Exact Morphism Category and Gorenstein-projective Representations

Xiu-Hua Luo

Abstract

Let Q be a finite acyclic quiver, let J be an ideal of $k Q$ generated by all arrows in Q, and let A be a finite-dimensional k-algebra. The category of all finite-dimensional representations of $\left(Q, J^{2}\right)$ over A is denoted by $\operatorname{rep}\left(Q, J^{2}, A\right)$. In this paper, we introduce the category $\operatorname{exa}\left(Q, J^{2}, A\right)$, which is a subcategory of $\operatorname{rep}\left(Q, J^{2}, A\right)$ of all exact representations. The main result of this paper explicitly describes the Gorenstein-projective representations in $\operatorname{rep}\left(Q, J^{2}, A\right)$, via the exact representations plus an extra condition. As a corollary, A is a self-injective algebra if and only if the Gorensteinprojective representations are exactly the exact representations of $\left(Q, J^{2}\right)$ over A.

1 Introduction

In algebra representation theory, the representations of a quiver with relations (Q, I) over a field k (if Q has no relations, we take $I=0$) is one of the fundamental methods for constructing representations. This is equivalent to constructing modules of the path algebra $k Q / I$. This idea can be extended to the representations of a quiver with relations (Q, I) over an algebra A. This is equivalent to constructing modules of the tensor algebra $A \otimes_{k} k Q / I$.

On the other hand, Gorenstein-projective modules enjoy more stable properties than the usual projective modules (see [AB]). They are a main ingredient in the relative homological algebra (see [EJ1, EJ2]) and in the representation theory of algebras (see [AR1, AR2, B, GZ, IKM]) and play a central role in the Tate cohomology of algebras (see [AM]). Let $\mathcal{P}(A)$ be the full subcategory of A-mod consisting of projective modules, and let $\mathcal{G P}(A)$ be the full subcategory of A - \bmod consisting of Gorensteinprojective modules. An important feature is that $\mathcal{G P}(A)$ is a Frobenius category with relative projective-injective objects being projective A-modules, and hence the stable category $\mathcal{G P}(A)$ of $\mathcal{G P}(A)$ modulo $\mathcal{P}(A)$ is a triangulated category. By [Hap], the singularity category of Gorenstein algebra A is triangle equivalent to $\mathcal{G P}(A)$. Thus, explicitly constructing all the Gorenstein-projective modules is a fundamental problem and will be useful in all of these applications.

For a finite acyclic quiver Q without relations, a field k and a finite-dimensional k-algebra A, the construction of Gorenstein-projective modules over $A \otimes_{k} k Q$ was described explicitly in [LZ2]. In this paper, we will construct all the Gorensteinprojective modules over $A \otimes_{k} k Q / J^{2}$, where $\left(Q, J^{2}\right)$ is a quiver with relations J^{2} and

[^0]without multiple arrows, and J is generated by all arrows in Q_{1}. Let $\Lambda=A \otimes_{k} k Q / J^{2}$, where $k Q / J^{2}$ is the path algebra of $\left(Q, J^{2}\right)$ over k. We call Λ the path algebra of $\left(Q, J^{2}\right)$ over A. As in the case of $A=k, \Lambda-\bmod$ is equivalent to the category $\operatorname{rep}\left(Q, J^{2}, A\right)$ of representations of $\left(Q, J^{2}\right)$ over A. This interpretation permits us to introduce the socalled exact representations of $\left(Q, J^{2}\right)$ over A (see Definition 2.1). Let exa $\left(Q, J^{2}, A\right)$ be the full subcategory of $\operatorname{rep}\left(Q, J^{2}, A\right)$ of exact representations of $\left(Q, J^{2}\right)$ over A. The main result of this paper, Theorem 3.2, explicitly describes all the Gorensteinprojective Λ-modules, via the exact representations of $\left(Q, J^{2}\right)$ over A plus an extra condition. As a corollary, we see that A is self-injective if and only if $\mathcal{G P}(\Lambda)=$ $\operatorname{exa}\left(Q, J^{2}, A\right)$. As another corollary, if A is a self-injective Gorenstein algebra, then $D_{s g}^{b}(\Lambda) \cong \underline{\operatorname{exa}\left(Q, J^{2}, A\right)}$ (see Corollary 4.2).

2 Exact Representations of a Quiver With Relations $\left(Q, J^{2}\right)$ Over an Algebra A

Throughout this section, k is a field, Q is a finite acyclic quiver with relations J^{2} and without multiple arrows, and A is a finite-dimensional k-algebra, where J is an ideal of $k Q$ generated by all arrows in Q_{1}.

By definition, a representation X of $\left(Q, J^{2}\right)$ over A is a datum

$$
X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right)
$$

where X_{i} is an A-module for each $i \in Q_{0}, X_{j i}: X_{j} \rightarrow X_{i}$ is an A-map if there is an arrow from j to i; otherwise, $X_{j i}$ vanishes, and $X_{i k} X_{j i}=0$ whenever there are arrows from j to i and i to k. It is a finite-dimensional representation if each X_{i} is finitedimensional. We call X_{i} the i-th branch of X. A morphism f from representation X to representation Y is a datum $\left(f_{i}, i \in Q_{0}\right)$, where $f_{i}: X_{i} \rightarrow Y_{i}$ is an A-map for each $i \in Q_{0}$, such that for each arrow $\alpha: j \rightarrow i$, the diagram

commutes. We call f_{i} the i-th branch of f. Denote by $\operatorname{rep}\left(Q, J^{2}, A\right)$ the category of finite-dimensional representations of $\left(Q, J^{2}\right)$ over A. Let $\Lambda=A \otimes_{k} k Q / J^{2}$. By the results in [LZ2], we know that $\Lambda-\bmod \cong \operatorname{rep}\left(Q, J^{2}, A\right)$.

