K. Watanabe Nagoya Math. J. Vol. 49 (1973), 101-109

SOME EXAMPLES OF ONE DIMENSIONAL GORENSTEIN DOMAINS

KEIICHI WATANABE

Introduction.

In this paper, I will prove the following theorems;

THEOREM 1. For given integers n and m such that $m \ge 2^n$, there exist 1-dimensional local domains which are complete intersections and have embedding dimension n + 1 and multiplicity m.

THEOREM 2. For given integers n and m such that $4 \leq n \leq m-1$, there exist 1-dimensional local domains which are Gorenstein with multiplicity m and embedding dimension n and which are not complete intersections.

To give these examples I heavily use the theory of the value-semigroups of 1-dimensional local domains by Kunz and Herzog ([1], [3]).

§ 1. Review of the theory of value-semigroups of 1-dimensional local domains ([1], [3]).

In the following, a 'semigroup' always means an additive subsemigroup of N, the additive semigroup of non-negative integers.

(1) A 'numerical semigroup' is a semigroup H which satisfies two conditions;

1. $0 \in H$

2. There exists an integer c such that any integer $n \ge c$ is in H.

(2) The conductor of a numerical semigroup H, denoted by c(H), is the smallest integer c such that all integers n satisfying $n \ge c$ belong to H.

(3) We denote by $\langle n_1, \dots, n_k \rangle$ the semigroup generated by n_1, \dots, n_k ; $\langle n_1, \dots, n_k \rangle = \{\sum_{i=1}^k a_i n_i | a_i \in N\}.$

Received December 7, 1971.

Revised August 1, 1972.

KEIICHI WATANABE

(4) We say that $\{n_1, \dots, n_k\}$ is the minimal generator system of a semigroup H if $H = \langle n_1, \dots, n_k \rangle$ and any proper subset of $\{n_1, \dots, n_k\}$ does not generate H. If we suppose that $n_1 < n_2 < \dots < n_k$, this is equivalent to say that $n_i \in \langle n_1, \dots, n_{i-1} \rangle$ for $2 \leq i \leq k$.

When we write $H = \langle n_1, \dots, n_k \rangle$, we agree that $\{n_1, \dots, n_k\}$ is the minimal generator system. Minimal generator system of an arbitrary subsemigroup of N uniquely exists.

(5) A numerical semigroup H is symmetric if for any integer n, $n \in H \Leftrightarrow c - 1 - n \in H \ (c = c(H)).$

(6) $K[H] = K[T^h; h \in H] \subset K[T]$ (K is a field and T is an indeterminant). $K[H]_{loc}$ the localization of K[H] 'at the origin'. If H is a numerical semigroup, the integral closure of K[H] in the quotient field of K[H] is K[T].

If $H = \langle n_1, \dots, n_k \rangle$, then $K[H] = K[T^{n_1}, \dots, T^{n_k}]$.

(7) We say that a numerical semigroup H is a complete intersection if the ring K[H] is a complete intersection. When $H = \langle n_1, \dots, n_k \rangle$, and if we consider the homomorphism $\Phi_H \colon K[X_1, \dots, X_k] \to K[H]$, $\Phi_H(X_i) = T^{n_i}$, H is a complete intersection if and only if Ker (Φ_H) is generated by k - 1 elements.

(8) The multiplicity of H, denoted by m(H) is the least positive integer in H. If $H = \langle n_1, \dots, n_k \rangle$ with $n_1 < n_2 < \dots < n_k$, then $m(H) = n_1$.

(9) The embedding dimension of H, denoted by emb(H), is the number of the minimal generators of H. If $H = \langle n_1, \dots, n_k \rangle$, then emb(H) = k (recall that $\{n_1, \dots, n_k\}$ is the minimal generator system).

(10) Let $H = \langle n_1, \dots, n_k \rangle$ and $h \in H$. If h has different expressions as linear combinations of n_i 's, then we say that h is a relation of H. For example, if $H = \langle 3, 4, 5 \rangle$, $8 = 2 \cdot 4 = 3 + 5$ and $9 = 3 \cdot 3 = 4 + 5$ are relations of H.

(11) For a relation h in $H = \langle n_1, \dots, n_k \rangle$, we associate to h a vector $v_h \in \mathbb{Z}^k$ in the following way. If $h = \sum_{i=1}^k a_i n_i = \sum_{i=1}^k b_i n_i$, then $v_h = (a_1 - b_1, a_2 - b_2, \dots, a_k - b_k)$. In the example in (10), $v_8 = (-1, 2, -1)$, and $v_9 = (3, -1, -1)$. Of course v_h is not determined uniquely by v_h . But as it is not important in our following arguments, we agree to fix one such v_h .

