Canad. Math. Bull. Vol. 58 (4), 2015 pp. 824–834 http://dx.doi.org/10.4153/CMB-2015-051-6 © Canadian Mathematical Society 2015

Exact Morphism Category and Gorenstein-projective Representations

Xiu-Hua Luo

Abstract. Let Q be a finite acyclic quiver, let J be an ideal of kQ generated by all arrows in Q, and let A be a finite-dimensional k-algebra. The category of all finite-dimensional representations of (Q, J^2) over A is denoted by rep (Q, J^2, A) . In this paper, we introduce the category exa (Q, J^2, A) , which is a subcategory of rep (Q, J^2, A) of all exact representations. The main result of this paper explicitly describes the Gorenstein-projective representations in rep (Q, J^2, A) , via the exact representations plus an extra condition. As a corollary, A is a self-injective algebra if and only if the Gorenstein-projective representations of (Q, J^2) over A.

1 Introduction

In algebra representation theory, the representations of a quiver with relations (Q, I) over a field k (if Q has no relations, we take I = 0) is one of the fundamental methods for constructing representations. This is equivalent to constructing modules of the path algebra kQ/I. This idea can be extended to the representations of a quiver with relations (Q, I) over an algebra A. This is equivalent to constructing modules of the tensor algebra $A \otimes_k kQ/I$.

On the other hand, Gorenstein-projective modules enjoy more stable properties than the usual projective modules (see [AB]). They are a main ingredient in the relative homological algebra (see [EJ1, EJ2]) and in the representation theory of algebras (see [AR1, AR2, B, GZ, IKM]) and play a central role in the Tate cohomology of algebras (see [AM]). Let $\mathcal{P}(A)$ be the full subcategory of A-mod consisting of projective modules, and let $\mathcal{GP}(A)$ be the full subcategory of A-mod consisting of Gorensteinprojective modules. An important feature is that $\mathcal{GP}(A)$ is a Frobenius category with relative projective-injective objects being projective A-modules, and hence the stable category $\mathcal{GP}(A)$ of $\mathcal{GP}(A)$ modulo $\mathcal{P}(A)$ is a triangulated category. By [Hap], the singularity category of Gorenstein algebra A is triangle equivalent to $\mathcal{GP}(A)$. Thus, explicitly constructing all the Gorenstein-projective modules is a fundamental problem and will be useful in all of these applications.

For a finite acyclic quiver Q without relations, a field k and a finite-dimensional k-algebra A, the construction of Gorenstein-projective modules over $A \otimes_k kQ$ was described explicitly in [LZ2]. In this paper, we will construct all the Gorenstein-projective modules over $A \otimes_k kQ/J^2$, where (Q, J^2) is a quiver with relations J^2 and

Received by the editors July 11, 2014; revised November 3, 2014.

Published electronically July 27, 2015.

Supported by the NSF of China (11401323).

AMS subject classification: 18G25.

Keywords: representation of a quiver over an algebra, exact representation, Gorenstein-projective module.

without multiple arrows, and *J* is generated by all arrows in Q_1 . Let $\Lambda = A \otimes_k kQ/J^2$, where kQ/J^2 is the path algebra of (Q, J^2) over *k*. We call Λ the path algebra of (Q, J^2) over *A*. As in the case of A = k, Λ -mod is equivalent to the category rep (Q, J^2, A) of representations of (Q, J^2) over *A*. This interpretation permits us to introduce the socalled exact representations of (Q, J^2) over *A* (see Definition 2.1). Let $exa(Q, J^2, A)$ be the full subcategory of $rep(Q, J^2, A)$ of exact representations of (Q, J^2) over *A*. The main result of this paper, Theorem 3.2, explicitly describes all the Gorensteinprojective Λ -modules, via the exact representations of (Q, J^2) over *A* plus an extra condition. As a corollary, we see that *A* is self-injective if and only if $\Im P(\Lambda) =$ $exa(Q, J^2, A)$. As another corollary, if *A* is a self-injective Gorenstein algebra, then $D_{sg}^b(\Lambda) \cong exa(Q, J^2, A)$ (see Corollary 4.2).

2 Exact Representations of a Quiver With Relations (Q, J²) Over an Algebra A

Throughout this section, *k* is a field, *Q* is a finite acyclic quiver with relations J^2 and without multiple arrows, and *A* is a finite-dimensional *k*-algebra, where *J* is an ideal of *kQ* generated by all arrows in *Q*₁.