In the following, if Q_{0} is labeled as $1, \ldots, n$, then we also write a representation X of $\left(Q, J^{2}\right)$ over A as

$$
\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right)_{\left(X_{j i}, j, i \in Q_{0}\right)}
$$

and a morphism in $\operatorname{rep}\left(Q, J^{2}, A\right)$ as

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

The following is a central notion of this paper.
Definition 2.1 A representation $X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right)$ of $\left(Q, J^{2}\right)$ over A is an exact representation, or an exact Λ-module, if the following two conditions are satisfied:
(ml) For each $i \in Q_{0}, \sum_{j \in Q_{0}} \operatorname{Im} X_{j i}=\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$.
(m2) For each $j \in Q_{0}$, if j is a source, then $X_{j i}$ is an injective A-map whenever there is an arrow from j to i. If j is not a source, then $\operatorname{Ker} X_{j i}=\oplus_{k \in Q_{0}} \operatorname{Im} X_{k j}$.

Denote by exa $\left(Q, J^{2}, A\right)$ the full subcategory of $\operatorname{rep}\left(Q, J^{2}, A\right)$ of exact representations of $\left(Q, J^{2}\right)$ over A. We call exa $\left(Q, J^{2}, A\right)$ the exact morphism category of $\left(Q, J^{2}\right)$ over A.

If $\left(Q, J^{2}\right)$ is a quiver in which for any vertex i there is at most one arrow ending at i, then the condition (ml) vanishes. If

$$
\left(Q, J^{2}\right)=\bullet{ }_{n} \longrightarrow \cdots \longrightarrow \bullet_{1}
$$

then an object in $\operatorname{exa}\left(Q, J^{2}, A\right)$ is just an exact sequence with an injective A-map from X_{n} to X_{n-1}.

Let $\left(Q, J^{2}\right)$ be a finite acyclic quiver with relations J^{2} and without multiple arrows, let A be a finite-dimensional algebra, and let $\Lambda=A \otimes_{k} k Q / J^{2}$. In the following, we label the vertices of $\left(Q, J^{2}\right)$ as $1,2, \ldots, n$, such that if there is an arrow from j to i, then $j>i$. Denote by $P(i)$ the indecomposable projective $k Q / J^{2}$-module at $i \in Q_{0}$. It is clear that $P(i) \in \operatorname{exa}\left(Q, J^{2}, k\right)$; it follows that $M \otimes_{k} P(i) \in \operatorname{exa}\left(Q, J^{2}, A\right)$ for $M \in A$-mod. Thus, we have the following functors ($-i$: by taking the i-th branch)

$$
-\otimes_{k} P(i): A-\bmod \longrightarrow \operatorname{exa}\left(Q, J^{2}, A\right), \quad-{ }_{i}: \operatorname{rep}\left(Q, J^{2}, A\right) \longrightarrow A-\bmod
$$

We need the adjoint pair $\left(-\otimes_{k} P(i),-{ }_{i}\right)$.
Lemma 2.2 For each object $X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right) \in \Lambda$-mod and each A-module M, we have the following isomorphisms of abelian groups, which are natural in both positions

$$
\begin{equation*}
\operatorname{Hom}_{\Lambda}\left(M \otimes_{k} P(i), X\right) \cong \operatorname{Hom}_{A}\left(M, X_{i}\right), \quad i \in Q_{0} \tag{2.2}
\end{equation*}
$$

Proof For $f=\left(f_{k}, k \in Q_{0}\right) \in \operatorname{Hom}_{\Lambda}\left(M \otimes_{k} P(i), X\right)$, we have $f_{i} \in \operatorname{Hom}_{A}\left(M, X_{i}\right)$. Since $M \otimes_{k} P(i)=\left(M \otimes_{k} e_{k}\left(k Q / J^{2}\right) e_{i}, \mathrm{id}_{M} \otimes \alpha, k \in Q_{0}, \alpha \in Q_{1}\right)$, it follows from the commutative diagram (2.1) that

$$
f_{k}= \begin{cases}0, & \text { if there is no arrow from } i \text { to } k \tag{2.3}\\ m \otimes_{k} \alpha \mapsto X_{i k} f_{i}(m), & \text { if there is an arrow } \alpha \text { from } i \text { to } k\end{cases}
$$

By (2.3) we see that $f \mapsto f_{i}$ gives an injective map

$$
\operatorname{Hom}_{\Lambda}\left(M \otimes_{k} P(i), X\right) \longrightarrow \operatorname{Hom}_{A}\left(M, X_{i}\right)
$$

This map is also surjective, since for a given $f_{i} \in \operatorname{Hom}_{A}\left(M, X_{i}\right), f=\left(f_{k}, k \in Q_{0}\right)$ given by (2.3) is indeed a morphism in $\operatorname{rep}\left(Q, J^{2}, A\right)$ from $M \otimes_{k} P(i)$ to X.

Proposition 2.3 The indecomposable projective Λ-modules have the form $P \otimes_{k} P(i)$, where P is an indecomposable projective A-module and $P(i)$ is the indecomposable projective $k Q / J^{2}$-module at $i \in Q_{0}$.