(12) For $H = \langle n_1, \dots, n_k \rangle$, we define;

$$M(H) = \min \left\{ h_1 + h_2 + \cdots + h_{k-1} \middle| egin{array}{l} h_1, \cdots, h_{k-1} ext{ are relations in } H ext{ and} \ v_{h_1}, \cdots, v_{h_{k-1}} ext{ are linearly} \ ext{ independent in } Z^k. \end{array}
ight\}$$

For example, if $H = \langle 3, 4, 5 \rangle$, M(H) = 8 + 9 = 17.

Let R be an analytically irreducible 1-dimensional Noetherian local domain. Then the integral closure V of R in the quotient field of R is a discrete valuation ring. We assume that R and V has the same residue class field. (Which is true if $R = K[H]_{loc}$.) If we denote by v the valuation attached to V, then $H_R = v(R)$ is a numerical semigroup and we have the following propositions.

PROPOSITION 1. (1) Multiplicity of $R = m(H_R)$.

(2) Embedding dimension of $K[H]_{loc} = emb(H)$,

(3) R is Gorenstein if and only if H_R is symmetric.

(4) If H_R is a complete intersection, then R is a complete intersection.

(4') If $R = K[H]_{loc}$, then the converse of (4) holds.

PROPOSITION 2. ([1], Satz 5.10) If $H = \langle n_1, \dots, n_k \rangle$, then we have that $M(H) - \sum_{i=1}^k n_i + 1 \ge c(H)$, and the equality holds if and only if H is a complete intersection.

§ 2. Examples of 1-dimensional local domains which are complete intersections and have given embedding dimension and multiplicity.

LEMMA 1. Let $H_1 = \langle n_1, \dots, n_k \rangle$, a and b be positive integers such that;

(i) $a \in H_1$ and $a \neq n_i$ $(i = 1, \dots, k)$.

(ii) a and b are relatively prime.

Then, if we put $H = \langle a, bn_1, \dots, bn_k \rangle$ (which we will denote by $H = \langle a, bH_1 \rangle$), we have;

(1) H is a complete intersection if and only if H_1 is a complete intersection.

(2) H is symmetric if and only if H_1 is symmetric.

Proof. We consider the canonical homomorphisms $\Phi_1: K[Y_1, \dots, Y_k] \to K[H_1]$ and $\Phi: K[Y_1, \dots, Y_k, X] \to K[H]$ defined by $\Phi_1(Y_i) = T^{n_i}, \Phi(X) = T^a, \Phi(Y_i) = T^{bn_i} (i = 1, 2, \dots, k)$. We put Ker $(\Phi_1) = A_1$ and $A = (A_1, X^b - Y_1^{e_1}Y_2^{e_2} \cdots Y_k^{e_k})$ where e_1, \dots, e_k are defined by $a = \sum_{i=1}^k e_i n_i$ (we fix one

KEIICHI WATANABE

such expression). We claim Ker $(\Phi) = A$. Ker $(\Phi) \supset A$ is obvious. Conversely, if $f(X, Y_1, \dots, Y_k) \in \text{Ker}(\Phi)$, we can find $f_0(Y), \dots, f_{b-1}(Y) \in K[Y_1, \dots, Y_k]$ such that $f \equiv f_0 + Xf_1 + \dots + X^{b-1}f_{b-1} \pmod{A}$. Hence $\Phi(f_i) \in K[T^b]$. As $\Phi(X^i) = T^{ai}$ and (a, b) = 1, it follows from $\Phi(f) = 0$, that $\Phi(f_i) = 0$, i.e. $f_i \in \text{Ker}(\Phi_i) = A_1 \ (i = 1, \dots, b - 1)$.

Now, we have $K[H] = K[H_1][X]/(g)$, where $g(X, Y) = X^b - Y_1^{e_1} \cdots Y_k^{e_k}$. Thus we have; K[H] is a complete intersection (resp. Gorenstein) $\Leftrightarrow K[H_1][X]$ is a complete intersection (resp. Gorenstein) $\Leftrightarrow K[H_1]$ is a complete intersection (resp. Gorenstein). By Proposition 1 we are done.

By Lemma 1, we have semigroups which are complete intersections and have arbitrarily high embedding dimensions. When embedding dimension is ≤ 3 , the converse holds.

PROPOSITION 3. If H is a semigroup which is a complete intersection and if emb(H) = 3, then $H = \langle a, bH_1 \rangle$ where H_1 is a semigroup of $emb(H_1) = 2$ (which is necessarily a complete intersection) and a and b are integers satisfying the conditions of Lemma 1.