By definition, a representation X of (Q, J^2) over A is a datum

$$X = (X_i, X_{ji}, i, j \in Q_0),$$

where X_i is an A-module for each $i \in Q_0$, $X_{ji}: X_j \to X_i$ is an A-map if there is an arrow from *j* to *i*; otherwise, X_{ji} vanishes, and $X_{ik}X_{ji} = 0$ whenever there are arrows from *j* to *i* and *i* to *k*. It is *a finite-dimensional representation* if each X_i is finite-dimensional. We call X_i the *i*-th branch of *X*. A morphism *f* from representation *X* to representation *Y* is a datum $(f_i, i \in Q_0)$, where $f_i: X_i \to Y_i$ is an A-map for each $i \in Q_0$, such that for each arrow $\alpha: j \to i$, the diagram

(2.1)
$$\begin{array}{ccc} X_{j} & \xrightarrow{f_{j}} & Y_{j} \\ & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

commutes. We call f_i the *i*-th branch of f. Denote by rep (Q, J^2, A) the category of finite-dimensional representations of (Q, J^2) over A. Let $\Lambda = A \otimes_k kQ/J^2$. By the results in [LZ2], we know that Λ -mod \cong rep (Q, J^2, A) .

In the following, if Q_0 is labeled as 1, ..., n, then we also write a representation X of (Q, J^2) over A as

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}_{(X_{ji}, j, i \in Q_0)},$$

and a morphism in rep (Q, J^2, A) as

The following is a central notion of this paper.

Definition 2.1 A representation $X = (X_i, X_{ji}, i, j \in Q_0)$ of (Q, J^2) over A is an exact representation, or an exact Λ -module, if the following two conditions are satisfied:

- (m1) For each $i \in Q_0$, $\sum_{j \in Q_0} \operatorname{Im} X_{ji} = \bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}$.
- (m2) For each $j \in Q_0$, if j is a source, then X_{ji} is an injective A-map whenever there is an arrow from j to i. If j is not a source, then Ker $X_{ji} = \bigoplus_{k \in Q_0} \text{Im } X_{kj}$.

Denote by $exa(Q, J^2, A)$ the full subcategory of $rep(Q, J^2, A)$ of exact representations of (Q, J^2) over A. We call $exa(Q, J^2, A)$ the exact morphism category of (Q, J^2) over A.

If (Q, J^2) is a quiver in which for any vertex *i* there is at most one arrow ending at *i*, then the condition (m1) vanishes. If

$$(Q, J^2) = \underbrace{\bullet}_n \longrightarrow \cdots \longrightarrow \underbrace{\bullet}_1,$$

then an object in $exa(Q, J^2, A)$ is just an exact sequence with an injective *A*-map from X_n to X_{n-1} .

Let (Q, J^2) be a finite acyclic quiver with relations J^2 and without multiple arrows, let A be a finite-dimensional algebra, and let $\Lambda = A \otimes_k kQ/J^2$. In the following, we label the vertices of (Q, J^2) as 1, 2, ..., n, such that if there is an arrow from j to i, then j > i. Denote by P(i) the indecomposable projective kQ/J^2 -module at $i \in Q_0$. It is clear that $P(i) \in exa(Q, J^2, k)$; it follows that $M \otimes_k P(i) \in exa(Q, J^2, A)$ for $M \in A$ -mod. Thus, we have the following functors (-i: by taking the *i*-th branch)

 $-\otimes_k P(i): A \operatorname{-mod} \longrightarrow \operatorname{exa}(Q, J^2, A), \quad -_i: \operatorname{rep}(Q, J^2, A) \longrightarrow A \operatorname{-mod}.$

We need the adjoint pair $(-\otimes_k P(i), -_i)$.

Lemma 2.2 For each object $X = (X_i, X_{ji}, i, j \in Q_0) \in \Lambda$ -mod and each A-module M, we have the following isomorphisms of abelian groups, which are natural in both positions

(2.2)
$$\operatorname{Hom}_{\Lambda}(M \otimes_{k} P(i), X) \cong \operatorname{Hom}_{A}(M, X_{i}), \quad i \in Q_{0}.$$

Proof For $f = (f_k, k \in Q_0) \in \text{Hom}_{\Lambda}(M \otimes_k P(i), X)$, we have $f_i \in \text{Hom}_A(M, X_i)$. Since $M \otimes_k P(i) = (M \otimes_k e_k(kQ/J^2)e_i, \text{id }_M \otimes \alpha, k \in Q_0, \alpha \in Q_1)$, it follows from the commutative diagram (2.1) that

(2.3)
$$f_k = \begin{cases} 0, & \text{if there is no arrow from } i \text{ to } k \\ m \otimes_k \alpha \mapsto X_{ik} f_i(m), & \text{if there is an arrow } \alpha \text{ from } i \text{ to } k. \end{cases}$$

By (2.3) we see that $f \mapsto f_i$ gives an injective map

$$\operatorname{Hom}_{\Lambda}(M \otimes_k P(i), X) \longrightarrow \operatorname{Hom}_A(M, X_i).$$

This map is also surjective, since for a given $f_i \in \text{Hom}_A(M, X_i)$, $f = (f_k, k \in Q_0)$ given by (2.3) is indeed a morphism in rep (Q, J^2, A) from $M \otimes_k P(i)$ to X.

Exact Morphism Category and Gorenstein-projective Representations

Proposition 2.3 The indecomposable projective Λ -modules have the form $P \otimes_k P(i)$, where P is an indecomposable projective A-module and P(i) is the indecomposable projective kQ/J^2 -module at $i \in Q_0$.

