
Cite this article: Ziegler, K., Volpert, M., Amm, M., Vogel-Heuser, B., Stahl, K., Zimmermann, M. (2023) ‘MBSE 
Incorporating Time-Dependent Behavior for the Design of Robot-Like Systems’, in Proceedings of the International 
Conference on Engineering Design (ICED23), Bordeaux, France, 24-28 July 2023. DOI:10.1017/pds.2023.259

ICED23 2585

 
 
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED23 
24-28 JULY 2023, BORDEAUX, FRANCE 

ICED  

 

 

MBSE INCORPORATING TIME-DEPENDENT BEHAVIOR FOR 
THE DESIGN OF ROBOT-LIKE SYSTEMS 
 
Ziegler, Klara; 
Volpert, Marcus; 
Amm, Maximilian; 
Vogel-Heuser, Birgit; 
Stahl, Karsten; 
Zimmermann, Markus 
 
Technical University of Munich 
 

ABSTRACT 
Complex systems typically consist of many components and are subject to many requirements. 
Approaches like the V-Model support complex systems design by providing guidelines on how to break 
down large systems into smaller pieces. Models built with SysML provide documentation on an abstract 
level. However, neither incoporates detailed information on components that may be relevant for design 
decisions. In robot-like systems, e.g., the choice of transmissions will depend on the system dynamics 
of the robot. This is modeled in the time domain, where detailed time-dependent component interaction 
is considered. The design perspective, however, is best represented in the property domain. Here, 
requirements on static component properties are formulated. 
 
This paper presents a generic approach that connects the property and time domains to enable early-
stage design decisions. The approach is applied to a 1-link robot system with a simple demonstrator 
transmission model, including properties that are typically not considered in the early design phase, like 
a nonlinear stiffness characteristic with backlash. 
 
 
 
Keywords: Systems Engineering (SE), Product modelling / models, Simulation, Mechatronics, multi-
disciplinary design 
 
Contact: 
Ziegler, Klara 
Technical University of Munich, TUM School of Engineering and Design 
Germany 
klara.ziegler@tum.de 

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


2586  ICED23 

1 INTRODUCTION 

Complex systems such as robot-like systems must fulfill many requirements and are made of multiple 

components from different domains, e.g., transmissions from the mechanical domain, motors from the 

mechatronic domain, and controllers from the control domain. Components must be designed and 

selected to fulfill all requirements on the system level. One important requirement for robot-like 

systems is that the position accuracy does not exceed a threshold value at the end-effector position. It 

is affected by the performance measures of the components, e.g., transmission properties like 

backlash.  

The V-model from VDI 2206 (VDI, 2021) is used to systematically develop complex systems. (VDI, 

2021) It breaks down requirements from the system level to each component and can deal with 

different disciplines. Through verification of the system performance with the requirements, iterations 

are part of the process. Zimmermann and Hoessle (2013) concretized the V-model and avoid iterations 

during the design process. According to the system requirements, intervals for the design variables, so-

called solution spaces, can be found. Rötzer et al. (2020) present a method to build a system model out 

of modular mathematical models. The modularized models include the properties of the system but not 

the time-dependent behavior.  

Model-based systems engineering (MBSE) supports the design process by using models instead of 

documents (International Council on Systems Engineering, 2007). The semi-formal language SysML 

supports the interdisciplinary design of complex systems with a particular focus on cooperation in the 

design process.  

The method presented in this paper shows how to structure component behavior models from different 

domains so they can be easily integrated into a system model for quantitative simulation in the time 

domain. At the same time, it enables model-based systems engineering on a more abstract level in the 

property domain, with a focus on the relationship between component and system properties. The 

system performance can be quantified, and components can be selected or designed according to 

requirements derived from the system level. The approach provides the possibility to include detailed 

descriptions of components and multidimensional characteristics. The approach is implemented for a 

robot-like system with a particular focus on the selected detail properties of a transmission. 

2 RELATED WORK 

2.1 MBSE 

Model-based systems engineering (MBSE) is used as a formalized application of models to support 

the design phase of a system and throughout the development process. Engineers can apply MBSE 

through the graphical modeling language SysML introduced by the Object Management Group 

(OMG) in 2007. SysML is used to model the behavior, structure, and, signal or energy flow of 

complex systems. SysML is defined by a metamodel and it is a semi-formal language with a partially 

defined syntax (The Object Management Group). 

