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ON THE HOMOLOGY OF THE GENERAL LINEAR
GROUPS OVER Z/4

VICTOR SNAITH

1. Introduction. Let p be a prime. The algebraic K-theory of Z/p? is
unknown. However it is easy to show that K,(Z/p?) is finite if 7 > 0 and that
it differs only in its p-torsion from K ;(Z/p) which was computed in [2]. To pro-
ceed further one surely needs the mod p (co-)homology of GLZ/p?. There is
an exact sequence

(1.1) 1> MZ/p 2 GL.Z/p* S GL,Z/p — 1.

In (1.1) j, is reduction mod p,M,Z/p is the additive group of # X n matrices
with entries in Z/p and if ¢ is the canonical inclusion of Z/p into Z/p? then
1,(4) = I + ¢(4). Since BGLZ/p is a p-local homology point [2] one might
expect the following to be true:

1.2. CONJECTURE. Let k,:GL,Z/p* — GLZ/p? be the canonical inclusion and
let 1, be as in (1.1). Then

im (k, 0 4,)s = im (k) C Hx (BGLZ/p*; Z/p)

where (— )y denotes the induced map in mod p homology.
In this note I will prove the following general results, which are applied
below to verify Conjecture 1.2 when p = 2 and n = 1 or 2.

THEOREM A. The image of Hy(1,Z/4) — Hy(GL,Z/4) lies in the image of
H,(M_Z/2) = Hy(GL_Z/4) foranyn = 1.

THEOREM B. The homomorphism Hy(U,Z/4) — Hy(GLZ/4) is zero for any
n=1.

In Theorems A and B—and throughout the rest of this paper—H 4 (G) means
the mod 2 singular homology of the classifying space of G. A similar convention
for H*(G) is used. Also for any ring 4, D, A4, U,A, T,4 and R,A4 are the follow-
ing subgroups of the general linear group, GL,4. D, A is the diagonal subgroup.
T,A is the upper triangular subgroup and

U A = {(ai;) € Twdlaw = Lfor 1 <k < n}.

RA = {(ay) € TWA|lagy = 1for2 Sk = m,a;,;, =0if 2 <17 < j = n}is the
first-row subgroup of T,4.

1.3. ProrositioN. Conjecture 1.2 is true when p = 2andn = 1 or 2.
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Proof. When n = 1 GL,Z/p* = M,Z/p X Z/(p — 1) and there is nothing
to prove.
When n = 2 a Sylow 2-subgroup, H, of GL:Z/4 consists of matrices of the

form
1 4+ 2a b
2c 14 2d

with a, b, ¢ and d being arbitrary elements of Z/4. It is easy to show that H is
a semi-direct product of the form (Z/2)* X Z/2 where Z/2 — Aut ((Z/2)*),
given by conjugation, sends the generator to the involution 7(«1, s, as, as) =
(a3, @y, a1, az). The (Z/2)*in H is just M,Z /2. 1t is well-known that the mod 2
cohomology of H is detected by the two subgroups M.Z/2 and G X Z/2 where
G C M.Z/2 is the subgroup of matrices fixed under the Z/2-action. However,
in this case, G X Z/2 C 12Z/4. Hence we have an injection

H*(GLyZ/4) — H*(M.Z/2) ®@ H*(1,2/4)

and by Theorem A we can detect im (ks)* C H*(GL:Z/4) faithfully in
H*(M.Z/2) @ H*(DyZ/4). But DoZ /4 C MoZ/2 so

y %k
im (B2)* 25 im (ks 0 42)* C H*(M,Z/2)

is an injection. The proof is completed by a simple computation using the
duality between H* and Hy.

Theorem A is proved in § 3.5 and Theorem B in § 3.6. The ideas in the proof
are due to Quillen (c.f. [1, § 4] and [2, § 11]). In § 2 are gathered together the
exact sequences and the rings which will be needed later. The analogous results
are also true when Z/4 is replaced by Z/p? for any prime p.

2. If a € D, A4 has entry ¢, in the (z, 7)-th place then a(a;)a™ = (t¢, " ayy)
for any (¢y;) € GL,A. Hence R, 4 < 1,4, U,A < T,4 and every element in
A* = {(aqy) € D, Vl]a;; = 1,7 2 2} commutes with every element of 7', 14 =
{(as;) € T,V]ar; = 0 for 2 £ j £ n}. Note that

n—1

RANUA=D 4

1

where the right hand group has the natural additive structure.
We have exact sequences

21) 1->RA—-1T,4—>T1T,14A—1

and
n—1
22) 1— (@ A) — R4 - A4* > 1

1

where 4* is the group of units.
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Consider now the Galois fields GF(2?). Choose an increasing sequence of odd
integers 1 = d; < d; < d3 < - - - such that 2% — 1 is prime. This is possible
by a result of Dirichlet. Set k; = GF(2%) so that k; = Z/2 and

1 =X Z/2[X]/p(X)

for some p;(X) € Z/2[X].
Set

_ 2/41x]
q:(X)
where ¢; reduces mod 2 to ;. The additive group of 4, is just @ Z/4 while

A * is isomorphic to (@{ Z/2)k*. Reduction mod 2 gives an epimorphism
’ﬂ'i:A s ki-

Ay

3. First we need a well-known result from Galois theory. Let £ be the
algebraic closure of the field k.

3.1. LEMMA. There is a ring isomorphism

d;
k1 1
given by ¢(x @ ) = (y, x%y, xty, . .., x2'y).

