or other of sp and sq is non-zero, there are rapid
oscillations with respect to p of the integrand of (B36) unless t − t′ = O(1), a condition
which makes the visco-diffusive term in (B36) negligible and allows the approximation
A(t′) = A(t). Evaluating the integral over t′ and using Fsspsq(k, p) = Fs′pspsq(k, p)+ (s −
s′

p)ω(k), gives

4
∑

sp,sq,s′p=0,±1

exp(i(s′
p − s)ω(k)t)As′ps′(k, t)

×
∫
Δs′pspsq(k, p, t)Msspsq(k, p)M∗

sps′psq
(p,k)Asqsq(−k − p, t) d3p, (B38)

where the sum excludes sp = sq = 0. Then Δs′pspsq(k, p, t) = Δs′psqsp(k,−k − p, t)
(which follows from (B35) and Fs′pspsq(k, p) = Fs′psqsp(k,−k − p)) and Msspsq(k, p) =
Mssqsp(k,−k − p) are used, followed by a change of integration variable to −k − p, and
permutation of the summation indices sp and sq. Thus,

4
∑

sp,sq,s′p=0,±1

exp(i(s′
p − s)ω(k)t)As′ps′(k, t)

×
∫
Δs′pspsq(k, p, t)Msspsq(k, p)M∗

sqs′psp
(−k − p,k)Aspsp(p, t) d3p, (B39)

expresses the final term in (B25), where again sp = sq = 0 is excluded from the sum.
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The integrals in (B34) and (B39) have the form∫
Δs′′spsq(k, p, t)Φ(p) d3p, (B40)

where s′′ and Φ depend on which integral is considered. Such integrals always arise in
wave-turbulence analysis and need to be evaluated in the limit of large t. To this end,
(B35) is decomposed into real and imaginary parts:

Δs′′spsq(k, p, t) = sin(Fs′′spsq(k, p)t)

Fs′′spsq(k, p)
− i

1 − cos(Fs′′spsq(k, p)t)

Fs′′spsq(k, p)
. (B41)

Without going into the details (see e.g. Benney & Newell 1969), the first term approaches
a Dirac function, πδ(Fs′′spsq(k, p)), as t → ∞. Using ω(−k − p) = ω(k + p), (2.29)
and (3.15), ∇pFs′′spsq(k, p) = spcg(p)+ sqcg(k + p). Thus, converting the volume integral
with the Dirac function into a surface integral, the contribution to (B40) is

π

∫
Ss′′spsq (k)

Φ(p)
|spcg(p)+ sqcg(k + p)| d2p, (B42)

where Ss′′spsq(k) is the surface in p-space defined by Fs′′spsq(k, p) = 0. Of course,
Ss′′spsq(k) may be the empty set, in which case integrals over Ss′′spsq(k) should be
interpreted as zero. The cosine in the second term of (B41) turns out to be negligible
provided that the result is interpreted as a Cauchy principal value, so the contribution to
(B40) is

−iP
∫

Φ(p)
Fs′′spsq(k, p)

d3p, (B43)

where the P before the integral sign indicates a principal value. Finally, the sum of (B42)
and (B43) yields∫

Δs′′spsq(k, p, t)Φ(p) d3p → π

∫
Ss′′spsq (k)

Φ(p)
|spcg(p)+ sqcg(k + p)| d2p

− iP
∫

Φ(p)
Fs′′spsq(k, p)

d3p, (B44)

as the t → ∞ limit of (B40).
The Cauchy principal value has been introduced above without defining what is meant.

If there is no p for which Fs′′spsq(k, p) = 0 (i.e. Ss′′spsq(k) is the empty set), the integrand
in (B43) is non-singular and the principal value is just a normal integral. However,
Fs′′spsq(k, p) = 0 gives an infinite singularity of the integrand and the integral needs more
careful interpretation. To remove the singularity, a small region in p-space is excluded
from the integral (see figure 11). This region can be defined by |Fs′′spsq(k, p)| < δ, where
δ > 0 is small. Taking the limit δ ↘ 0 gives the principal value.