Proof As a direct summand of the regular Λ-module ${ }_{\Lambda} \Lambda$, we see that $P \otimes_{k} P(i)$ is a projective Λ-module, and each projective Λ-module has this form. By (2.2) we have

$$
\operatorname{End}_{\Lambda}\left(P \otimes_{k} P(i)\right) \cong \operatorname{Hom}_{A}\left(P,\left(P \otimes_{k} P(i)\right)_{i}\right)=\operatorname{End}_{A}(P)
$$

from which we see that $P \otimes_{k} P(i)$ is indecomposable.

3 Gorenstein-projective Modules in $\operatorname{rep}\left(Q, J^{2}, A\right)$

Let A and B be rings, let M be an A - B-bimodule, and let $\Lambda=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ be the upper triangular matrix ring, where the addition and the multiplication are given by those of matrices. We assume that Λ is an Artin algebra ([ARS, p. 72]) and consider finitely generated Λ-modules. A Λ-module can be identified with a triple $\binom{X}{Y}_{\phi}$, or simply $\binom{X}{Y}$ if ϕ is clear, where $X \in A$-mod, $Y \in B$-mod, and $\phi: M \otimes_{B} Y \rightarrow X$ is an A-map. A Λ-map $\binom{X}{Y}_{\phi} \rightarrow\binom{X^{\prime}}{Y^{\prime}}_{\phi^{\prime}}$ can be identified with a pair $\binom{f}{g}$, where $f \in \operatorname{Hom}_{A}\left(X, X^{\prime}\right)$, $g \in \operatorname{Hom}_{B}\left(Y, Y^{\prime}\right)$, such that the diagram

commutes. A sequence of Λ-maps

$$
0 \longrightarrow\binom{X_{1}}{Y_{1}}_{\phi_{1}} \xrightarrow{\binom{f_{1}}{g_{1}}}\binom{X_{2}}{Y_{2}}_{\phi_{2}} \xrightarrow{\binom{f_{2}}{g_{2}}}\binom{X_{3}}{Y_{3}}_{\phi_{3}} \longrightarrow 0
$$

is exact if and only if $0 \longrightarrow X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} X_{3} \longrightarrow 0$ is an exact sequence of A-maps and $0 \longrightarrow Y_{1} \xrightarrow{g_{1}} Y_{2} \xrightarrow{g_{2}} Y_{3} \longrightarrow 0$ is an exact sequence of B-maps. Indecomposable projective Λ-modules are exactly $\binom{P}{0}$ and $\binom{M \otimes_{B} Q}{Q}_{i d}$, where P runs over indecomposable projective A-modules, and Q runs over indecomposable projective B-modules.

Note that an algebra Λ is of the form above if and only if there is an idempotent decomposition $1=e+f$ such that $f \Lambda e=0$; and in this case $\Lambda=\left(\begin{array}{ccc}e \Lambda e & e \Lambda f \\ 0 & f \Lambda f\end{array}\right)$.

The Gorenstein-projective Λ-modules have been studied in many papers, including [LZ1, LZ2, XZ, Z1, Z2]. In [Z2], Zhang researched $\mathcal{G P}(\Lambda)$ in a more general setup. He described the Gorenstein-projective Λ-modules when ${ }_{A} M_{B}$ is a compatible A - B-bimodule. For an A - B-bimodule M with proj. $\operatorname{dim} M_{B}<\infty$, if proj. $\operatorname{dim}_{A} M<$ ∞, then M is compatible.

Theorem 3.1 ([Z2]) Let M be a compatible A-B-bimodule, and $\Lambda=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$. Then $\binom{X}{Y}_{\phi} \in \mathcal{G P}(\Lambda)$ if and only if $\phi: M \otimes_{B} Y \rightarrow X$ is an injective A-map, Coker $\phi \in \mathcal{G P}(A)$, and $Y \in \mathcal{G P}(B)$.

The aim of this section is to prove the following characterization of Gorensteinprojective Λ-modules, where Λ is the path algebra of a finite acyclic quiver with relations $\left(Q, J^{2}\right)$ over a finite-dimensional algebra A. That is to say, $\Lambda=A \otimes_{k} k Q / J^{2}$ and it is not assumed to be Gorenstein.

Theorem 3.2 Let $\left(Q, J^{2}\right)$ be a finite acyclic quiver with relations J^{2} and without multiple arrows, and let A be a finite-dimensional algebra over a field k. Let $\Lambda=A \otimes_{k} k Q / J^{2}$, and let $X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right)$ be a Λ-module. Then $X \in \mathcal{G P}(\Lambda)$ if and only if $X \in \operatorname{exa}\left(Q, J^{2}, A\right)$ and X satisfies the following condition $(G p)$, where
(Gp) For each $i \in Q_{0}, X_{i} \in \mathcal{G P}(A)$ and the quotient $X_{i} /\left(\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}\right) \in \mathcal{G P}(A)$.

Theorem 3.2 will be proved by using Theorem 3.1 and induction on the number of vertices $\left|Q_{0}\right|$.

Remember that we label Q_{0} as $1, \ldots, n$, such that $j>i$ if $\alpha: j \rightarrow i$ is an arrow in Q_{1}. Thus n is a source of Q. Denote by Q^{\prime} the quiver obtained from Q by deleting the vertex n, and $\Lambda^{\prime}=A \otimes_{k} k Q^{\prime} / J^{2}$. Let $P(n)$ be the indecomposable projective (left) $k Q / J^{2}$-module at vertex n. Put $P=A \otimes_{k} \operatorname{rad} P(n)$. Clearly, P is a $\Lambda^{\prime}-A$-bimodule and $\Lambda=\left(\begin{array}{cc}\Lambda^{\prime} & P \\ 0 & A\end{array}\right)$.