Zerwas et al. (2022) propose a unified structure for system elements and a model signature to integrate 

existing domain models into system models automatically. They claim that following the structure, 

they can be connected when, e.g., the dimensions, data types, and units match. However, it has not yet 

been demonstrated how this translates into a simulation process in the time domain reproducing 

physical behavior or a structured design process that leads from top-level requirements to a solution.  

Kernschmidt et al. (2018) propose SysML4Mechatronics for interdisciplinary design. It is restricted, 

however, to structural aspects. This SysML extension includes software, electrical, and mechanical 

views of the different interfaces and allows applying inconsistency checks with attributes for domain-

specific ports of components.  

Wolny et al. (2020) identified ten papers that extract SysML models for Simulink simulation; two 

papers should be highlighted. First, Rösch et al. (2012) propose a software-based support for engineers 

transforming SysML models to Simulink code. This specific approach, however, simplifies the 

development of closed-loop control software for programmable logic controllers and cannot be 

regarded as an approach for simulating the time-dependent behavior of a system in general. Second, 

Barbieri et al. (2014) proposed using SysML as a joined and more generalized model and integration 

platform that is used to couple to the discipline-specific simulation models and tools. 

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


ICED23 2587 

Simulink is a numerical simulation tool for hardware-in-the-loop testing, physical models, and rapid 

prototyping (The MathWorks, Inc.). It can be used to simulate the specific time-related behavior of a 

system. Mathematical models for the individual components and their interaction must be available. 

Simulink has a graphical representation of models and a defined syntax and can be used to investigate 

the time behavior via a system simulation. However, Simulink does not offer a more abstract 

description in the property domain with an appropriate model that can be used for design decisions in 

the early stage. 

The different modeling and simulation approaches are not sufficient to describe the time behavior of 

systems holistically and on different abstraction levels to support design decisions. Models based on 

SysML allow a high abstraction level and basic time-related modeling methods, which can for 

specific components like controllers be transferred to Simulink to simulate the time behavior of 

systems. However, this is so far only possible for programmable logic controllers belonging to the 

automation domain and not yet applicable in other domains and is therefore not generalizable. On 

the other hand, Simulink does offer the possibility to simulate in the time domain but does not offer 

the possibility to systematically design systems. The resulting research gap consists of a method that 

can model and compute the time behavior of systems at different levels of abstraction and support 

design decisions. 

2.2 Transmissions in robot-like systems 

Transmissions are used to convert torque and rotational speed. By using transmissions in robot-like 

systems, the size of the motor and power train can be reduced. Transmissions in robot-like systems are 

characterized by a high transmission ratio, a compact size, and a coaxial input and output shaft. 

Typical types used are strain wave gears, cycloidal gears, and planetary gears. So far, there are no 

adequate calculation models for these transmissions that would be needed to compare the different 

types and select a transmission systematically. (Vogel-Heuser et al., 2020) 

Rosenbauer (1995) provides some characteristics that are measured experimentally. He points out 

seven relevant assessment criteria that influence the accuracy of the robot. The most important 

criterion is the static load deformation. It depends on the backlash, torsional stiffness, and the 

hysteresis effect. Rosenbauer also measures the static load deformation after some load cycles. The 

results show a change in the static load-deformation curve, especially a higher compliance after some 

load cycles.  

2.3 Solution space engineering 

Solution space engineering supports the design of complex systems by carefully bookkeeping of 

system and component properties on various levels of abstraction to enable design. The abstraction 

levels depend on the relevant scope. Important abstraction levels can be: system, subsystem, 

component, which can be extended to several levels. Three steps are followed, which are shown in 

Figure 1. In the first step, framing, the qualitative dependency between quantities of interest (QOI), 

which are related to the customer requirements, and the design variables (DV), which can be 

influenced by an engineer, are determined. In the second step, denoted as evaluation, quantitative 

models to map DVs onto QoIs on multiple hierarchical levels are created. These quantitative models 

take time-dependent behavior into account and can be, e.g., provided by Simulink simulation. It is 

important, however, that an interface in the property domain is available for the following step.  So 

far, there is no structured approach to take time-dependent behavior systematically into account when 

using solution space engineering or to connect several simulation models in the time domain and 

enable them to be designed with solution space engineering. In the third step, design, requirements on 

the system level are broken down into requirements on properties of components or subsystems, 

expressed as permissible intervals for their design variables. This enables design work or supports 

component selection on various abstraction levels. (Zimmermann et al., 2017) 