Using (B44) in (B34) and (B39), there are two types of terms: those which are
oscillatory over time spans of O(1) and those which are not. Given that we are looking
for contributions that result in cumulative evolution of Ass′ according to (B26) over long
time spans, we neglect oscillatory terms, i.e. s′ /= s for (B34) and s′

p /= s for (B39).
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Evolution of weak, homogeneous turbulence

Fs′′spsq (k, p) = δ

Fs′′spsq (k, p) = –δ

Fs′′spsq (k, p) = 0

Figure 11. Illustration of the volume in p-space which is excluded from the integral in (B43) when defining
the Cauchy principal value. The excluded volume is bounded by the dashed lines.

Taking the sum of (B34) and (B39) without these terms,

τss′(k) =
∑

sp,sq=0,±1

∫
Δsspsq(k, p, t)Φss′spsq(p,k) d3p, (B45)

where the sum is missing the term sp = sq = 0,

Φss′spsq(p,k) = Aspsp(p)(δss′λsspsq(k, p)Asqsq(−k − p)+ ζsspsq(k, p)Ass′(k)), (B46)

and λsspsq(k, p) and ζsspsq(k, p) are given by (3.16) and (3.17). Using (B44), (B45) and
(B46) imply

τss′(k) = μs(k)Ass′(k)

+ δss′
∑

sp,sq=0,±1

(
π

∫
Ssspsq (k)

λsspsq(k, p)Aspsp(p)Asqsq(−k − p)

|spcg(p)+ sqcg(k + p)| d2p

− iP
∫
λsspsq(k, p)Aspsp(p)Asqsq(−k − p)

Fsspsq(k, p)
d3p

)
, (B47)

where

μs(k) =
∑

sp,sq=0,±1

(
π

∫
Ssspsq (k)

ζsspsq(k, p)Aspsp(p)

|spcg(p)+ sqcg(k + p)| d2p

− iP
∫
ζsspsq(k, p)Aspsp(p)

Fsspsq(k, p)
d3p

)
, (B48)

and the term sp = sq = 0 is excluded from the sums in (B47) and (B48). Given the
assumed smallness of the NP component, the contributions of A00 to (B47) and (B48)
are negligible, thus

τss′(k) = μs(k)Ass′(k)

+ δss′
∑

sp,sq=±1

(
π

∫
Ssspsq (k)

λsspsq(k, p)Aspsp(p)Asqsq(−k − p)

|spcg(p)+ sqcg(k + p)| d2p

− iP
∫
λsspsq(k, p)Aspsp(p)Asqsq(−k − p)

Fsspsq(k, p)
d3p

)
, (B49)
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μs(k) =
∑

sp=±1
sq=0,±1

(
π

∫
Ssspsq (k)

ζsspsq(k, p)Aspsp(p)

|spcg(p)+ sqcg(k + p)| d2p

− iP
∫
ζsspsq(k, p)Aspsp(p)

Fsspsq(k, p)
d3p

)
. (B50)

Both integrals in (B49) are real, hence, given the Hermitian character of Ass′ and the factor
δss′ ,

τss′(k)+ τ ∗
s′s(k) = (μs(k)+ μ∗

s′(k))Ass′(k)

+ 2πδss′
∑

sp,sq=±1

∫
Ssspsq (k)

λsspsq(k, p)Aspsp(p)Asqsq(−k − p)

|spcg(p)+ sqcg(k + p)| d2p, (B51)

is the final asymptotic approximation of the right-hand side of (B26), giving the
wave-turbulence equation

∂Ass′(k)
∂t

+ 2D(k)Ass′(k) = (μs(k)+ μ∗
s′(k))Ass′(k)

+ 2πδss′
∑

sp,sq=±1

∫
Ssspsq (k)

λsspsq(k, p)Aspsp(p)Asqsq(−k − p)

|spcg(p)+ sqcg(k + p)| d2p, (B52)

for s, s′ /= 0. Given Ass′ = O(ε2), the evolution time of the wave component can be
estimated using (B50) and (B52) as O(ε−2), a result noted earlier and which is typical
of wave turbulence.