3.2. PROPOSITION. In dimensions j < d; the natural inclusion induces 1so-
morphisms

HI(R,A;) =2 H(A*) and H;(R,A,) =X H;(A4%)
for all n,1 = 1.

Proof. From (2.2) we obtain a spectral sequence

n—1

Ezp.q = HP(A l*,Hq(@ A‘L)) ® k—1:>Hp+q(R«nA i) ® k-i'
1 k1 k1

Now H*(A,) = A(4/) ® S(4/), from the discussion in § 2, where 4/ =
Homy, (44, k1) = k. The generators of the exterior algebra A(4;) have
dimension one while those of the symmetric algebra S(4 /) have dimension
two. Hence

(3.3) H*(nG'?Ai) ® k=~ A(nélk/‘) ® S(é}lki”) <k8> E A(V) @ S(V)

k1 1

where, by Lemma 3.1,

=8 (65)
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The action of
dq
AF = (@ Z/2> X k¥
1

(see § 2) factors through projection onto k;*. k;* acts on each factor (@ kf)
by the dual of multiplication, since this is what conjugation does on the first
row (see § 2). By Lemma 3.1 this action transforms to an action on each factor
@1 k; of V given by

— — —9d;—1
)\(xl, e ,x,“) = (ﬂCl, N 29@, Nixs, oo, A 2% xdi)
()\, X1, X2 ... E k] =~ kl#).
Hence we have a Kunneth isomorphism.

n—1 di n—1
H*(Aﬁ;H*(@l A)) X Ei_ﬁ_H*(Gl') 2/2) ®H*(ki*;H*( 1 Ai))
k1 k1
ky
k1
The first factor is H*(4*), since |k*| is odd, and the second factor is
Homy 4 (k1, A(V) @ S(V)).

We conclude the proof with an argument from [1, § 4].

There are no non-trivial & *-invariants in A(V) ® S(V) in dimensions <d;.
For the eigenvalues of multiplication by a generator A € k;* in dimension »
will be of the form (A!)* where s = ¢y + 2¢; + 4es + ... + 2%l ,_, satis-
fyingn =14 2m and >, e, =l 4+ m, e; 2 0. For an invariant subspace we
must have s = 0(2% — 1). Consider the set of positive integers e/, e2’, ...,
¢'q;—1such that >, e,/ 2" = 0(2% — 1) and 3 e,/ is minimal. Then ¢,/ = 1 for
all ¢, since if e,/ = 2 replace (¢/, e¢,41") by (e/ — 2,e414" + 1),50 >, e,/2"is the
dyadic expansion of 2% — landd; = > ,e,/ £ > e, =14+ m =1+ 2m = n.

Hence in each total dimension <d, Ey** is isomorphic to H*(4 *) ®, k
in that dimension. From the spectral sequence when » < d;,

dimg H™(4*) = dim,, H"(R,4 ;).

But the inclusion 4 * — R,4 ; is split, so by dimension-counting this inclusion
induces an isomorphism in cohomology (and hence in homology).

3.4. PROPOSITION. In dimensions j < d; the natural inclusion indices iso-
morphisms

H'(D,A4,) = H (T, A;) and H;(D,A;) = H;(T,4,)
forallm,i = 1.

Proof. We use induction on n. The case n = 1 is obvious. From (2.1) we have
a spectral sequence

EP ¢ = HY (T, 4; H(R,A,)) = H? M (T,A4,).
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In dimensions p + ¢ < d; E.*? is isomorphic, by Proposition 3.2, to
H(T,1d s HY(A X)) =2 HY(A¥) @ HY (Th144).
This last isomorphism follows from the conjugation action of 7,_;4; being

trivial on 4 * (see § 2). From the multiplicative properties of the spectral
sequence it is easy to see that in total degree <d;,

dimg, H*(T,4 ;) = dimy, (H*(4*) @ H*(1;-144))
= dimy, (H*(4*) ® H*(D,—14))
= dimy, (H*(D,A4,).
Since D, 4, — T,A4, is split, the result follows by dimension counting.
The following proof is based on an argument of [2, § 11].

3.5. Proof of Theorem A. Suppose we have proved the result in dimensions
<m. Hy (GL,A;) and Hy(D_A ;) are Hopf algebra with diagonal ¢, induced
by juxtaposition of matrices.

Suppose x € H,(T,Z/4) maps to y € He(GL,Z/4) with y # 0 (mod
Hy(M_Z/2)). Then, by induction,

YO) =y®1+1®@y (mod Hy(M,Z/2)®?).
Consider the diagram (m < d;)

H,(T.Z/4) — H,(GLZ/4)

1o la
18" 18 18

H,(M.;2/2) — H,,(GL,1;Z2/4) = H,,(GL..Z/4)

in which «, o’ are induced by (— @4 4;) while 8, 8/, 8" are induced by the
forgetful map. Then

Bla)) =dy =y (mod H,(M,Z/2))

because v is primitive mod Hy (M, Z/2). However B(a(y)) is the image of
B’ (e’ (x)) which lies in the image of Hy (M,4.2Z/2).

3.6. Proof of Theorem B. The proof is entirely analogous to that of Theorem
A. Throughout we replace R,4; by its subgroup of matrices (¢;;) with ay; €
k* C A* D,A; = @1 A* by its subgroups C,4; = @7 k*. The proof then
shows thatim (Hy (U,Z/4) — He (GL_Z/4)) is contained in im (H4 (C,Z/4) —
H.(GL_Z/4)). However Hy(C,Z/4) = 0.
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