Since the global dimension of $\Lambda^{\prime}=k Q / J^{2}$ is finite, $\operatorname{rad} P(n)$ has finite projective dimension as a Λ^{\prime}-module, and hence $P=A \otimes_{k} \operatorname{rad} P(n)$ has finite projective dimension as a left Λ^{\prime}-module. Since as a right A-module, P is a direct sum of copies of A_{A}, then P is a right projective A-module. That is to say, M is a compatible A - B-bimodule. So we can apply Theorem 3.1. For this, we write a Λ-module $X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right)$ as $X=\binom{X^{\prime}}{X_{n}}_{\phi}$, where $X^{\prime}=\left(X_{i}, X_{j i}, i, j \in Q_{0}^{\prime}\right)$ is a Λ^{\prime}-module, and $\phi: P \otimes_{A} X_{n} \rightarrow X^{\prime}$ is a Λ^{\prime}-map. The explicit expression of ϕ will be given in the proof of Lemma 3.4 below. We keep all these notations of $Q^{\prime}, \Lambda^{\prime}, P(n), P, X^{\prime}$ and ϕ, throughout this section.

By a direct translation from Theorem 3.1 in this special case, we have the following lemma.

Lemma 3.3 Let $X=\binom{X^{\prime}}{X_{n}}_{\phi}$ be a Λ-module. Then $X \in \mathcal{G P}(\Lambda)$ if and only if X satisfies the following conditions:
(i) $X_{n} \in \mathcal{G P}(A)$;
(ii) $\phi: P \otimes_{A} X_{n} \rightarrow X^{\prime}$ is an injective Λ^{\prime}-map;
(iii) Coker $\phi \in \mathcal{G P}\left(\Lambda^{\prime}\right)$.

Lemma 3.4 Let $X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right)$ be a Λ-module. Then $X_{n i}$ is an injective A-map whenever there is an arrow from n to i if and only if $\phi: P \otimes_{A} X_{n} \rightarrow X^{\prime}$ is an injective Λ^{\prime}-map.

Proof For $i \in Q_{0}^{\prime}$, let

$$
m_{i}= \begin{cases}0, & \text { if there is no arrow from } n \text { to } i \\ 1, & \text { if there is an arrow from } n \text { to } i\end{cases}
$$

As a $k Q^{\prime} / J^{2}$-module, $\operatorname{rad} P(n)$ can be written as $\left(\begin{array}{c}k^{m_{1}} \\ \vdots \\ k^{m_{n-1}}\end{array}\right)$ (when $m_{i}=0$, we regard as $k^{m_{i}}=0$), hence we have isomorphisms of Λ^{\prime}-modules

$$
P \otimes_{A} X_{n} \cong\left(\operatorname{rad} P(n) \otimes_{k} A\right) \otimes_{A} X_{n} \cong \operatorname{rad} P(n) \otimes_{k} X_{n} \cong\left(\begin{array}{c}
X_{n}^{m_{1}} \\
\vdots \\
X_{n}^{m_{n-1}}
\end{array}\right)
$$

Then ϕ is of the form

$$
\left(\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{n-1}
\end{array}\right): P \otimes_{A} X_{n} \cong\left(\begin{array}{c}
X_{n}^{m_{1}} \\
\vdots \\
X_{n}^{m_{n-1}}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n-1}
\end{array}\right)
$$

where $\phi_{i}=X_{n i}: X_{n} \rightarrow X_{i}$ if there is an arrow from n to i, and otherwise, $X_{n}^{m i}=0$ implies $\phi_{i}=0$. So ϕ is injective if and only if $X_{n i}$ is injective whenever there is an arrow from n to i.

Remark From the proof of the lemma above, we know that

$$
\operatorname{Coker} \phi=\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}, \widetilde{X_{j i}}, i, j \in Q_{0}^{\prime}\right)
$$

where $\widetilde{X_{j i}}: X_{j} / \operatorname{Im} X_{n j}^{m_{j}} \rightarrow X_{i} / \operatorname{Im} X_{n i}^{m_{i}}$ is induced by the $A-m a p X_{j i}: X_{j} \rightarrow X_{i}$.
Lemma 3.5 Let $X=\binom{X^{\prime}}{X_{n}}_{\phi}$ be an exact Λ-module. Then we have
(i) ϕ is an injective Λ^{\prime}-map;
(ii) Coker ϕ is an exact Λ^{\prime}-module.

Proof By the definition of exact Λ-modules, (i) follows directly from Lemma 3.4. For (ii), we need to prove the following:
(a) For each $i \in Q_{0}^{\prime}, \sum_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}=\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}$.
(b) For each source i in $Q_{0}^{\prime}, \widetilde{X_{i k}}$ is an injective A-map whenever there is an arrow from i to k.
(c) For each $i \in Q_{0}^{\prime}$ that is not a source, $\operatorname{Ker} \widetilde{X_{i k}}=\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}$.