Proof As a direct summand of the regular Λ -module $_{\Lambda}\Lambda$, we see that $P \otimes_k P(i)$ is a projective Λ -module, and each projective Λ -module has this form. By (2.2) we have

 $\operatorname{End}_{\Lambda}(P \otimes_k P(i)) \cong \operatorname{Hom}_A(P, (P \otimes_k P(i))_i) = \operatorname{End}_A(P),$

from which we see that $P \otimes_k P(i)$ is indecomposable.

3 Gorenstein-projective Modules in $rep(Q, J^2, A)$

Let *A* and *B* be rings, let *M* be an *A*-*B*-bimodule, and let $\Lambda = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ be the upper triangular matrix ring, where the addition and the multiplication are given by those of matrices. We assume that Λ is an Artin algebra ([ARS, p. 72]) and consider finitely generated Λ -modules. A Λ -module can be identified with a triple $\begin{pmatrix} X \\ Y \end{pmatrix}_{\phi}$, or simply $\begin{pmatrix} X \\ Y \end{pmatrix}_{\phi}$ if ϕ is clear, where $X \in A$ -mod, $Y \in B$ -mod, and $\phi: M \otimes_B Y \to X$ is an *A*-map. A Λ -map $\begin{pmatrix} X \\ Y \end{pmatrix}_{\phi} \to \begin{pmatrix} X' \\ Y' \end{pmatrix}_{\phi'}$ can be identified with a pair $\begin{pmatrix} f \\ g \end{pmatrix}$, where $f \in \text{Hom}_A(X, X')$, $g \in \text{Hom}_B(Y, Y')$, such that the diagram

$$\begin{array}{c|c} M \otimes_B Y & \stackrel{\phi}{\longrightarrow} X \\ & \text{id} \otimes_g \\ M \otimes_B Y' & \stackrel{\phi'}{\longrightarrow} X' \end{array}$$

commutes. A sequence of Λ -maps

$$0 \longrightarrow \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}_{\phi_1} \xrightarrow{(f_1)} \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix}_{\phi_2} \xrightarrow{(f_2)} \begin{pmatrix} X_3 \\ Y_3 \end{pmatrix}_{\phi_3} \longrightarrow 0$$

is exact if and only if $0 \longrightarrow X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \longrightarrow 0$ is an exact sequence of *A*-maps and $0 \longrightarrow Y_1 \xrightarrow{g_1} Y_2 \xrightarrow{g_2} Y_3 \longrightarrow 0$ is an exact sequence of *B*-maps. Indecomposable projective Λ -modules are exactly $\binom{P}{0}$ and $\binom{M \otimes_B Q}{Q}_{id}$, where *P* runs over indecomposable projective *A*-modules, and *Q* runs over indecomposable projective *B*-modules.

Note that an algebra Λ is of the form above if and only if there is an idempotent decomposition 1 = e + f such that $f\Lambda e = 0$; and in this case $\Lambda = \begin{pmatrix} e\Lambda e & e\Lambda f \\ 0 & f\Lambda f \end{pmatrix}$.

The Gorenstein-projective Λ -modules have been studied in many papers, including [LZ1, LZ2, XZ, Z1, Z2]. In [Z2], Zhang researched $\mathcal{GP}(\Lambda)$ in a more general setup. He described the Gorenstein-projective Λ -modules when ${}_{A}M_{B}$ is a compatible A-B-bimodule. For an A-B-bimodule M with proj. dim $M_{B} < \infty$, if proj. dim ${}_{A}M < \infty$, then M is compatible.

Theorem 3.1 ([Z2]) Let M be a compatible A-B-bimodule, and $\Lambda = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$. Then $\begin{pmatrix} X \\ Y \end{pmatrix}_{\phi} \in \mathfrak{SP}(\Lambda)$ if and only if $\phi: M \otimes_B Y \to X$ is an injective A-map, Coker $\phi \in \mathfrak{SP}(A)$, and $Y \in \mathfrak{SP}(B)$.

The aim of this section is to prove the following characterization of Gorensteinprojective Λ -modules, where Λ is the path algebra of a finite acyclic quiver with relations (Q, J^2) over a finite-dimensional algebra A. That is to say, $\Lambda = A \otimes_k kQ/J^2$ and it is not assumed to be Gorenstein.

Theorem 3.2 Let (Q, J^2) be a finite acyclic quiver with relations J^2 and without multiple arrows, and let A be a finite-dimensional algebra over a field k. Let $\Lambda = A \otimes_k kQ/J^2$, and let $X = (X_i, X_{ji}, i, j \in Q_0)$ be a Λ -module. Then $X \in \mathcal{GP}(\Lambda)$ if and only if $X \in exa(Q, J^2, A)$ and X satisfies the following condition (Gp), where

(*Gp*) For each $i \in Q_0$, $X_i \in \mathcal{GP}(A)$ and the quotient $X_i/(\bigoplus_{i \in Q_0} \operatorname{Im} X_{ii}) \in \mathcal{GP}(A)$.