(This proposition is proved by Herzog [2]. But as his proof is considerably long, I give a shorter proof.)

To prove the proposition, we need a lemma.

LEMMA 2. Let $H = \langle n_1, \dots, n_k \rangle$ be a semigroup which is a complete intersection, $\Phi_H: K[X_1, \dots, X_k] \to K[H]$ be the canonical homomorphism and (f_1, \dots, f_{k-1}) the generators of Ker (Φ_H) . If we denote by J_p the ideal generated by p variables X_{i_1}, \dots, X_{i_p} , then there exists at most p-1 f_i 's which belong to J_p .

COROLLARY. For every variable X_j $(1 \leq j \leq k)$, one of the f_i 's includes a monomial of the type X_j^s .

Proof of Lemma 2. We consider the ideal $A = (J_p, f_1, \dots, f_{k-1})$. If $f_1, \dots, f_p \in J_p$ (for simplicity, we renumber f_i 's), then $A = (J_p, f_{p+1}, \dots, f_{k-1})$ and A is generated by k-1 elements and ht(A) must be $\leq k-1$. But on the other hand, dim (K[H]) = 1 and $\Phi_H(J_p) \neq 0$. So, we must have ht(A) = k. Contradiction !

The corollary is a special case of the lemma when p = k - 1.

Proof of Proposition 3. Let $H = \langle n_1, n_2, n_3 \rangle$, $\Phi_H: K[X_1, X_2, X_3] \to K[H]$, Ker $(\Phi_H) = (f_1, f_2)$. By the definition of Φ_H , each f_i is of the form

GORENSTEIN DOMAINS

(monomial)-(monomial). Then, by the corollary of Lemma 2, after renumbering X_i 's and f_i 's, we may assume, $f_1 = X_2^n - X_3^m$, $f_2 = X_1^h - X_2^e X_3^f$. As (f_1, f_2) is a prime ideal of height 2, f_1 and f_2 must be irreducible and we have $(m, n) = 1, n \cdot n_2 = m \cdot n_3, bn_1 = en_2 + fn_3$. We put $H_1 = \langle m, n \rangle, n_1 = a, n_2 = dm, n_3 = dn$. Then ab = d(em + fn). From $(n_1, n_2, n_3) = 1$, we have (a, d) = 1 and b = db'. We claim that d = b and a = em + fn. Let us assume $d \neq b, b' \neq 1$. If $a \in H_1$, take an integer s such that $sa \in H_1$ and s is not a multiple of b'. Then, writing $sa = e'm + f'n, g = X_1^{sd} - X_2^e X_3^{f'} \in \text{Ker}(\Phi_H)$. But it is easy to assure that $g \in (f_1, f_2)$. This contradicts the fact that $(f_1, f_2) = \text{Ker}(\Phi_H)$. If $a \in H_1$, a = e'm + f'n, then $X_1^d - X_2^e X_3^{f'} \in \text{Ker}(\Phi_H)$. From $\text{Ker}(\Phi_H) = (f_1, f_2)$, we get d = b.

Remark 1. Proposition 3 is not true if $emb(H) \ge 4$. For example, If we put $H = \langle 14, 21, 15, 20 \rangle$, H is a complete intersection with c(H) =68, Ker $(\Phi_H) = (X_1^3 - X_2^2, X_1X_2 - X_3X_4, X_3^4 - X_4^3)$ and clearly H can not be written in the form $H = \langle a, bH_1 \rangle$.

Remark 2. By Proposition 3, we can determine the types of H's which are complete intersections and $emb(H) \leq 3$. For example, if emb(H) = 3 and m(H) = 5 and if H is a complete intersection, (this is equivalent to say that H is symmetric, in this case) then $H = \langle 5, 2p, 3p \rangle$, $p \geq 3$, (p, 5) = 1.

LEMMA 3. Let a be an odd integer. Then the semigroup $H = \langle 2^n, 2^n + a, 2^n + 2a, \dots, 2^n + 2^i a, \dots, 2^n + 2^{n-1}a \rangle$ is a complete intersection for $n \ge 1$.

Proof. Easy by induction and applying Lemma 1.

THEOREM 1. Let m and n be given positive integers such that $m \ge 2^n$. Then there exists a 1-dimensional local domain R which is a complete intersection with embedding dimension n + 1 and multiplicity m.

Proof. We find a semigroup H which is a complete intersection and m(H) = m, emb(H) = n + 1.