For (a), we assume that

$$
\sum_{j \in Q_{0}^{\prime}} \overline{X_{j i}\left(x_{j}\right)}=0
$$

where $\overline{X_{j i}\left(x_{j}\right)}$ is the image of $x_{j} \in X_{j}$ in $X_{i} / \operatorname{Im} X_{n i}^{m_{i}}$. Then

$$
\sum_{j \in Q_{0}^{\prime}} X_{j i}\left(x_{j}\right) \in \operatorname{Im} X_{n i}^{m_{i}}
$$

If $m_{i}=0$, then $X_{n i}^{m_{i}}=0$ and $\sum_{j \in Q_{0}^{\prime}} X_{j i}\left(x_{j}\right)=\sum_{j \in Q_{0}} X_{j i}\left(x_{j}\right)$. Since X is an exact Λ-module, then $X_{j i}\left(x_{j}\right)=0$ for all possible $j \in Q_{0}^{\prime}$. If $m_{i}=1$, then $\sum_{j \in Q_{0}^{\prime}} X_{j i}\left(x_{j}\right)=$ $X_{n i}\left(x_{n}^{\prime}\right)$ for some $x_{n}^{\prime} \in X_{n}$. Then $\sum_{j \in Q_{0}} X_{j i}\left(x_{j}\right)=0$, where $x_{n}=-x_{n}^{\prime}$. Since X is an exact Λ-module, then $X_{j i}\left(x_{j}\right)=0$ for all possible $j \in Q_{0}^{\prime}$. The assertion (a) is proved.

Since i is a source in Q^{\prime}, then there is either an arrow from n to i or i is a source in Q. We prove (b) in the following four cases:
(1) If there is an arrow from n to i and one from n to k, then

$$
\widetilde{X_{i k}}: X_{i} / \operatorname{Im} X_{n i} \rightarrow X_{k} / \operatorname{Im} X_{n k}
$$

which is induced by $X_{i k}: X_{i} \rightarrow X_{k}$ in X. Since X is an exact Λ-module, then $\operatorname{Im} X_{i k} \cap \operatorname{Im} X_{n k}=0$. Hence $\operatorname{Ker} \widetilde{X_{i k}}=\left\{x \in X_{i} \mid X_{i k}(x)=0\right\} / \operatorname{Im} X_{n i}=$ $\operatorname{Ker} X_{i k} / \operatorname{Im} X_{n i}$. Since X is an exact representation and there is only one arrow in Q ending at i, then $\operatorname{Ker} X_{i k}=\operatorname{Im} X_{n i}$. Hence $\operatorname{Ker} \widetilde{X_{i k}}=0$. That is to say, $\widetilde{X_{i k}}$ is an injective A-map.
(2) If there is an arrow from n to i and no arrow from n to k, then

$$
\widetilde{X_{i k}}: X_{i} / \operatorname{Im} X_{n i} \rightarrow X_{k}
$$

which is induced by $X_{i k}: X_{i} \rightarrow X_{k}$ in X. So $\operatorname{Ker} \widetilde{X_{i k}}=\operatorname{Ker} X_{i k} / \operatorname{Im} X_{n i}$. Since there is only one arrow ending at i and X is an exact Λ-module, then $\operatorname{Ker} X_{i k}=\operatorname{Im} X_{n i}$. So $\widetilde{X_{i k}}$ is an injective A-map.
(3) If i is a source in Q and there is an arrow from n to k, then

$$
\widetilde{X_{i k}}: X_{i} \rightarrow X_{k} / \operatorname{Im} X_{n k}
$$

which is induced by $X_{i k}: X_{i} \rightarrow X_{k}$ in X. So $\operatorname{Ker} \widetilde{X_{i k}}=\left\{x \in X_{i} \mid X_{i k}(x) \in \operatorname{Im} X_{n k}\right\}$. Since $\operatorname{Im} X_{i k} \cap \operatorname{Im} X_{n k}=0$, then $\operatorname{Ker} \widetilde{X_{i k}}=\operatorname{Ker} X_{i k}$. Since i is source in Q, then $\operatorname{Ker} X_{i k}=0$. So $\widetilde{X_{i k}}$ is an injective A-map.
(4) If i is a source in Q and there is no arrow from n to k, then $\widetilde{X_{i k}}=X_{i k}$. Since X is an exact Λ-module, then $\widetilde{X_{i k}}$ is an injective A-map.

For (c), since X is a Λ-module, then $\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}} \subseteq \operatorname{Ker} \widetilde{X_{i k}}$. Let $x_{i} \in X_{i}$ and $\widetilde{X_{i k}}\left(\overline{x_{i}}\right)=0$, i.e., $X_{i k}\left(x_{i}\right) \in \operatorname{Im} X_{n k}^{m_{k}}$. If $m_{k}=0$, then $X_{i k}\left(x_{i}\right)=0$, namely, $x_{i} \in$ Ker $X_{i k}$. If $m_{k}=1$, then $X_{i k}\left(x_{i}\right)=X_{n k}\left(x_{n}\right)$ for some $x_{n} \in X_{n}$. So $X_{i k}\left(x_{i}\right)=0$ which follows from $\operatorname{Im} X_{i k} \bigcap \operatorname{Im} X_{n k}=0$. Since X is an exact Λ-module, then $x_{i} \in$ $\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$. Hence $\overline{x_{i}} \in \bigoplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}$. This completes the proof.

Lemma 3.6 Let $X=\binom{X^{\prime}}{X_{n}}_{\phi}$ be an exact Λ-module satisfying $(G p)$. Then Coker ϕ satisfies $(G p)$, i.e., for each $i \in Q_{0}^{\prime}, X_{i} / \operatorname{Im} X_{n i}^{m_{i}}$ and $\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}\right) /\left(\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}\right)$ are Gorenstein-projective modules.