Theorem 3.2 will be proved by using Theorem 3.1 and induction on the number of vertices $|Q_0|$.

Remember that we label Q_0 as 1, ..., n, such that j > i if $\alpha: j \to i$ is an arrow in Q_1 . Thus *n* is a source of *Q*. Denote by *Q'* the quiver obtained from *Q* by deleting the vertex *n*, and $\Lambda' = A \otimes_k kQ'/J^2$. Let P(n) be the indecomposable projective (left) kQ/J^2 -module at vertex *n*. Put $P = A \otimes_k \operatorname{rad} P(n)$. Clearly, *P* is a Λ' -*A*-bimodule and $\Lambda = \begin{pmatrix} \Lambda' & P \\ 0 & A \end{pmatrix}$.

Since the global dimension of $\Lambda' = kQ/J^2$ is finite, rad P(n) has finite projective dimension as a Λ' -module, and hence $P = A \otimes_k \operatorname{rad} P(n)$ has finite projective dimension as a left Λ' -module. Since as a right A-module, P is a direct sum of copies of A_A , then P is a right projective A-module. That is to say, M is a compatible A-B-bimodule. So we can apply Theorem 3.1. For this, we write a Λ -module $X = (X_i, X_{ji}, i, j \in Q_0)$ as $X = {X \choose X_n}_{\phi}$, where $X' = (X_i, X_{ji}, i, j \in Q'_0)$ is a Λ' -module, and $\phi: P \otimes_A X_n \to X'$ is a Λ' -map. The explicit expression of ϕ will be given in the proof of Lemma 3.4 below. We keep all these notations of Q', Λ' , P(n), P, X' and ϕ , throughout this section.

By a direct translation from Theorem 3.1 in this special case, we have the following lemma.

Lemma 3.3 Let $X = {X' \choose X_n}_{\phi}$ be a Λ -module. Then $X \in \mathcal{GP}(\Lambda)$ if and only if X satisfies the following conditions:

- (i) $X_n \in \mathcal{GP}(A)$;
- (ii) $\phi: P \otimes_A X_n \to X'$ is an injective Λ' -map;
- (iii) Coker $\phi \in \mathcal{GP}(\Lambda')$.

Lemma 3.4 Let $X = (X_i, X_{ji}, i, j \in Q_0)$ be a Λ -module. Then X_{ni} is an injective A-map whenever there is an arrow from n to i if and only if $\phi: P \otimes_A X_n \to X'$ is an injective Λ' -map.

Proof For $i \in Q'_0$, let

$$m_i = \begin{cases} 0, & \text{if there is no arrow from } n \text{ to } i, \\ 1, & \text{if there is an arrow from } n \text{ to } i. \end{cases}$$

Exact Morphism Category and Gorenstein-projective Representations

As a kQ'/J^2 -module, rad P(n) can be written as $\binom{k^{m_i}}{k^{m_{n-1}}}$ (when $m_i = 0$, we regard as $k^{m_i} = 0$), hence we have isomorphisms of Λ' -modules

$$P \otimes_A X_n \cong (\operatorname{rad} P(n) \otimes_k A) \otimes_A X_n \cong \operatorname{rad} P(n) \otimes_k X_n \cong \begin{pmatrix} X_n^{m_1} \\ \vdots \\ X_n^{m_{n-1}} \end{pmatrix}.$$

Then ϕ is of the form

$$\begin{pmatrix} \phi_1 \\ \vdots \\ \phi_{n-1} \end{pmatrix} : P \otimes_A X_n \cong \begin{pmatrix} X_n^{m_1} \\ \vdots \\ X_n^{m_{n-1}} \end{pmatrix} \longrightarrow \begin{pmatrix} X_1 \\ \vdots \\ X_{n-1} \end{pmatrix},$$

where $\phi_i = X_{ni}: X_n \to X_i$ if there is an arrow from *n* to *i*, and otherwise, $X_n^{mi} = 0$ implies $\phi_i = 0$. So ϕ is injective if and only if X_{ni} is injective whenever there is an arrow from *n* to *i*.

Remark From the proof of the lemma above, we know that

$$\operatorname{Coker} \phi = (X_i / \operatorname{Im} X_{ni}^{m_i}, \widetilde{X_{ji}}, i, j \in Q'_0).$$

where $\widetilde{X_{ji}}: X_j / \operatorname{Im} X_{nj}^{m_j} \to X_i / \operatorname{Im} X_{ni}^{m_i}$ is induced by the *A*-map $X_{ji}: X_j \to X_i$.

Lemma 3.5 Let $X = {X' \choose X_n}_{\phi}$ be an exact Λ -module. Then we have (i) ϕ is an injective Λ' -map;

(ii) Coker ϕ is an exact Λ' -module.

