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GAP TAUBERIAN THEOREMS

JEFF CONNOR

In the first section we establish a connection between gap Tauberian conditions and
isomorphic copies of ¢o for perfect coregular conservative BK spaces and in the sec-
ond we give a characterisation of gap Tauberian conditions for strong summability
with respect to a nonnnegative regular summability matrix. These results are used
to show that a gap Tauberian condition for strong weighted mean summability is
also a gap Tauberian condition for ordinary weighted mean summability. We also
make a remark regarding the support set of a matrix and give a Tauberian theorem
for a class of conull spaces.

In this note we make some remarks regarding gap Tauberian theorems in the con-
text of some settings associated with strong and ordinary summability. In the first part
of this paper we provide an interpretation that leads to the construction of isomor-
phic copies of ¢y and establish a partial converse. In the second we characterise the
gap Tauberian conditions for strong summability with respect to a nonnegative regular
summability matrix. In a later section we restate this characterisation in terms of the
support set of the matrix. We also apply these results to weighted mean summability
methods and, as a bonus, we establish an analog of a gap Tauberian theorem for a large
collection of conull spaces.

We use the standard notation of summability and Banach space theory as it is found
in (4] and [13]. Let w = {all scalar sequences}, ¢ = {z € w : z is finitely nonzero} and
let ¢y, ¢, and lo denote the vector subspaces of w consisting of, respectively, the null
sequences, the convergent sequences and the bounded sequences. We also let e* =the
kth unit vector, e = (1,1,1,...), and, if E is a Banach space, we let E' denote its
continuous dual. If § is a subset of a Banach space E, we let [S]g denote the closed
linear span of S in E. A BK space is a Banach space which is a vector subspace of w
that has the property the inclusion map from E into w is continuous when w is given
the topology of coordinatewise convergence . A BK space E is said to be conservative
if ¢ C E and is said to be perfect if [c]g = E. We recall that if E and F are BK spaces

and E is contained in F, then the inclusion map from E into F is continuous.
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An infinite array of scalars T' = (tn k), 1=1 oo 18 called a regular summability matriz

provided im ) t, xzi = liin zx whenever ¢ = (zx) € c¢. The matrix T is called a
L

triangle if t,, # 0 for all n € N and n < k implies ¢, = 0. If z € w and
>t .z exists for all n € N, we let Tz denote the sequence (Y ¢ ,zi:n € N). Let
E ™

cqp ={z €w:Tz €c}. ¢ is called the convergence domain of T and if z € c,, we say
that z is T -summable and set T —limz = lim ) t, szs. It is well-known that if T is
n
k

= 1Tl oo -

a triangle, then ¢, is a BK space with the norm ||z|| =sup |} ¢, ,z&
n |k !

Throughout this note we let v: NU {0} — N U {0} denote an increasing function
with 4(0) = 0 and set

G(7) = {z € w: zx — zp4+1 # 0 implies there exists 7 € N such that k = v(r)}.

A gap Tauberian theorem for a matrix summability method T generally asserts that if
~ satisfies some condition depending on T', z € G(v) and Tz € ¢ then z is convergent.

With this in mind, we say that, for a sequence space E, G(v) is a gap Tauberian

¥(r+1) |
condition for E if ENG(y) C c. For a given v, weset b"(y) = Y €.
i>y(r)

1. GAP TAUBERIAN CONDITIONS AND ISOMORPHIC COPIES OF c¢p

The results in this section follow from the fundamental properties of BK spaces and
the Bessaga-Pelcznyski characterisation of Banach spaces containing isomorphic copies
of ¢g.

THEQREM 1.1. Let E be a conservative BK space and v an increasing sequence
of integers with 4(0) = 0. If G(v) is a gap Tauberian condition for E and (b"(v)) is
basic in E, then (b"(7)) is equivalent to cg ’s unit vector basis and the norm of E and
co are equivalent on Z = [(b"(7))]|E C co.