Proof Following from the short exact sequence

$$
0 \longrightarrow \underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i} \longrightarrow X_{i} \longrightarrow X_{i} /\left(\underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i}\right) \longrightarrow 0
$$

and that X satisfies $(G p)$, we know that $\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$ is Gorenstein-projective. So $X_{i} / \operatorname{Im} X_{n i}^{m_{i}}$ is Gorenstein-projective following from the short exact sequence

$$
0 \longrightarrow\left(\underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i}\right) / \operatorname{Im} X_{n i}^{m i} \longrightarrow X_{i} / \operatorname{Im} X_{n i}^{m_{i}} \longrightarrow X_{i} /\left(\underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i}\right) \longrightarrow 0
$$

Since for each $i \in Q_{0}^{\prime}$,

$$
\underset{j \in Q_{0}^{\prime}}{\oplus} \operatorname{Im} \widetilde{X_{j i}}=\left(\sum_{j \in Q_{0}^{\prime}} \operatorname{Im} X_{j i}+\operatorname{Im} X_{n i}^{m_{i}}\right) / \operatorname{Im} X_{n i}^{m_{i}}=\sum_{j \in Q_{0}} \operatorname{Im} X_{j i} / \operatorname{Im} X_{n i}^{m_{i}}
$$

then $\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}\right) /\left(\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}\right) \cong X_{i} /\left(\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}\right)$ is a Gorenstein-projective module, because X satisfies $(G p)$. So Coker ϕ satisfies ($G p$).

Lemma 3.7 The sufficiency in Theorem 3.2 holds. That is, if $X=\left(X_{i}, X_{j i}, i, j \in Q_{0}\right)$ is an exact Λ-module satisfying ($G p$), then X is Gorenstein-projective.

Proof Using induction on $n=\left|Q_{0}\right|$. The assertion clearly holds for $n=1$. Suppose that the assertion holds for $n-1$ with $n \geq 2$. It suffices to prove that X satisfies conditions (i), (ii), and (iii) of Lemma 3.3.

Condition (i) is contained in ($G p$), and condition (ii) follows from Lemma 3.5(i). By Lemma 3.5(ii), Coker ϕ is an exact Λ^{\prime}-module, and by Lemmas 3.6, we know that Coker ϕ satisfies ($G p$). It follows from the inductive hypothesis that condition (iii) in Lemma 3.3 is satisfied.

Proof of Theorem 3.2 By Lemma 3.7, it remains to prove the necessity, i.e., if X is a Gorenstein-projective Λ-module, then X is an exact Λ-module satisfying ($G p$). We use induction on $n=\left|Q_{0}\right|$. The assertion is clear for $n=1$. Suppose that the assertion holds for $n-1$ with $n \geq 2$. We write as $X=\binom{X^{\prime}}{X_{n}}$. Then X satisfies conditions (i), (ii), and (iii) in Lemma 3.3.

By condition (ii) and Lemma 3.4 we know that:
(1) $X_{n i}$ is an injective A-map whenever there is an arrow from n to i.

Since Coker $\phi=\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}, \widetilde{X_{j i}}, i, j \in Q_{0}^{\prime}\right)$ is a Gorenstein-projective Λ^{\prime}-module, it follows from the inductive hypothesis that the following properties hold:
(2) For each source $i \in Q_{0}^{\prime}, \widetilde{X_{i k}}$ is injective whenever there is an arrow from i to k in Q^{\prime}.
(3) For each $i \in Q_{0}^{\prime}$ which is not a source, $\sum_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}=\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}$.
(4) For each $i \in Q_{0}^{\prime}$ which is not a source, if there is an arrow from i to k, then we have $\operatorname{Ker} \widetilde{X_{i k}}=\oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}$.
(5) For each $i \in Q_{0}^{\prime}, X_{i} / \operatorname{Im} X_{n i}^{m_{i}}$ and $\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}\right) / \oplus_{j \in Q_{0}^{\prime}} \operatorname{Im} \widetilde{X_{j i}}$ are Gorensteinprojective A-modules.
Claim 1: For each $i \in Q_{0}$ which is not a source, $\sum_{j \in Q_{0}} \operatorname{Im} X_{j i}=\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$.
If there is no arrow from n to i, then

$$
\widetilde{X_{j i}}: X_{j} / \operatorname{Im} X_{n j}^{m_{j}} \rightarrow X_{i}
$$

with $\operatorname{Im} \widetilde{X_{j i}}=\operatorname{Im} X_{j i}$. So by (3),

$$
\sum_{j \in Q_{0}} \operatorname{Im} X_{j i}=\underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i}
$$