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


2588  ICED23 

 

Figure 1. The three steps of solution space engineering, adopted from (Zimmermann et al., 
2017) 

3 METHOD 

The approach follows the first two steps of solution space engineering. In the first step, the framing (1) 

of the system is done by determining the relevant quantities of interest, which are determined by 

selecting relevant customer requirements. The dependencies between the quantities of interest (QOI), 

which are related to the system requirements, and the design variables (DV) that can be adjusted by an 

engineer are visualized in a so-called attribute dependency graph (ADG), seen in Figure 2 (a); see also 

Rötzer et al. (2022). The ADG includes only the properties of the system and no time-dependent 

behavior. The ADG does not permit feedback loops to avoid iterations in the product development 

process. A model in the time domain is needed to compute detailed system behavior. In modeling step 

(2), the system model is implemented. In this example, Simulink is used because of its good 

modularity and the ability to simulate in the time domain. The components and the level of detail have 

to be defined to set up a system model. The interfaces between the components have to be defined. 

The system model, represented by a block diagram, is able to simulate time-dependent problems but 

does not visualize the properties of the single component. The connection of the time and property 

domains is an enabler in determining component properties to fulfill requirements on the system level 

in systems with time-dependent behavior. A component behavior model is needed to connect the 

property domain and the time domain. It connects time-dependent input with time-dependent output. 

In contrast, a component property model maps properties onto higher level properties, e.g., design 

variables onto quantities of interest. Every component is modeled independently. That means that the 

definition of a single component does not affect the definition of other components. The last step is the 

design and so-called top-down mapping (3). It is not included in this paper and will be presented in 

future work. 

 

Figure 2. Elements to connect the time and property domains (1) ADG (property domain), 
(2) Component behavior model (connecting time and property domains), (3) System model 

(time domain) 

3.1.1 Structure of the system model 

A system model, shown in Figure 2 (c) as a block diagram, consists of one model, visualized by a box, 

for each component. The arrows show the flow of information between the components. The signals 

                

                      

                      

                

                

                

            

               

                          

                        

         

       

                                     

                    

                 

     

                

 

      

                

 

           

           

               

                    

          

         

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


ICED23 2589 

passed from one component to the other define their interfaces. The properties can be from the 

mechanical, electrical, or software domain. The system model is used in a time-dependent simulation. 

3.1.2 Structure of the component behavior models 

Each component behavior model has the same structure as in Figure 2 (b). A component behavior 

model has a defined interface (input and output) to be integrable into the system model. It is 

characterized by relevant performance measures, which are the properties of the component. They 

determine the behavior of the component by mapping from input onto output, e.g., by a formula, a 

differential equation, or an entire black-box simulation. This part is introduced as description. The 

orange part of the model represents its action in the time domain. It is part of the system model. The 

component performance measures serve as design variables (DVs) in systems design. They are shown 

in the blue box. The component behavior models can be used for different instantiations of a 

component of one type. For this, the values of the performance measures need to be adjusted.  

4 IMPLEMENTATION EXAMPLE 

To implement the approach, the software MATLAB/Simulink was used. The approach is tested in the 

field of robot-like systems. To study the influence of a component behavior model on the system 

performance and to design the component, two simplifications are made: (1) a simple model of a 1-

link robot is chosen, and (2) every component is modeled as ideal except the transmission model.  

The 1-link robot in Figure 3 consists of a rotational joint that moves in the horizontal direction, like in 

a SCARA robot. The power train consists of the transmission, motor, sensor, and controller. 

 

Figure 3. Elements, performance measures, and trajectory of a 1-link robot 

The three steps introduced in the previous chapter are applied to design a 1-link system that fulfills the 

requirements. 

4.1 Framing 

Typically, SCARA robots have to fulfill many requirements (ABB, 2021). In this paper, the focus is 

on three requirements. The aim of the paper is not completeness but to demonstrate the concept for a 

selected example of requirements shown in Table 1. 