Since the wave-component spectral energy density is given by the first of the (2.40), the
most interesting application of (B52) is s′ = s. Using (B50) and reality of the diagonal
components of the spectral matrix A, (B52) yields

∂Ass(k)
∂t

+ 2D(k)Ass(k)

= 2π
∑

sp=±1
sq=0,±1

∫
Ssspsq (k)

Aspsp(p)

|spcg(p)+ sqcg(k + p)|

× ((1 − δsq0)λsspsq(k, p)Asqsq(−k − p)+ Re(ζsspsq(k, p))Ass(k)) d2p

+ 2Ass(k)
∑

sp=±1
sq=0,±1

P
∫ Im(ζsspsq(k, p))Aspsp(p)

Fsspsq(k, p)
d3p. (B53)

Consider the principal-value contribution to (B53), which can be written

2Ass(k)
∑

sp=±1

P
∫ ∑

sq=0,±1

Im(ζsspsq(k, p))

Fsspsq(k, p)
Aspsp(p) d3p. (B54)

As noted following its definition, (2.35), the spectral matrix is such that Ass′(−k) =
A−s′,−s(k), hence, switching the sign of the summation index sp and changing the
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Evolution of weak, homogeneous turbulence

integration variable to q = −p, (B54) becomes

2Ass(k)
∑

sp=±1

P
∫ ∑

sq=0,±1

Im(ζs,−sp,sq(k,−q))

Fs,−sp,sq(k,−q)
Aspsp(q) d3q. (B55)

Since (B54) and (B55) are equal, they are also equal to half their sum and hence to

Ass(k)
∑

sp=±1

P
∫ ∑

sq=0,±1

(
Im(ζsspsq(k, p))

Fsspsq(k, p)
+ Im(ζs,−sp,sq(k,−p))

Fs,−sp,sq(k,−p)

)
Aspsp(p) d3p.

(B56)
Although we have been unable to show it analytically, numerical evaluation of

∑
sq=0,±1

(
Im(ζsspsq(k, p))

Fsspsq(k, p)
+ Im(ζs,−sp,sq(k,−p))

Fs,−sp,sq(k,−p)

)
, (B57)

for non-zero s and sp, and different values of β, k and p show it to be zero to IEEE double
precision. Assuming this result is exactly true, the principal-value term in (B53) is zero
and is therefore dropped.

Next consider the sq = 0 contribution to the first term on the right-hand side of (B53),
which is

2πAss(k)
∑

sp=±1

∫
Ss,sp,0(k)

Re(ζs,sp,0(k, p))Asp,sp(p)

|cg(p)| d2p. (B58)

If sp = s, Fs,sp,0(k, p) = s(ω(k)+ ω(p)) = 0 has no solution because ω > 0, hence the
contribution to (B58) is zero. However, if sp = −s, Ss,sp,0(k) consists of the double
cone ω(p) = ω(k). Once again, although we have been unable to prove it analytically,
numerical calculations show that ζs,−s,0(k, p) is zero to IEEE double precision when s /= 0
and ω(p) = ω(k). Assuming this is exactly true, (B58) is zero and (B53) becomes (3.13)
when the scaled variables T = ε2t and Âss = Ass/ε

2 are used.
Given εNP  ε, it might have been tempting to neglect the effects of the NP component

on the wave one from the start, i.e. to drop the terms in (3.12) with sp = 0 or sq = 0.
However, it is then found that the principal-value terms do not cancel, i.e. they persist in
the final result. This is because cancellation requires the sq = 0 contribution to (B57).

Appendix C. Existence of the resonant surface

This appendix derives conditions for the existence of solutions of Fsspsq(k, p) = 0, where
s, sp and sq take one of the values ±1, for a given k. To this end, we determine the
maximum and minimum values of Fsspsq(k, p) as a function of p. If these values straddle
zero, the resonant surface exists. Since k is fixed, looking for extrema of Fsspsq(k, p), given
by (2.29), is equivalent to searching for those of

spsqω(p)+ ω(k + p), (C1)

where we have used ω(−k − p) = ω(k + p).
Define spherical polar coordinates, p = |p|, 0 ≤ θ ≤ π and −π < ψ ≤ π, in p-space,

where θ is the angle between the vectors p and e, and k lies in the plane ψ = 0. We first
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e L

θk+p k + p

–k
p

Figure 12. Plane defined by k and the rotation axis, showing the vectors e, p, −k and k + p, as well as the
angle θk+p and the line L.

look for extrema of (C1) at constant p and θ , i.e. only ψ is varied. Given fixed θ , ω(p) is
constant, so we consider extrema of ω(k + p). Using (2.9),