If there is an arrow from n to i, then $\widetilde{X_{j i}}: X_{j} / \operatorname{Im} X_{n j}^{m_{j}} \rightarrow X_{i} / \operatorname{Im} X_{n i}$ with $\operatorname{Im} \widetilde{X_{j i}}=$ $\left(\operatorname{Im} X_{j i}+\operatorname{Im} X_{n i}\right) / \operatorname{Im} X_{n i}$. Let $\sum_{j \in Q_{0}} X_{j i}\left(x_{j}\right)=0$ with $x_{j} \in X_{j}$, then $\sum_{j \in Q_{0}^{\prime}} X_{j i}\left(x_{j}\right)=$ $-X_{n i}\left(x_{n}\right)$. So $\sum_{j \in Q_{0}^{\prime}} \overline{X_{j i}\left(x_{j}\right)}=0$, where $\overline{X_{j i}\left(x_{j}\right)}$ is the image of $x_{j} \in X_{j}$ in $X_{i} / \operatorname{Im} X_{n i}$. By (3), we have $\overline{X_{j i}\left(x_{j}\right)}=0$, i.e., $x_{j} \in \operatorname{Ker} \widetilde{X_{j i}}$. By (4), we have $x_{j} \in \sum_{k \in Q_{0}^{\prime}} \operatorname{Im} X_{k j}+$ $\operatorname{Im} X_{n j}^{m_{j}}$, namely, $x_{j} \in \sum_{k \in Q_{0}} \operatorname{Im} X_{k j}$. Hence there is some $x_{k}^{\prime} \in X_{k}$ such that $x_{j} \in$ $\sum_{k \in Q_{0}} X_{k j}\left(x_{k}^{\prime}\right)$. Since X is a Λ-module, $X_{j i}\left(x_{j}\right)=\sum_{k \in Q_{0}} X_{j i} X_{k j}\left(x_{k}^{\prime}\right)=0$ for $j \in Q_{0}^{\prime}$, moreover, $X_{n i}\left(x_{n}\right)=0$. This proves Claim 1.
Claim 2: For each source $i \in Q_{0}, X_{i k}$ is an injective A-map whenever there is an arrow from i to k in Q_{1}.

If $i \in Q_{0}$ is a source in Q and $i \neq n$, then by (2)

$$
\widetilde{X_{i k}}: X_{i} \rightarrow X_{k} / \operatorname{Im} X_{n k}^{m_{k}}
$$

is an injective A-map induced by $X_{i k}: X_{i} \rightarrow X_{k}$. So $X_{i k}$ is injective. Together with (1), we know that Claim 2 is true.

Claim 3: For each $i \in Q_{0}$ which is not a source, $\operatorname{Ker} X_{i k}=\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$.
Since

$$
\widetilde{X_{i k}}: X_{i} / \operatorname{Im} X_{n i}^{m i} \rightarrow X_{k} / \operatorname{Im} X_{n k}^{m k}
$$

is induced by $X_{i k}: X_{i} \rightarrow X_{k}$ in X and by Claim 2, $\operatorname{Im} X_{i k} \cap \operatorname{Im} X_{n k}^{m k}=0$, then $\operatorname{Ker} \widetilde{X_{i k}}=$ $\operatorname{Ker} X_{i k} / \operatorname{Im} X_{n i}^{m_{i}}$. By (4), we have

$$
\operatorname{Ker} \widetilde{X_{i k}}=\left(\underset{j \in Q_{0}^{\prime}}{\oplus} \operatorname{Im} X_{j i}+\operatorname{Im} X_{n i}^{m_{i}}\right) / \operatorname{Im} X_{n i}^{m_{i}} .
$$

Hence $\operatorname{Ker} X_{i k}=\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$.
Claim 4: X satisfies $(G p)$, namely, for each $i \in Q_{0}, X_{i}$ and $X_{i} / \oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}$ are Gorenstein-projective A-modules. Since

$$
\begin{aligned}
\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}\right) /\left(\underset{j \in Q_{0}^{\prime}}{\oplus} \operatorname{Im} \widetilde{X_{j i}}\right) & \cong\left(X_{i} / \operatorname{Im} X_{n i}^{m_{i}}\right) /\left(\underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i} / \operatorname{Im} X_{n i}^{m_{i}}\right) \\
& \cong X_{i} /\left(\underset{j \in Q_{0}}{\oplus} \operatorname{Im} X_{j i}\right)
\end{aligned}
$$

$X_{i} /\left(\oplus_{j \in Q_{0}} \operatorname{Im} X_{j i}\right)$ is a Gorenstein-projective A-module by (5). If there is no arrow from n to i, then $X_{i} / \operatorname{Im} X_{n i}^{m_{i}}=X_{i}$ is a Gorenstein-projective A-module by (5). If there is an arrow from n to i, then $X_{i} / \operatorname{Im} X_{n i}^{m_{i}}=X_{i} / \operatorname{Im} X_{n i}$. Since X_{n} is a Gorensteinprojective A-module and $X_{n i}$ is an injective A-map, then

$$
0 \rightarrow X_{n} \rightarrow X_{i} \rightarrow X_{i} / \operatorname{Im} X_{n i} \rightarrow 0
$$

is a short exact sequence. Note that $\mathcal{G} p(A)$ is closed under extension. So X_{i} is a Gorenstein-projective A-module for each $i \in Q_{0}$. Hence, Claim 4 holds.

Summarizing the above claims, we have that X is an exact Λ-module satisfying (Gp).

4 Corollaries

As a consequence of Theorem 3.2 and Proposition 2.3, we have the following characterization of self-injectivity.

Corollary 4.1 Let A be a finite-dimensional algebra and Q a finite acyclic quiver. Then the following are equivalent:
(i) A is self-injective;
(ii) $\mathcal{G P}\left(A \otimes_{k} k Q / J^{2}\right)=\operatorname{exa}\left(Q, J^{2}, A\right)$.