(i) If *m* is odd, we put $m = 2^n + a$. Then, by Lemma 3, $H_1 = \langle 2^{n-1}, 2^{n-1} + a, \dots, 2^{n-1} + 2^{n-2}a \rangle$ is a complete intersection and $m \in H_1$. If we take an integer *b*, such that (b, m) = 1 and $2^{n-1}b \ge m$, then $H = \langle m, bH_1 \rangle$ is the desired semigroup. (ii) If *m* is even, using induction on *n*, we may assume that there exists a semigroup H_1 which is a complete intersection and $m(H_1) = m/2$, $emb(H_1) = n$. Then, if we take an odd integer $a \in H_1$ such that a > m and *a* is not a generator of $H_1, H = \langle a, 2H_1 \rangle$ is the desired semigroup by Lemma 1.

Remark. If (R, M) is a regular local ring and if (x_1, \dots, x_n) is a regular sequence of R contained in M^2 , then the multiplicity of $R/(x_1, \dots, x_n)$ is at least 2^n . So the condition $m \ge 2^n$ is necessary.

§ 3. Examples of 1-dimensional Gorenstein local domains which are not complete intersections.

LEMMA 4. Let m and n be positive integers such that $m-1 \ge n$ ≥ 4 . If there exist integers a, b, e such that

- (i) $a, b \geq 0$ and e > 0,
- (ii) if b > 0, then e is even,
- (iii) ea + (e/2)b + 2 = m (if e is odd, then b = 0),
- (iv) n = a + b + 1.

Then there exists a symmetric semigroup H with m(H) = m and emb(H) = n and H is not a complete intersection. Actually,

$$H = \langle m, m+1, \cdots, m+a, 2m-b, 2m-b+1, \cdots, 2m-1 \rangle$$
.

Proof. We have c(H) = e(m + a) + 2. It is easy to see that H is symmetric. To prove that H is not a complete intersection, we restrict ourselves to the case a > 0. (The case a = 0 can be proved similarly. But as the case a = 0 is not used later, we omit the proof.) We give two different proofs, the first one using Proposition 2 and the second one using Lemma 2,

First proof. We compute M(H). In the notation of §1, (12), we have;

$$h_{a+b-1} = 3m = (m+1) + (2m-1)$$

$$h_{a+b} = c(H) + m - b = (e/2 + 1)(2m - b)$$

 $M(H) - \sum_{i=1}^{n} n_i + 1 - c(H) = mb + m(a-2) = (n-3)m > 0$. By Proposition 2, H is not a complete intersection.

Second proof. We consider the canonical homomorphism $\Phi_H: K[X_0,$ $X_1, \dots, X_a, X_{a+1}, \dots, X_{a+b}] \to K[H]$, defined by $\varPhi_H(X_i) = T^{m+i} (0 \leq i \leq a)$, $arPsi_{\scriptscriptstyle H}(X_j) = T^{_{2m-a-b-1+j}}(a+1 \leq j \leq a+b).$ We assume that $\operatorname{Ker}(arPsi_{\scriptscriptstyle H})$ is generated by a + b elements and lead to a contradiction. By the definition of Φ_H , it is clear that $f_1 = X_0 X_2 - X_1^2$, $f_2 = X_0 X_3 - X_1 X_2, \dots, f_{a-1} =$ $X_0X_a - X_1X_{a-1}, f_a = X_0X_{a+2} - X_1X_{a+1}, \dots, f_{a+b-1} = X_1X_{a+b} - X_0^3$ are a + b- 1 members of minimal generators of Ker (Φ_H) . As Ker (Φ_H) is generated by f_1, \dots, f_{a+b-1} and one more polynomial g, and as g can include at most 2 monomials of the form X_i^s , we have $a + b + 1 \leq 4$. It remains to show that a + b + 1 = 4 does not occur. If a = 1, b = 2, then $f_1 =$ $X_0X_3 - X_1X_2$ and $f_2 = X_1X_3 - X_0^3$. So it is impossible to find f_3 satisfying the condition of the corollary of Lemma 2. If a = 2, b = 1, then $f_1 =$ $X_0X_2 - X_1^2$ and $f_2 = X_1X_3 - X_0^3$. But in this case, $f_1, f_2 \in (X_0, X_1)$ and this contradicts Lemma 2 (p = 2). If a = 3, b = 0, $f_1 = X_0X_2 - X_1^2$ and $f_2 =$ $X_0X_3 - X_1X_2$ and it is impossible to find f_3 satisfying the condition of the corollary of Lemma 2. This concludes the proof of Lemma 4.

LEMMA 5. If $m-1 \ge n \ge m/2$, there exist a, b and e satisfying the conditions of Lemma 4. Furthermore, we can take a > 0.

Proof. Put e = 2, b = 2n - m, a = m - n - 1 if $n \neq m - 1$. When n = m - 1, we put e = 1, b = 0, a = n - 1 = m - 2.