ω(k + p) =
(

N2q2
⊥ +Ω2q2

‖
q2
⊥ + q2

‖

)1/2

=
(

N2 + (Ω2 − N2)
q2
‖

q2
⊥ + q2

‖

)1/2

, (C2)

where q = k + p. Employing the spherical coordinates defined above,

q‖ = k‖ + p cos θ, (C3)

q2
⊥ = (k⊥ + p sin θ cosψ)2 + p2sin2θsin2ψ

= k2
⊥ + p2sin2θ + 2k⊥p sin θ cosψ. (C4)

Since p and θ are constant, so is q‖, while the factor cosψ induces variations of q2
⊥. It is

apparent from (C2)–(C4) that the extrema we are looking for arise from those of cosψ ,
which occur at ψ = 0 and ψ = π. Thus, we can restrict attention to p lying in the plane
defined by k and the rotation axis (see figure 12).

Consider the effect of letting p move along the diagonal dashed line, L, in figure 12.
This keeps ω(p) constant in (C1). As a result, we look for extrema of

ω(k + p) = (N2cos2θk+p +Ω2sin2θk+p)
1/2, (C5)

where, as illustrated by the figure, θk+p is the angle between the vectors k + p and e. As
p moves along the line L, θk+p varies and ω(k + p), given by (C5), takes on all values
between Ω and N. Thus, the minimum and maximum values of (C1) for the line L are

spsqω(p)+ min(Ω,N), spsqω(p)+ max(Ω,N). (C6a,b)

We next consider changes of the line L, first for the case sp = sq. Thus, (C6) gives

ω(p)+ min(Ω,N), ω(p)+ max(Ω,N). (C7a,b)

As the line changes, ω(p) takes on every value between Ω and N, hence

2 min(Ω,N), 2 max(Ω,N), (C8a,b)

are the minimum and maximum of (C1) over all p. It follows from (2.29) that the extremal
values of Fsspsq(k, p) are

sω(k)+ 2sp min(Ω,N), sω(k)+ 2sp max(Ω,N). (C9a,b)

As noted earlier, the existence of the resonant surface requires that the two values in (C9)
straddle zero. If sp = s, this is impossible because each of ω(k), Ω and N is positive.
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This means that the resonant surface does not exist when s = sp = sq, a result which is
to be expected given (2.29) and ω > 0. However, when sp = −s, zero straddling of (C9)
requires

2 min(Ω,N) < ω(k) < 2 max(Ω,N). (C10)

Given that ω(k) ≤ max(Ω,N) according to (2.29), the second inequality in (C10) is
automatically satisfied, while the first requires 2 min(Ω,N) < max(Ω,N). The latter
inequality is only satisfied if either β < 1/2 or β > 2. For such values of β, the resonant
surface with sp = sq /= s exists provided (3.20) holds.

Turning attention to the case, sp = −sq, (C6) yields

−ω(p)+ min(Ω,N), −ω(p)+ max(Ω,N), (C11a,b)

as the minimum and maximum values of (C1) for the line L. As the line, L, changes, ω(p)
takes on all values between Ω and N, hence ±|Ω − N| for the global extremal values of
(C1). It follows from (2.29) that the extremal values of Fsspsq(k, p) are sω(k)± sp|Ω −
N|. The requirement that these values straddle zero is ω(k) < |Ω − N|. Since ω(k) ≥
min(Ω,N), this implies min(Ω,N) < |Ω − N|, which, as when sp = sq, requires β <
1/2 or β > 2.

In summary, the resonant surface does not exist if s = sp = sq or 1/2 ≤ β ≤ 2.
Otherwise, it exists for sp = sq provided (3.20) holds and for sp = −sq when (3.21) applies.

REFERENCES

BARTELLO, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos.
Sci. 52, 4410–4428.

BELLET, F. 2003 Etude asymptotique de la turbulence d’ondes en rotation. PhD thesis, Ecole Centrale de Lyon.
BELLET, F., GODEFERD, F.S., SCOTT, J.F. & CAMBON, C. 2006 Wave turbulence in rapidly rotating flows.

J. Fluid Mech. 562, 83–121.
BENNEY, D.J. & NEWELL, A.C. 1969 Random wave closures. Stud. Appl. Maths 48, 29–53.
BENNEY, D.J. & SAFFMAN, P.G. 1966 Nonlinear interactions of random waves in a dispersive medium. Proc.