Proof By the definition of exact Λ -modules, (i) follows directly from Lemma 3.4. For (ii), we need to prove the following:

- (a) For each $i \in Q'_0$, $\sum_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}} = \bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}}$.
- (b) For each source i in Q'₀, X_{ik} is an injective A-map whenever there is an arrow from i to k.
- (c) For each $i \in Q'_0$ that is not a source, Ker $\widetilde{X_{ik}} = \bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}}$. For (a), we assume that

$$\sum_{j \in Q_0'} \overline{X_{ji}(x_j)} = 0$$

where $\overline{X_{ji}(x_j)}$ is the image of $x_j \in X_j$ in $X_i / \operatorname{Im} X_{ni}^{m_i}$. Then

$$\sum_{j \in Q'_0} X_{ji}(x_j) \in \operatorname{Im} X^{m_i}_{ni}$$

If $m_i = 0$, then $X_{ni}^{m_i} = 0$ and $\sum_{j \in Q'_0} X_{ji}(x_j) = \sum_{j \in Q_0} X_{ji}(x_j)$. Since X is an exact Λ -module, then $X_{ji}(x_j) = 0$ for all possible $j \in Q'_0$. If $m_i = 1$, then $\sum_{j \in Q'_0} X_{ji}(x_j) = X_{ni}(x'_n)$ for some $x'_n \in X_n$. Then $\sum_{j \in Q_0} X_{ji}(x_j) = 0$, where $x_n = -x'_n$. Since X is an exact Λ -module, then $X_{ji}(x_j) = 0$ for all possible $j \in Q'_0$. The assertion (a) is proved.

Since *i* is a source in Q', then there is either an arrow from *n* to *i* or *i* is a source in *Q*. We prove (b) in the following four cases:

(1) If there is an arrow from *n* to *i* and one from *n* to *k*, then

$$X_{ik}: X_i / \operatorname{Im} X_{ni} \to X_k / \operatorname{Im} X_{nk},$$

which is induced by $X_{ik}: X_i \to X_k$ in X. Since X is an exact Λ -module, then Im $X_{ik} \cap \text{Im } X_{nk} = 0$. Hence Ker $\widetilde{X_{ik}} = \{x \in X_i | X_{ik}(x) = 0\}/\text{Im } X_{ni} =$ Ker $X_{ik}/\text{Im } X_{ni}$. Since X is an exact representation and there is only one arrow in Q ending at *i*, then Ker $X_{ik} = \text{Im } X_{ni}$. Hence Ker $\widetilde{X_{ik}} = 0$. That is to say, $\widetilde{X_{ik}}$ is an injective A-map.

(2) If there is an arrow from n to i and no arrow from n to k, then

$$X_{ik}: X_i / \operatorname{Im} X_{ni} \to X_k,$$

which is induced by $X_{ik}: X_i \to X_k$ in X. So Ker $\widetilde{X_{ik}} = \text{Ker } X_{ik} / \text{Im } X_{ni}$. Since there is only one arrow ending at *i* and X is an exact Λ -module, then Ker $X_{ik} = \text{Im } X_{ni}$. So $\widetilde{X_{ik}}$ is an injective A-map.

(3) If i is a source in Q and there is an arrow from n to k, then

$$X_{ik}: X_i \to X_k / \operatorname{Im} X_{nk},$$

which is induced by $X_{ik}: X_i \to X_k$ in X. So Ker $\widetilde{X_{ik}} = \{x \in X_i | X_{ik}(x) \in \text{Im } X_{nk}\}$. Since Im $X_{ik} \cap \text{Im } X_{nk} = 0$, then Ker $\widetilde{X_{ik}} = \text{Ker } X_{ik}$. Since *i* is source in Q, then Ker $X_{ik} = 0$. So $\widetilde{X_{ik}}$ is an injective A-map.

(4) If *i* is a source in *Q* and there is no arrow from *n* to *k*, then $\widetilde{X_{ik}} = X_{ik}$. Since *X* is an exact Λ -module, then $\widetilde{X_{ik}}$ is an injective *A*-map.

For (c), since X is a Λ -module, then $\bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}} \subseteq \operatorname{Ker} \widetilde{X_{ik}}$. Let $x_i \in X_i$ and $\widetilde{X_{ik}}(\overline{x_i}) = 0$, *i.e.*, $X_{ik}(x_i) \in \operatorname{Im} X_{nk}^{m_k}$. If $m_k = 0$, then $X_{ik}(x_i) = 0$, namely, $x_i \in \operatorname{Ker} X_{ik}$. If $m_k = 1$, then $X_{ik}(x_i) = X_{nk}(x_n)$ for some $x_n \in X_n$. So $X_{ik}(x_i) = 0$ which follows from $\operatorname{Im} X_{ik} \cap \operatorname{Im} X_{nk} = 0$. Since X is an exact Λ -module, then $x_i \in \bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}$. Hence $\overline{x_i} \in \bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}}$. This completes the proof.

Lemma 3.6 Let $X = {\binom{X'}{X_n}}_{\phi}$ be an exact Λ -module satisfying (Gp). Then Coker ϕ satisfies (Gp), i.e., for each $i \in Q'_0$, $X_i / \operatorname{Im} X_{ni}^{m_i}$ and $(X_i / \operatorname{Im} X_{ni}^{m_i}) / (\bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}})$ are Gorenstein-projective modules.