Table 1. Requirement list for the example problem 

   Value  

No. Description Variable Min. Exact Max. Unit 

1 Cycle time 𝑡𝑐   2 s 

2 Position accuracy 𝐴𝑃𝑃 -0.1  0.1 mm 

3 Coordinates start 

and end position 

  (0/-0.5/0) 

(0/0.5/0) 

 m 

From the requirements, the quantities of interest on the top level of the ADG in Figure 4 are derived. 

They are influenced by the performance measures on the component level, like transmission ratio 𝑖, 
backlash ∆𝜑𝐵, efficiency η(TM, �̇�𝑀) and load-dependent angle 𝜑𝐿(𝑇𝑇). At the bottom level of the 

 
 
 
 

 
 
 
 

      
     
            
            

  

 

 

 

  

  

  

  

  

  

  

    

    

    

  

  

  
  

  

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


2590  ICED23 

ADG, design variables for detailed design can be added, like the number of teeth 𝑧1 and 𝑧2. The 

quantities of interest are also influenced by the properties of the other components besides the 

transmission. 

 

Figure 4. ADG of a 1-link robot 

The trajectory is defined according to Figure 3. The link length 𝑙2 is 0.5 m. The robot starts from the 

homing position (P0), moves three times between the end positions P1 and P2, and stops in the 

homing position. As the actual behavior of the robot depends on the previous state, multiple cycles are 

observed. The cycle time 𝑡𝑐 is defined as the time for a given trajectory that the robot has to follow 

multiple times. In this example, a cycle is defined as a movement from P1 to P2 to P1. At each point, a 

waiting time is implemented, in which the robot usually fulfills its task.  

4.2 Modeling 

Once the framing is completed, the modeling is applied to the 1-link system. First, the system model is 

set up. Then the components are modeled with reference to the ADG and integrated into the system 

model. 

4.2.1 System model 

The system model of the 1-link system is shown in Figure 5. It includes the path planning that 

calculates the desired position 𝑞𝑟𝑒𝑓(𝑡) depending on the time. The controller has as input 𝑞𝑟𝑒𝑓(𝑡) and 

𝑞𝑠(𝑡), which is the position measured by the sensor. It outputs the demanded torque 𝑢(𝑡) to the motor. 

The motor outputs the realized torque 𝑇𝑀(𝑡) and the current angle 𝜑𝑀(𝑡). These quantities are the 

input for the transmission. The output of the transmission are the torque 𝑇𝑇(𝑡) and the current position 

𝜑𝑇(𝑡). The dynamic block calculates the acceleration of the joint, which after integration, gives the 

current joint position 𝑞𝑗(𝑡). The direction of information flow indicates the source of the produced 

values. E.g. the sensor produces a signal as output based on an observed state as input. 

 

Figure 5. System model of a 1-link robot 

As all the component behavior models are shown as black boxes in the system model, the setup of a 

component behavior model is presented in the next section, with the example of the transmission 

model. 

     

 
  (  ,
     )

     

       (  )

                                  

             

      

                                  

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


ICED23 2591 

4.2.2 Transmission model 

The transmission model presented in Figure 6 is not ideal. The properties of the model are specified as 

performance measures in the blue box. In the model definition, they are defined as parameters. A data 

model is needed, and specific values are inserted to use the model for computation. Most important for 

the general behavior of the transmission is the transmission ratio 𝑖. Also included is the efficiency 

η(TM, φ̇M). The performance measures that affect the accuracy the most, like backlash ∆𝜑𝐵 and load-

dependent angle φL(TT), are included in the property domain of the model. Effects that lead to 

hysteresis are also relevant but not generally describable for all possible cases. 

As the main functionalities of transmissions are to convert speed and torque, the input of the model is 

the torque of the motor 𝑇𝑀(𝑡) and the angle after the motor 𝜑𝑀(𝑡). The output of the model is the 

transmission torque 𝑇𝑇(𝑡) and the angle after the transmission 𝜑𝑇(𝑡). The nominal value for the 

output 𝑇𝑇(𝑡) is calculated with the transmission ratio 𝑖 by 

𝑇𝑇(𝑡) = 𝑇𝑀(𝑡) ∗ 𝑖 ∗ 𝜂(𝑇𝑀(𝑡), �̇�𝑀(𝑡)). (1) 

As the efficiency affects the output torque, it is included in the model as a constant value of 

η(TM, φ̇M) = 0.8 derived from Pham and Ahn (2018).  

