LETTER TO THE EDITOR

Late Quaternary micromammals and the precipitation history of the southern Cape, South Africa: response to comments by F. Thackeray, Quaternary Research 95, 154–156

J. Tyler Faith, a, b, Brian M. Chase, c, D. Margaret Avery

a Natural History Museum of Utah, University of Utah, Salt Lake City, Utah 84108, USA
b Department of Anthropology, University of Utah, Salt Lake City, Utah 84112, USA
c Institut des Sciences de l’Évolution-Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), EPHE, IRD, Montpellier, France
d Iziko South African Museum, Cape Town, 8000 South Africa

*Corresponding author E-mail address: jfaith@nhmu.utah.edu (J.T. Faith).

(RECEIVED January 20, 2020; ACCEPTED February 4, 2020)

INTRODUCTION

We appreciate Thackeray’s (2020) comments on our recent examination of late Quaternary micromammals from the southern Cape of South Africa (Faith et al., 2019). Focusing on the well-sampled sequence from Boomplaas Cave, we argued—controversially in Thackeray’s (2020) opinion—that the micromammals indicated a transition from a relatively humid last glacial maximum (LGM) to a more arid Holocene. This is at odds with earlier interpretations of the region’s climate history (e.g., Avery, 1982; Deacon et al., 1984; Deacon and Lancaster, 1988), though it is now supported by a growing body of evidence (e.g., Faith, 2013a, 2013b; Chase et al., 2017, 2018; Engelbrecht et al., 2019). We welcome this opportunity to clarify a few points raised by Thackeray (2020) and to further elaborate on our original interpretations.

MOISTURE AVAILABILITY, PRECIPITATION, AND TEMPERATURE

In Faith et al. (2019), our analysis and interpretation focused specifically on moisture availability (humidity/aridity). As defined in the paper, this variable is determined by precipitation relative to evapotranspiration. While it is common to confuse moisture availability with rainfall amount, as Thackeray (2020) has in his comment, this leads to confusion, as rainfall amount is only one factor determining moisture availability. As discussed by Chevalier and Chase (2016), moisture availability is largely determined by the combination of precipitation and temperature, through its influence on evapotranspiration. Thus, our interpretation of relatively humid conditions during the LGM at Boomplaas Cave should not be equated as implying relatively higher rainfall, as Thackeray (2020) has inferred.

To be clear, a relatively humid LGM could result from greater precipitation, cooler temperatures, or a combination of both. There is no question that cooler temperatures during the LGM would have contributed to greater moisture availability by reducing evapotranspiration (as suggested by Chase et al., 2017, 2018), but whether this was accompanied by higher or lower precipitation cannot be ascertained from our analysis. Indeed, we are skeptical that any analysis of faunal community composition can inform directly on rainfall amount sensu stricto, when it is moisture availability that determines habitat structure and the availability of the key resources (e.g., forage, standing water) on which faunas depend (Faith and Lyman, 2019). Faith et al. (2019) focused on moisture availability precisely because most organisms (both floral and faunal) are influenced by moisture availability rather than by rainfall amount—as a given amount of precipitation can have vastly different environmental consequences depending on how much of it is lost through evapotranspiration (e.g., Chevalier and Chase, 2016).

A SEMIARID CLIMATE

Thackeray (2020) observes that in our ordination of modern and fossil micromammal samples, the LGM assemblage from member GWA at Boomplaas Cave plots adjacent to several modern assemblages characterized by a semiarid climate. The emphasis Thackeray (2020) places on “semiarid”
throughout his letter implies that some clarification is necessary, because the implication is that a semiarid LGM is inconsistent with our original interpretations. It is not. Following the United Nations National Environment Programme classification scheme (UNEP, 1997), a “semiarid” climate is characterized by mean annual precipitation (MAP) equal to 20%–50% of mean annual evapotranspiration (MAE), or aridity index (AI = MAP/MAE) values of 0.2 to 0.5. Boomplaas Cave today is at the lower limit of semiarid (AI = 0.24), yet the modern samples flagged by Thackeray (2020) are characterized by much greater moisture availability, with AI values of 0.43 to 0.48. Though not discussed by Thackeray (2020), the GWA assemblage also plots close to modern samples characterized by a “dry subhumid” climate (AI values of 0.5 to 0.65), further emphasizing its similarity to modern environments with greater moisture availability than the contemporary Boomplaas environment. Thus, the proximity of GWA to these semiarid and dry subhumid assemblages is fully consistent with our previous observation of a relatively humid LGM.

ACKNOWLEDGMENTS

Though we may not agree on this issue, we thank Francis Thackeray for his collegiality and for his efforts to better understand the late Quaternary climates of South Africa.

REFERENCES

Faith, J.T., 2013a. Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, Western Cape, South Africa. *Journal of Human Evolution* 65, 715–730.

Faith, J.T., 2013b. Ungulate diversity and precipitation history since the Last Glacial Maximum in the Western Cape, South Africa. *Quaternary Science Reviews* 68, 191–199.