LEMMA 6. If $m \ge 5$, there exists a symmetric semigroup H, which is not a complete intersection and with m(H) = m, emb(H) = 4.

Proof. Case I $m \equiv 1 \pmod{4}$. Writing m = 4m' + 1, we put

 $H = \langle m, m + 1, m + 2, m'(m + 2) + 1 \rangle$.

Then H is symmetric with;

c(H) = 2m'm , $M(H) = h_1 + h_2 + h_3$,

where

$$h_1 = 2m + 2 = 2(m + 1) = m + (m + 2)$$

KEIICHI WATANABE

$$h_2 = (m'(m+2)+1) + m = m'(m+2) + (m+1)$$

 $h_3 = c(H) + m = (2m'+1)m = (m'(m+2)+1) + m'(m+2)$

M(H) - m - (m + 1) - (m + 2) - (m'(m + 2) + 1) + 1 - c(H) = m > 0,H is not a complete intersection.

Case II $m \equiv 2 \pmod{4}$. In the Lemma 4, put a = 1, b = 2, e = (m-2)/2.

Case III $m \equiv 3 \pmod{4}$. We put

$$H = \langle m, m+1, 2m+3, 2m+4 \rangle.$$

Then H is symmetric with;

$$c(H) = rac{m(m+1)}{2}$$
, $M(H) = h_1 + h_2 + h_3$,

where

$$egin{aligned} h_1 &= 3m+3 = 3(m+1) = m + (2m+3) \ h_2 &= 3m+4 = (m+1) + (2m+3) = m + (2m+4) \ h_3 &= c(H) + m = (2m+3) + rac{m-3}{4}(2m+4) = rac{m+3}{2}m \ . \end{aligned}$$

M(H) - m - (m + 1) - (2m + 3) - (2m + 4) + 1 - c(H) = m > 0. Hence *H* is not a complete intersection.

Case IV $m \equiv 0 \pmod{4}$. We put

$$H = \left\langle m, m+1, n_3 = \frac{(m-4)(m+1)}{2} + 1, n_4 = \frac{(m-2)(m+1)}{2} + 2 \right\rangle.$$

Then H is symmetric with;

$$c(H) = m(m\,-\,3)$$
 , $M(H) = h_1 + \,h_2 + \,h_3$,

where

$$egin{aligned} h_1 &= m + n_3 = (m + 1) rac{m-2}{2} \ h_2 &= m + n_4 = 2(m + 1) + n_3 \ h_3 &= c(H) + m = m(m-2) = n_3 + n_4 \end{aligned}$$

 $M(H) - m - (m + 1) - n_3 - n_4 + 1 - c(H) = m > 0$. Hence H is not a complete intersection.

THEOREM 2. For given positive integers m and n, such that $m - 1 \ge n \ge 4$, there exists 1-dimensional local domain R which is Gorenstein with emb(R) = n, m(R) = m and which is not a complete intersection.

Proof. It suffices to find a symmetric semigroup H with emb(H) = n and m(H) = m and which is not a complete intersection.

- (i) It is done for n = 4 by Lemma 6.
- (ii) If $n \ge m/2$, this is true by Lemma 5.

(iii) If $m/2 \ge n \ge 4$, let $H_1 = \langle n, n+1, \dots, 2n-2 \rangle$. By Lemma 4, H_1 is symmetric with $c(H_1) = 2n$ and $emb(H_1) = n-1$ which is not a complete intersection and $m \in H_1$. If we choose an integer b so that (b, m) = 1 and bn > m, then $H = \langle m, bH_1 \rangle$ is the desired example by Lemma 1.

Remark. The condition $m-1 \ge n \ge 4$ is necessary. If $n \ge m$, we can choose $x \in R$ such that m = m(R) = length (R/xR). But as length $(R/xR) \ge emb(R) = n$, the only possibility is the case when m = length (R/xR) = emb(R). But in this case the principal ideal xR can not be irreducible and R is not Gorenstein.

If n = 3, then it is known by Serre that if R is Gorenstein, then R is a complete intersection.

References

- J. Herzog and E. Kunz; Die Werthalbgruppe eines lokalen Rings der dimension 1, Sitzungsberichte der Heiderberger Akademie der Wissenschaften (1971), Springer-Verlag.
- [2] J. Herzog; Generators and relations of abelian semigroups and semigrouprings. Manuscripta math. 3, 175-193 (1970).
- [3] E. Kunz; The value-semigroup of a one-dimensional Gorenstein ring. Proc. A.M.S. 25, (1970) 748-751.

Tokyo Metropolitan University