The output angle of the model is affected by the backlash ∆φB and the load-dependent angle φL(TT). 
In the component behavior model, half of the backlash is added for a positive torque 𝑇𝑇(𝑡) and 

subtracted for negative torque. The output angle is calculated by subtracting the backlash and load-

dependent angle from the ideal angle. 

𝜑𝑇(𝑡) =
𝜑𝑀(𝑡)

𝑖
− {

𝜑𝐿(𝑇𝑇(𝑡)) + ∆𝜑𝐵, 𝑇𝑇(𝑡) ≥ 0

𝜑𝐿(𝑇𝑇(𝑡)) − ∆𝜑𝐵, 𝑇𝑇(𝑡) < 0
 (2) 

 

Figure 6. Transmission model with backlash and stiffness  

The behavior of the model can be seen in Figure 7. 

 

Figure 7. Stiffness of transmission model  

                                       

                      

              (  ,  )

              
                          

                       

  ( )

  ( )

                        

  ( )

  ( )

            

           

               

                  

 

   

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


2592  ICED23 

4.2.3 Other component behavior models 

As the approach is explained with a focus on the detailed model of a transmission, the other 

component behavior models are kept as simple as possible. The motor and the sensor are defined as 

ideal, which leads to the following relations: 

𝑇𝑀(𝑡) = 𝑢(𝑡) (3) 

𝑞𝑠(𝑡) = 𝜑𝑀(𝑡) (4) 

The path planning calculates the trajectory with the given points. A time waiting time of 0.5 s is 

defined between each point. This ensures a cycle time of 2 s to fulfill the requirements. The velocity is 

defined as a trapezoidal velocity profile. 

The controller is set up as PD Controller, as proposed in Mareczek (2020). In order to adjust the 

controller, an ideal transmission is chosen, and the difference between 𝑞𝑟𝑒𝑓(𝑡) and 𝑞𝑠(𝑡) minimized in 

the waiting position. 

The dynamic block is already defined in Simulink and computes the joint acceleration according to the 

equation of motion  

𝑀(𝑞𝑗)�̈�𝑗 = −𝐶(𝑞𝑗, �̇�𝑗) − 𝐺(𝑞𝑗) − 𝐽(𝑞𝑗)
𝑇
𝐹𝐸𝑥𝑡 + 𝜏 (5) 

with the mass matrix 𝑀(𝑞𝑗), the Coriolis term 𝐶(𝑞𝑗, �̇�𝑗), the gravity torques and forces 𝐺(𝑞𝑗), the 

geometric Jacobian matrix 𝐽(𝑞𝑗), the external forces 𝐹𝐸𝑥𝑡, and the joint torques and forces 𝜏 (The 

MathWorks, Inc.). After setting up the parametrized component behavior model and including it in the 

system model, either the performance for one set of DVs can be evaluated, or solution spaces can be 

calculated. 

4.3 Experimental setup 

The setup in Table 2 is chosen for simulation to evaluate the influence of the transmission 

performance measures on the QOIs. The setup for ℎ0 represents an ideal transmission, and for 𝑡1 and 

𝑡2, two transmissions with different values for backlash and load-dependent deformation. φL(TT) in 

the transmission model is approximated with three support points.  

Table 2. Simulation setup 

Simulation 

label 
ℎ0 𝑡1 𝑡2 

∆𝜑𝐵 0   𝑎𝑟𝑐𝑚𝑖𝑛 0.5 𝑎𝑟𝑐𝑚𝑖𝑛 

φL(TT) 0 
𝑃1(75 𝑁𝑚, 3 𝑎𝑟𝑐𝑚𝑖𝑛) 

𝑃2( 50 𝑁𝑚, 5 𝑎𝑟𝑐𝑚𝑖𝑛) 

𝑃𝑁( 50 𝑁𝑚, 7 𝑎𝑟𝑐𝑚𝑖𝑛) 

𝑃1(75 𝑁𝑚,   𝑎𝑟𝑐𝑚𝑖𝑛) 

𝑃2( 50 𝑁𝑚, 4 𝑎𝑟𝑐𝑚𝑖𝑛) 

𝑃𝑁( 50 𝑁𝑚, 6 𝑎𝑟𝑐𝑚𝑖𝑛) 

According to DIN EN ISO 9283, the position accuracy is defined as the difference between the 

demanded and the actual position: 

𝐴𝑃𝑃 = √(�̅� − 𝑥𝑐)
2 + (�̅� − 𝑦𝑐)

2 + (𝑧̅ − 𝑧𝑐)
2  (6) 

When the robot reaches the end position, the maximum error is measured to determine the position 

accuracy.  