Proof Following from the short exact sequence

$$0 \longrightarrow \bigoplus_{j \in Q_0} \operatorname{Im} X_{ji} \longrightarrow X_i \longrightarrow X_i / \left(\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji} \right) \longrightarrow 0$$

and that X satisfies (Gp), we know that $\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}$ is Gorenstein-projective. So $X_i / \operatorname{Im} X_{ni}^{m_i}$ is Gorenstein-projective following from the short exact sequence

$$0 \longrightarrow \left(\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}\right) / \operatorname{Im} X_{ni}^{mi} \longrightarrow X_i / \operatorname{Im} X_{ni}^{m_i} \longrightarrow X_i / \left(\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}\right) \longrightarrow 0.$$

Since for each $i \in Q'_0$,

$$\bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}} = \left(\sum_{j \in Q'_0} \operatorname{Im} X_{ji} + \operatorname{Im} X_{ni}^{m_i} \right) / \operatorname{Im} X_{ni}^{m_i} = \sum_{j \in Q_0} \operatorname{Im} X_{ji} / \operatorname{Im} X_{ni}^{m_i},$$

then $(X_i/\operatorname{Im} X_{ni}^{m_i})/(\bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}}) \cong X_i/(\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji})$ is a Gorenstein-projective module, because X satisfies (Gp). So Coker ϕ satisfies (Gp).

Lemma 3.7 The sufficiency in Theorem 3.2 holds. That is, if $X = (X_i, X_{ji}, i, j \in Q_0)$ is an exact Λ -module satisfying (Gp), then X is Gorenstein-projective.

Proof Using induction on $n = |Q_0|$. The assertion clearly holds for n = 1. Suppose that the assertion holds for n - 1 with $n \ge 2$. It suffices to prove that X satisfies conditions (i), (ii), and (iii) of Lemma 3.3.

Condition (i) is contained in (Gp), and condition (ii) follows from Lemma 3.5(i). By Lemma 3.5(ii), Coker ϕ is an exact Λ' -module, and by Lemmas 3.6, we know that Coker ϕ satisfies (Gp). It follows from the inductive hypothesis that condition (iii) in Lemma 3.3 is satisfied.

Proof of Theorem 3.2 By Lemma 3.7, it remains to prove the necessity, *i.e.*, if *X* is a Gorenstein-projective Λ -module, then *X* is an exact Λ -module satisfying (*Gp*). We use induction on $n = |Q_0|$. The assertion is clear for n = 1. Suppose that the assertion holds for n - 1 with $n \ge 2$. We write as $X = {X' \choose X_n}_{\phi}$. Then *X* satisfies conditions (i), (ii), and (iii) in Lemma 3.3.

By condition (ii) and Lemma 3.4 we know that:

(1) X_{ni} is an injective A-map whenever there is an arrow from *n* to *i*.

Since Coker $\phi = (X_i / \operatorname{Im} X_{ni}^{m_i}, \widetilde{X_{ji}}, i, j \in Q'_0)$ is a Gorenstein-projective Λ' -module, it follows from the inductive hypothesis that the following properties hold:

- (2) For each source $i \in Q'_0$, X_{ik} is injective whenever there is an arrow from *i* to *k* in Q'.
- (3) For each $i \in Q'_0$ which is not a source, $\sum_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}} = \bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}}$.
- (4) For each i ∈ Q'₀ which is not a source, if there is an arrow from i to k, then we have Ker X_{ik} = ⊕_{i∈Q'₀} Im X_{ji}.
- (5) For each $i \in Q'_0, X_i / \operatorname{Im} X_{ni}^{m_i}$ and $(X_i / \operatorname{Im} X_{ni}^{m_i}) / \bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}}$ are Gorenstein-projective A-modules.

Claim 1: For each $i \in Q_0$ which is not a source, $\sum_{j \in Q_0} \operatorname{Im} X_{ji} = \bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}$. If there is no arrow from *n* to *i*, then

$$\widetilde{X_{ji}}: X_j / \operatorname{Im} X_{nj}^{m_j} \to X_i$$

with $\operatorname{Im} \widetilde{X_{ji}} = \operatorname{Im} X_{ji}$. So by (3),

$$\sum_{j \in Q_0} \operatorname{Im} X_{ji} = \bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}$$