PROOF: Let b™ = b"(y). First note that inf ||b7||z > 0. If not, then there is a

r
subsequence (b7) of (b7) such that ||b7||; < 27! foreach I€ N. Now z =}"b" € E

and it can be arranged for z to have both 0 and 1 as limit points. As z € 'G('y) NE
and z ¢ ¢, G(v) is not a gap Tauberian condition for E.

Observe that, since ¢o C E and the inclusion map is continuous, Y, |f(d")] < oo
for all f € E'. Since (b7) is basic in E, (b") is equivalent to cg’s unit v;ctor basis [4,
p-45].

The remainder of the claim follows from noting that Z C ¢y and that the inclusion
maps from Z into ¢ and from ¢y into E are each continuous. 1
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The converse of the preceding proposition is obviously false: If E = [, and
¥(r) = r then (b7(q)) is basic, Z = ¢y and G(7) Nle = lc. We can, however,
establish a partial converse by making suitable restrictions on E. First, in order to
avoid our counterexample, we assume that E is perfect. Also recall that if G(vy) is a
gap Tauberian condition for a conservative BK space E, then E must be coregular,
that is, there must be an f € E' such that f(e) # Y f(e*) [3].

k

A BK space F is said to have a monotone norm if, forall z = (zx) € E andn € N,
n n+1 n
3 zpe* 3 zek > zge*|| . Observe that if E hasa
k=1 k=1

E E k=1 E
monotone norm, then (b7(v)) is basic for any v [4, p.36] and [¢NG(y)]E = [p]eNG(¥).

<

and [lz]| 5 = sup
n

THEOREM 1.2. Let E be a perfect coregular BK space with a monotone norm.
Then G(v) is a gap Tauberian condition for E if and only if {b"(7)) is equivalent to
co ’s unit vector basis.

PROOF: Since E has a monotone norm, we have that (b"(y)) is basic in E and
hence, if G(v) is a gap Tauberian condition for E, the preceding result yields that
(b"(v)) is equivalent to cp’s unit vector basis.

Now suppose that (b7(v)) is equivalent to co’s unit vector basis. Note that if
w € G(y)N[(e*)g = [(b"(7))]E, then thereis a z = (z,) € ¢o such that w = ) z,.b"

and hence w € ¢y

Next note that, since E is coregular and (e*) is basicin E, e ¢ [p]g. Since E is
perfect, it follows that if z € E, then there is a scalar A, and a w; € [p]g such that
¢=Mxe+w,. f z€ G(y)NE, then w, € G(¥) N [p]g and hence z is convergent to

Az 0

CorROLLARY 1.3. Every perfect coregular conservative BK space with a mono-
tone norm has a gap Tauberian condition.

PROOF: Observe that, since E is coregular, 3 e* does not converge in E. It
E

follows that there is a 4 and a § > 0 such that

¥(r+1)

Zek > 6

k>~(r)
for all » € N. Now, since E is conservative, Y |f(b"(7))| < oo for all f € E'. Thisis
enough to insure that (b"()) is equivalent to co’s unit vector basis and hence G(v) is
a gap Tauberian condition for E.

COROLLARY 1.4. Let T be a triangular regular matrix summability matrix
such that ¢, is a BK space with a monotone norm. Then there is a subspace W of ¢y
such that T restricted to W is an isomorphism onto its range.
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PROOF: Since T is a regular triangle, Fridy {6] has shown that there is a v such
that G(v) is a gap Tauberian condition for ¢,. Now, since (b"(y)) is equivalent to
co’s unit vector basis in ¢, (Td"()) is equivalent to co’s unit vector basis in co. Let
W = [(b"(7))]e, - Since (b7(y)) and (Tb"(y)) are both equivalent to co’s unit vector
basis, T acts as an isomorphism from W onto T(W). 1]

2. GAP TAUBERIAN THEOREMS FOR STRONG SUMMABILITY

In this section we characterise gap Tauberian conditions for strong summability
with respect to nonnegative regular summability matrices. Before giving our character-
isation, we recall a few definitions and facts.