5 RESULTS 

The demanded position and the resulting positions are presented in Figure 8. The position of the ideal 

transmission follows the demanded position the best with a maximum accuracy of  3.4 ∗  0−5 𝑚. 

When the SCARA reaches the end position, the torque starts to oscillate to control the position. With 

every change from the sign of the torque, the position with backlash oscillates around the demanded 

position.  

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


ICED23 2593 

 

Figure 8. Demanded position (𝑞𝑑), position with ideal transmission (𝑞ℎ0), position with 

backlash and load-dependent effect for two different transmissions (𝑞𝑡1, 𝑞𝑡2)  

Table 3. Position accuracy at the end position 

Simulation label ℎ0 𝑡1 𝑡2 

𝐴𝑃𝑃,𝑚𝑎𝑥 3.4 ∗  0−5 𝑚   .03 ∗  0−4 𝑚 8.39 ∗  0−5 𝑚 

In order to design a 1-link system, the requirements must be fulfilled. As the cycle time and the end 

positions are predetermined, it must be ensured that the requirement on the accuracy is fulfilled. In this 

case, the requirement on position accuracy is not fulfilled for transmission 𝑡1. In order to meet the 

requirement with the transmission model, the values of the performance measures, like stiffness and 

backlash, have to be adjusted, or a different transmission has to be chosen. Transmission 𝑡2 fulfills the 

requirement on the posistion accuracy due to its higher stiffness and lower backlash. The system 

design is sufficient when an appropriate component like transmission 𝑡2 is chosen. 

6 DISCUSSION AND CONCLUSION 

In this paper, an approach is presented that connects the time domain and property domain using a 

standardized component behavior model. The component behavior model includes properties that are 

documented in a so-called attribute dependency graph (ADG) to enable systematic requirement 

development from the system to the component level. These properties are also included in a 

component behavior model and determine how input is mapped onto output in the time domain, thus 

enabling the simulation of system behavior. This way, it is possible to adopt a more abstract view, e.g., 

to design product architectures in the early stage of the product development process, as well as to 

evaluate and design detailed components. A component behavior model of a transmission, including 

the properties backlash and load-dependent deformation, was presented and integrated into the system 

model of a 1-link robot. The position accuracy was assessed. It was shown how the component 

properties influence the position accuracy and that different components can lead to an inadequate or 

adequate system design. This simple, standardized component behavior model can be easily extended 

to other components and be used to integrate different disciplines. 

                     

        

    

      

     

      

 
 
 
  
  
 
  
  
 
 

 
 

 
  

 
  

 
  

                     

        

   

 

  

 
 
  
 
 
  
 
 
  

    

 
    

 
    

         

        

  

 

 

 
 
 
  
  
 
  
  
 
 

 
 

 
  

 
  

 
  

         

        

   

 

  

 
 
  
 
 
  
 
 
  

    

 
    

 
    

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259


2594  ICED23 

In further work, the approach will be used to design systems with many components from different 

disciplines and conflicting requirements by computing solution spaces.  

ACKNOWLEDGMENTS 

The authors thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for 

funding this work under project number 461993234. 

REFERENCES 

ABB (2021), IRB 910SC. 

Barbieri, G., Kernschmidt, K., Fantuzzi, C. and Vogel-Heuser, B. (2014), “A SysML based design pattern for the 

high-level development of mechatronic systems to enhance re-usability,” IFAC Proceedings Volumes, 

Vol. 47 No. 3, pp. 3431–3437. http://doi.org/10.3182/20140824-6-ZA-1003.00615 

International Council on Systems Engineering (INCOSE) (2007), “SYSTEMS ENGINEERING VISION 2020”. 

Technical paper no. INCOSETP-2004-004-02, 2007. 

Kernschmidt, K., Feldmann, S. and Vogel-Heuser, B. (2018), “A model-based framework for increasing the 

interdisciplinary design of mechatronic production systems”, Journal of Engineering Design, Vol. 29 

No. 11, pp. 617–643. http://doi.org/10.1080/09544828.2018.1520205 

Mareczek, J. (2020), Grundlagen der Roboter-Manipulatoren – Band 1, Springer Berlin Heidelberg, Berlin, 

Heidelberg. 