If there is an arrow from *n* to *i*, then $\widetilde{X_{ji}}: X_j / \operatorname{Im} X_{nj}^{m_j} \to X_i / \operatorname{Im} X_{ni}$ with $\operatorname{Im} \widetilde{X_{ji}} = (\operatorname{Im} X_{ji} + \operatorname{Im} X_{ni}) / \operatorname{Im} X_{ni}$. Let $\sum_{j \in Q_0} X_{ji}(x_j) = 0$ with $x_j \in X_j$, then $\sum_{j \in Q'_0} X_{ji}(x_j) = -X_{ni}(x_n)$. So $\sum_{j \in Q'_0} \overline{X_{ji}(x_j)} = 0$, where $\overline{X_{ji}(x_j)}$ is the image of $x_j \in X_j$ in $X_i / \operatorname{Im} X_{ni}$. By (3), we have $\overline{X_{ji}(x_j)} = 0$, *i.e.*, $x_j \in \operatorname{Ker} \widetilde{X_{ji}}$. By (4), we have $x_j \in \sum_{k \in Q'_0} \operatorname{Im} X_{kj} + \operatorname{Im} X_{nj}^{m_j}$, namely, $x_j \in \sum_{k \in Q_0} \operatorname{Im} X_{kj}$. Hence there is some $x'_k \in X_k$ such that $x_j \in \sum_{k \in Q_0} X_{kj}(x'_k)$. Since X is a Λ -module, $X_{ji}(x_j) = \sum_{k \in Q_0} X_{ji}X_{kj}(x'_k) = 0$ for $j \in Q'_0$, moreover, $X_{ni}(x_n) = 0$. This proves Claim 1.

Claim 2: For each source $i \in Q_0$, X_{ik} is an injective *A*-map whenever there is an arrow from *i* to *k* in Q_1 .

If $i \in Q_0$ is a source in Q and $i \neq n$, then by (2)

$$X_{ik}: X_i \to X_k / \operatorname{Im} X_{nk}^{m_k}$$

is an injective A-map induced by $X_{ik}: X_i \to X_k$. So X_{ik} is injective. Together with (1), we know that Claim 2 is true.

Claim 3: For each $i \in Q_0$ which is not a source, Ker $X_{ik} = \bigoplus_{j \in Q_0} \text{Im } X_{ji}$. Since

$$\widetilde{X_{ik}}: X_i / \operatorname{Im} X_{ni}^{mi} \to X_k / \operatorname{Im} X_{nk}^{mk}$$

is induced by $X_{ik}: X_i \to X_k$ in X and by Claim 2, Im $X_{ik} \cap \text{Im } X_{nk}^{mk} = 0$, then Ker $\widetilde{X_{ik}} = \text{Ker } X_{ik} / \text{Im } X_{ni}^{m_i}$. By (4), we have

$$\operatorname{Ker} \widetilde{X_{ik}} = \left(\bigoplus_{j \in Q'_0} \operatorname{Im} X_{ji} + \operatorname{Im} X_{ni}^{m_i} \right) / \operatorname{Im} X_{ni}^{m_i}.$$

Hence Ker $X_{ik} = \bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}$.

Claim 4: X satisfies (Gp), namely, for each $i \in Q_0$, X_i and $X_i / \bigoplus_{j \in Q_0} \text{Im } X_{ji}$ are Gorenstein-projective A-modules. Since

$$(X_i/\operatorname{Im} X_{ni}^{m_i}) / \left(\bigoplus_{j \in Q'_0} \operatorname{Im} \widetilde{X_{ji}} \right) \cong (X_i/\operatorname{Im} X_{ni}^{m_i}) / \left(\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji}/\operatorname{Im} X_{ni}^{m_i} \right)$$
$$\cong X_i / \left(\bigoplus_{i \in Q_0} \operatorname{Im} X_{ji} \right),$$

 $X_i/(\bigoplus_{j \in Q_0} \operatorname{Im} X_{ji})$ is a Gorenstein-projective *A*-module by (5). If there is no arrow from *n* to *i*, then $X_i/\operatorname{Im} X_{ni}^{m_i} = X_i$ is a Gorenstein-projective *A*-module by (5). If there is an arrow from *n* to *i*, then $X_i/\operatorname{Im} X_{ni}^{m_i} = X_i/\operatorname{Im} X_{ni}$. Since X_n is a Gorenstein-projective *A*-module and X_{ni} is an injective *A*-map, then

$$0 \to X_n \to X_i \to X_i / \operatorname{Im} X_{ni} \to 0$$

is a short exact sequence. Note that $\mathcal{G}p(A)$ is closed under extension. So X_i is a Gorenstein-projective A-module for each $i \in Q_0$. Hence, Claim 4 holds.

Summarizing the above claims, we have that *X* is an exact Λ -module satisfying (Gp).

4 Corollaries

As a consequence of Theorem 3.2 and Proposition 2.3, we have the following characterization of self-injectivity.

Corollary 4.1 Let A be a finite-dimensional algebra and Q a finite acyclic quiver. Then the following are equivalent:

- (i) *A is self-injective*;
- (ii) $\mathcal{GP}(A \otimes_k kQ/J^2) = \exp(Q, J^2, A).$

Proof (i) \Rightarrow (ii): If *A* is self-injective, then every *A*-module is Gorenstein-projective, and hence (ii) follows from Theorem 3.2.

(ii) \Rightarrow (i): Take a sink of Q, say vertex 1, and consider $D(A_A) \otimes_k P(1)$. By the definition of exact representations, we know that $D(A_A) \otimes_k P(1) \in exa(Q, J^2, A)$. By

(ii), $D(A_A) \otimes_k P(1)$ can be embedded into a projective Λ -module P. So $D(A_A)$ can be embedded into the first branch P_1 of P. Since $D(A_A)$ is an injective A-module, then it is a direct summand of P_1 . By Lemma 2.3, we know that P_1 is a projective A-module. This implies that $D(A_A)$ is a projective A-module, namely, A is self-injective.