R. Soc. A 289, 301–320.
CAMBON, C. 2001 Turbulence and vortex structures in rotating and stratified flows. Eur. J. Mech. (B/Fluids)

20, 489–510.
CAMBON, C. & JACQUIN, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid

Mech. 202, 295–317.
CAMBON, C., MANSOUR, N.N. & GODEFERD, F.S. 1997 Energy transfer in rotating turbulence. J. Fluid

Mech. 337, 303–332.
CANUTO, C., HUSSAINI, M.Y., QUARTERONI, A. & ZANG, T.A. 1988 Spectral Methods in Fluid Dynamics.

Springer-Verlag.
CHARNEY, J.G. 1948 On the scale of atmospheric motions. Geofys. Publ. Oslo 17 (2), 1–17.
CHARNEY, J.G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095.
COLEMAN, G.N., FERZIGER, J.H. & SPALART, P.R. 1992 Direct simulation of the stably stratified turbulent

Ekman layer. J. Fluid Mech. 244, 677–712 (Corrigendum: J. Fluid Mech. 252, 721).
DENG, Y. & HANI, Z. 2021 On the derivation of the wave kinetic equation for NLS. Forum Maths Pi 9,

e6 1–37.
EMBID, P.F. & MADJA, A.J. 1998 Low Froude number limiting dynamics for stably stratified flow with small

or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87, 1–50.
GALTIER, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68, 015301.
GODEFERD, F.S. & CAMBON, C. 1994 Detailed investigation of energy transfers in homogeneous stratified

turbulence. Phys. Fluids 6, 2084–2100.
GODEFERD, F.S. & STAQUET, C. 2003 Statistical modelling and direct numerical simulations of decaying

stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J. Fluid Mech. 486, 115–159.
HAUGEN, N.E.L. & BRANDENBURG, A. 2004 Inertial range scaling in numerical turbulence with

hyperviscosity. Phys. Rev. E 70, 026405.
HERBERT, C., POUQUET, A. & MARINO, R. 2014 Restricted equilibrium and the energy cascade in rotating

and stratified flows. J. Fluid Mech. 758, 374–406.

979 A17-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1046


J.F. Scott and C. Cambon

HOSSAIN, M. 1994 Reduction in the dimensionality of turbulence due to a strong rotation. Phys. Fluids
6, 1077–1080.

LIECHTENSTEIN, L., GODEFERD, F.S. & CAMBON, C. 2005 Nonlinear formation of structures in rotating
stratified turbulence. J. Turbul. 6, 1–18.

MARINO, R., MININNI, P.D., ROSENBERG, D.L. & POUQUET, A. 2013 Inverse cascades in rotating stratified
turbulence: fast growth of large scales. Europhys. Lett. 102, 44006.

NAZARENKO, S. 2011 Wave Turbulence. Springer.
NEWELL, A.C. & RUMPF, B. 2011 Wave turbulence. Annu. Rev. Fluid Mech. 43, 59–78.
ORSZAG, S.A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363–386.
ORSZAG, S.A. & PATTERSON, G.S. 1972 Numerical simulation of three-dimensional homogeneous isotropic

turbulence. Phys. Rev. Lett. 28, 76–79.
PEDLOSKY, J. 1987 Geophysical Fluid Dynamics. Springer-Verlag.
SAGAUT, P. & CAMBON, C. 2018 Homogeneous Turbulence Dynamics, 2nd edn. Springer.
SMITH, L.M. & WALEFFE, F. 2002 Generation of slow large scales in forced rotating stratified turbulence.

J. Fluid Mech. 451, 145–168.
WALEFFE, F. 1991 Non-linear interactions in homogeneous turbulence with and without background rotation.

In Annual Research Briefs, Center for Turbulence Research.
ZAKHAROV, V.E., LVOV, V.S. & FALKOVICH, G.E. 1992 Kolmogorov Spectra of Turbulence I – Wave

Turbulence. Springer-Verlag.

979 A17-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1046

	1 Introduction
	2 Formulation
	2.1 Fourier transforms and modes
	2.2 Mode-amplitude equation
	2.3 The spectral matrix and energy

	3 Weak turbulence
	3.1 Evolution of the NP component
	3.2 Evolution of the wave component

	4 Numerical results
	4.1 DNS results for the NP component
	4.2 Results for the wave component

	5 Conclusions
	Appendix A. Modal projection
	Appendix B. Wave-turbulence analysis
	Appendix C. Existence of the resonant surface
	References