Pham, A.-D. and Ahn, H.-J. (2018), “High Precision Reducers for Industrial Robots Driving 4th Industrial 

Revolution: State of Arts, Analysis, Design, Performance Evaluation and Perspective”, International 

Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 5 No. 4, pp. 519–533. 

http://doi.org/10.1007/s40684-018-0058-x 

Rösch, S., Schutz, D., Bayrak, G. and Vogel-Heuser, B. (2012), “Supporting integrated development of closed-

loop PLC control software for production systems”, IECON 2012 - 38th Annual Conference on IEEE 

Industrial Electronics Society, 25.10.2012 - 28.10.2012, Montreal, QC, Canada, IEEE, pp. 6185–6190. 

http://doi.org/10.1109/IECON.2012.6389069 

Rosenbauer, T. (1995), Getriebe für Industrieroboter: Beurteilungskriterien, Kenndaten, Einsatzhinweise, Zugl.: 

Aachen, Univ., Diss., 1994, Berichte aus der Produktionstechnik, Vol. 94,32, Als Ms. gedr, Shaker, Aachen. 

Rötzer, S., Rostan, N., Steger, H.C., Vogel-Heuser, B. and Zimmermann, M. (2020), “Sequencing of Information 

in Modular Model-based Systems Design”, in DS 103: Proceedings of the 22nd International DSM 

Conference (DSM 2020), MIT, Cambridge, Massachusetts, October 13th - 15th, 2020, The Design Society, 

p. 10. http://doi.org/10.35199/dsm2020.7 

Rötzer, S., Schweigert-Recksiek, S., Thoma, D. and Zimmermann, M. (2022), “Attribute dependency graphs: 

modelling cause and effect in systems design”, Design Science, Vol. 8. http://doi.org/10.1017/dsj.2022.20 

The MathWorks, Inc., “Robot Dynamics”, available at: https://de.mathworks.com/help/robotics/ug/robot-

dynamics.html (accessed 29 November 2022). 

The MathWorks, Inc., “Simulink. gemacht für Model-Based Design”, available at: https://de.mathworks.com/ 

products/simulink.html (accessed 29 November 2022). 

The Object Management Group, “WHAT IS SYSML?”, available at: http://www.omgsysml.org/what-is-

sysml.htm (accessed 29 November 2022). 

VDI (2021), Development of mechatronic and cyber-physical systems No. VDI/VDE 2206. 

Vogel-Heuser, B., Zimmermann, M., Stahl, K., Land, K., Ocker, F., Rötzer, S., Landler, S. and Otto, M. (2020), 

“Current Challenges in the Design of Drives for Robot-Like Systems”, in 2020 IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), 11.10.2020 - 14.10.2020, Toronto, ON, Canada, 

IEEE, pp. 1923–1928. 

Wolny, S., Mazak, A., Carpella, C., Geist, V. and Wimmer, M. (2020), “Thirteen years of SysML: a systematic 

mapping study”, Software and Systems Modeling, Vol. 19 No. 1, pp. 111–169. http://doi.org/10.1007/ 

s10270-019-00735-y 

Zerwas, T., Jacobs, G., Kowalski, J., Husung, S., Gerhard, D., Rumpe, B., Zeman, K., Vafaei, S., König, F. and 

Höpfner, G. (2022), “Model Signatures for the Integration of Simulation Models into System Models”, 

Systems, Vol. 10 No. 6, p. 199. http://doi.org/10.3390/systems10060199 

Zimmermann, M. and Hoessle, J.E. von (2013), “Computing solution spaces for robust design”, International 

Journal for Numerical Methods in Engineering, Vol. 94 No. 3, pp. 290–307. http://doi.org/10.1002/ 

nme.4450 

Zimmermann, M., Königs, S., Niemeyer, C., Fender, J., Zeherbauer, C., Vitale, R. and Wahle, M. (2017), “On 

the design of large systems subject to uncertainty”, Journal of Engineering Design, Vol. 28 No. 4, pp. 233–

254. http://doi.org/10.1080/09544828.2017.1303664 

https://doi.org/10.1017/pds.2023.259 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.259

	pds.2023.0259.0
	pds.2023.0259