Proof (i) \Rightarrow (ii): If A is self-injective, then every A-module is Gorenstein-projective, and hence (ii) follows from Theorem 3.2.
(ii) \Rightarrow (i): Take a sink of Q, say vertex 1 , and consider $D\left(A_{A}\right) \otimes_{k} P(1)$. By the definition of exact representations, we know that $D\left(A_{A}\right) \otimes_{k} P(1) \in \operatorname{exa}\left(Q, J^{2}, A\right)$. By
(ii), $D\left(A_{A}\right) \otimes_{k} P(1)$ can be embedded into a projective Λ-module P. So $D\left(A_{A}\right)$ can be embedded into the first branch P_{1} of P. Since $D\left(A_{A}\right)$ is an injective A-module, then it is a direct summand of P_{1}. By Lemma 2.3, we know that P_{1} is a projective A-module. This implies that $D\left(A_{A}\right)$ is a projective A-module, namely, A is self-injective.

Let $D^{b}(\Lambda)$ be the bounded derived category of Λ, and let $K^{b}(\mathcal{P}(\Lambda))$ be the bounded homotopy category of $\mathcal{P}(\Lambda)$. By definition the singularity category $D_{s g}^{b}(\Lambda)$ of Λ is the Verdier quotient $D^{b}(\Lambda) / K^{b}(\mathcal{P}(\Lambda))$. In [Hap], Happel has proved that if Λ is Gorenstein, then there is a triangle-equivalence $D_{s g}^{b}(\Lambda) \cong \mathcal{G \mathcal { P }}(\Lambda)$, where $\mathcal{G \mathcal { P }}(\Lambda)$ is the stable category of $\mathcal{G P}(\Lambda)$ modulo $\mathcal{P}(\Lambda)$ (see also [Hap, Theorem 4.6]). Note that if A is Gorenstein, then $\Lambda=A \otimes_{k} k Q / J^{2}$ is Gorenstein (see [AR2]). So we have the following corollary.

Corollary 4.2 Let A be a finite-dimensional Gorenstein algebra, and let $\left(Q, J^{2}\right)$ be a finite acyclic quiver with relations J^{2} and without multiple arrows. Let $\Lambda=A \otimes_{k} k Q / J^{2}$. Then there is a triangle-equivalence $D_{s g}^{b}(\Lambda) \cong \mathcal{G P}(\Lambda)$. In particular, if A is self-injective,

References

[AB] M. Auslander and M. Bridger, Stable module theory. Mem. Amer. Math. Soc., 94, American Mathematical Society, Providence, RI, 1969.
[AM] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc. 85(2002), no. 2, 393-440. http://dx.doi.org/10.1112/S0024611502013527
[AR1] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories. Adv. Math. 86(1991), no. 1, 111-152. http://dx.doi.org/10.1016/0001-8708(91)90037-8
[AR2] M. Auslander and I. Reiten, Cohen-Macaulay and Gorenstein artin algebras. In: Representation theory of finite groups and finite-dimensional algebras (Proc. Conf. at Bielefeld, 1991), Progr. Math., 95, Birkhäuser, Basel, 1991, pp. 221-245.
[ARS] M. Auslander, I. Reiten, and S. O. Smalø, Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511623608
[B] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J. Algebra 288(2005), no. 1, 137-211. http://dx.doi.org/10.1016/j.jalgebra.2005.02.022
[EJ1] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules. Math. Z. 220(1995), no. 4, 611-633. http://dx.doi.org/10.1007/BF02572634
[EJ2] , Relative homological algebra. de Gruyter Expositions in Mathematics, 30, Walter de $\overrightarrow{\text { Gruyter Co., Berlin, } 2000 .}$
[GZ] N. Gao and P. Zhang, Gorenstein derived categories. J. Algebra 323(2010), no. 7, 2041-2057. http://dx.doi.org/10.1016/j.jalgebra.2010.01.027
[Hap] D. Happel, On Gorenstein algebras. In: Representation theory of finite groups and finite-dimensional algebras, Prog. Math., 95, Birkhaüser, Basel, 1991, pp. 389-404.
[IKM] O. Iyama, K. Kato, and J. I. Miyachi, Recollement on homotopy categories and Cohen-Macaulay modules. J. K-Theory 8(2011), no. 3, 507-542. http://dx.doi.org/10.1017/is011003007jkt143
[LZ1] Z. W. Li and P.Zhang, A construction of Gorenstein-projective modules. J. Algebra 323(2010), no. 6, 1802-1812. http://dx.doi.org/10.1016/j.jalgebra.2009.12.030
[LZ2] X.-H.Luo and P.Zhang, Monic representations and Gorenstein-projective modules. Pacific J. Math. 264(2013), no. 1, 163-194. http://dx.doi.org/10.2140/pjm.2013.264.163
[XZ] B.-L. Xiong and P.Zhang, Gorenstein-projective modules over triangular matrix Artin algebras. J. Algebra Appl. 11(2012), no. 4, 1250066. http://dx.doi.org/10.1142/S0219498812500661
[Z1] P.Zhang, Monomorphism categories, cotilting theory, and Gorenstein-projective modules. J. Algebra 339(2011), 181-202. http://dx.doi.org/10.1016/j.jalgebra.2011.05.018 $\underset{65-80 .}{ }$, horenstein-projective modules and symmetric

Department of Mathematics, Nantong University, Nantong 226019, P. R. China
e-mail: xiuhualuo2014@163.com

[^0]: Received by the editors July 11, 2014; revised November 3, 2014.
 Published electronically July 27, 2015.
 Supported by the NSF of China (11401323) .
 AMS subject classification: 18G25.
 Keywords: representation of a quiver over an algebra, exact representation, Gorenstein-projective module.