Let $D^b(\Lambda)$ be the bounded derived category of Λ , and let $K^b(\mathcal{P}(\Lambda))$ be the bounded homotopy category of $\mathcal{P}(\Lambda)$. By definition the singularity category $D^b_{sg}(\Lambda)$ of Λ is the Verdier quotient $D^b(\Lambda)/K^b(\mathcal{P}(\Lambda))$. In [Hap], Happel has proved that if Λ is Gorenstein, then there is a triangle-equivalence $D^b_{sg}(\Lambda) \cong \underline{\mathcal{GP}}(\Lambda)$, where $\underline{\mathcal{GP}}(\Lambda)$ is the stable category of $\mathcal{GP}(\Lambda)$ modulo $\mathcal{P}(\Lambda)$ (see also [Hap, Theorem 4.6]). Note that if Λ is Gorenstein, then $\Lambda = A \otimes_k kQ/J^2$ is Gorenstein (see [AR2]). So we have the following corollary.

Corollary 4.2 Let A be a finite-dimensional Gorenstein algebra, and let (Q, J^2) be a finite acyclic quiver with relations J^2 and without multiple arrows. Let $\Lambda = A \otimes_k kQ/J^2$. Then there is a triangle-equivalence $D_{sg}^b(\Lambda) \cong \underline{\mathfrak{GP}}(\Lambda)$. In particular, if A is self-injective, then there is a triangle-equivalence $D_{sg}^b(\Lambda) \cong \underline{\mathfrak{GP}}(\Lambda)$.

References

- [AB] M. Auslander and M. Bridger, Stable module theory. Mem. Amer. Math. Soc., 94, American Mathematical Society, Providence, RI, 1969.
- [AM] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc. 85(2002), no. 2, 393–440. http://dx.doi.org/10.1112/S0024611502013527
- [AR1] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories. Adv. Math. 86(1991), no. 1, 111–152. http://dx.doi.org/10.1016/0001-8708(91)90037-8
- [AR2] M. Auslander and I. Reiten, Cohen-Macaulay and Gorenstein artin algebras. In: Representation theory of finite groups and finite-dimensional algebras (Proc. Conf. at Bielefeld, 1991), Progr. Math., 95, Birkhäuser, Basel, 1991, pp. 221–245.
- [ARS] M. Auslander, I. Reiten, and S. O. Smalø, Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511623608
- [B] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J. Algebra 288(2005), no. 1, 137–211. http://dx.doi.org/10.1016/j.jalgebra.2005.02.022
- [EJ1] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules. Math. Z. 220(1995), no. 4, 611–633. http://dx.doi.org/10.1007/BF02572634
- [EJ2] _____, Relative homological algebra. de Gruyter Expositions in Mathematics, 30, Walter de Gruyter Co., Berlin, 2000.
- [GZ] N. Gao and P. Zhang, Gorenstein derived categories. J. Algebra 323(2010), no. 7, 2041–2057. http://dx.doi.org/10.1016/j.jalgebra.2010.01.027
- [Hap] D. Happel, On Gorenstein algebras. In: Representation theory of finite groups and finite-dimensional algebras, Prog. Math., 95, Birkhaüser, Basel, 1991, pp. 389–404.
- [IKM] O. Iyama, K. Kato, and J. I. Miyachi, Recollement on homotopy categories and Cohen-Macaulay modules. J. K-Theory 8(2011), no. 3, 507–542. http://dx.doi.org/10.1017/is011003007jkt143
- [LZ1] Z. W. Li and P.Zhang, A construction of Gorenstein-projective modules. J. Algebra 323(2010), no. 6, 1802–1812. http://dx.doi.org/10.1016/j.jalgebra.2009.12.030
- [LZ2] X.-H.Luo and P.Zhang, Monic representations and Gorenstein-projective modules. Pacific J. Math. 264(2013), no. 1, 163–194. http://dx.doi.org/10.2140/pjm.2013.264.163
- [XZ] B.-L. Xiong and P.Zhang, Gorenstein-projective modules over triangular matrix Artin algebras. J. Algebra Appl. 11(2012), no. 4, 1250066. http://dx.doi.org/10.1142/S0219498812500661

X.-H. Luo

- [Z1] P.Zhang, Monomorphism categories, cotilting theory, and Gorenstein-projective modules. J. Algebra 339(2011), 181–202. http://dx.doi.org/10.1016/j.jalgebra.2011.05.018 Gorenstein-projective modules and symmetric recollements. J. Algebra 388(2013),
- [Z2] 65-80. http://dx.doi.org/10.1016/j.jalgebra.2013.05.008

Department of Mathematics, Nantong University, Nantong 226019, P. R. China e-mail: xiuhualuo2014@163.com