If T is a nonnegative regular summability method, z € w and A is a scalar, we
say that z is strongly T -summable to X if li;nzt,,,k [z — A =0. If A C N, welet

k

I, denote the characteristic function of A. Finally we recall the following result [10,
4.1, 5).

THEOREM 2.1. Let T be a nonnegative regular summability method. If z is
strongly T -summable to A, then there is a subset A of N such that T —limI4 =1
and ]ilrcn (zk — A)Ia(k) =0.

THEOREM 2.2. Let T be a nonnegative regular summability method. Then the
following statements are equivalent.

(1) G(n) is a gap Tauberian condition for strong T -summability.
(2) Forall ACN suchthat T—limIy =1, (y(r),y(r+1)]N A #0 for all
but finitely many » € N.

¥(ne+1)
(3) limsupd, )  t_ , >0 for all increasing subsequences (n,) of natural
n r k>y(ne)

numbers.

Proo¥F: (1) implies (2): Suppose that (2) fails and that we have found 4 C N
such that T —limI4 = 1 and an increasing sequence (n,) of natural numbers such
that AN (y(n.),y(nr+1)] = 0 for all »r € N. Set B = |J (v(n.),7(n.+1)] and

reN

let £ = Ig. Since B C N — A, z is strongly T-summable to 0 and has both 0 and
1 as limit points. Since z € G(v), G(7) is not a gap-Tauberian condition for strong
T -summability.

(2) implies (1): Now suppose that v satisfies (2), z is strongly T-summable and
z € G(v). Without loss of generality, suppose that z is strongly T-summable to
0. Select A C N suchthat T —limI4 =1 and l.ilr.nzl,IA(k) =0.

Let 8 : N — N be an arbitrary increasing function. Select an increasing se-
quence of integers (n;) such that (y(m),y(ni+1))N{B(r) : » € N} # 0 and
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(r(ni),y(ni+1)]N A # 0 for all I € N. Now select natural numbers 8(I) and p(l)
such that B8(6(1)) € (v(ni),v(ni +1)] and p(l) € AN (y(n),y(ni+1)] for all I € N.
Note that, since z € G(7), zgey) = z,) for all I and, since p(l) € A, li?lzp(,) =0.
Hence every subsequence of z has a subsequence which converges to 0 and thus z
converges to 0.

The equivalence of (2) and (3) follows immediately from noting that, if B =

¥(ne+1)
U (v(n.),7(n, +1)], then T—limIp =0 if and only if imsup ), Y ¢ , =0. 0
€N nT E>ny)

3. AN APPLICATION TO WEIGHTED MEAN SUMMABILITY

In this section we apply the results of the preceding sections to weighted mean
summability methods generated by positive sequences. Let (px) be a sequence of non-

negative real numbers with p; > 0 and set P, = ), pix. The weighted mean summa-
k=1
bility matrix (R,p) is defined by (R,p),, = px/Pn for k < n and (R,p),, =0

otherwise.

Suppose that pr > 0 for all k. Then (R,p) is a triangle and hence its convergence
domain is can be regarded as a BK space where, if z is in the convergence domain of

(R,p), ||zl = sup P

. This is a monotone norm: Since {P,) is an increasing

n
Y Zepk
k=1

sequence, there is an [ € n such that . It now follows from

n
> zek
k=1

{
= Pz_l > ThPr
k=1

the definition of the norm that

n+1 1 n
szek 2P,_1 szpk = szek
k=1 k=1 k=1
n
and that ||z|| = sup||Y zxe*||. It is also straightforward to verify that (R,p) is a
n i1

type-M summability method and hence, if (R,p) is regular, its convergence domain is
a perfect coregular BK space [13, p.42].

THEOREM 3.1. Let p = (pi) be a sequence of positive numbers and suppose
that (R,p) is a regular weighted mean summability matrix. The following statements
are equivalent.

(1) G(«) is a gap Tauberian condition for (R,p) summability

(2) G(v) is a gap Tauberian condition for strong (R,p) summability

¥(r)
(3) inf P35y X pk >0
k>v(r—1)
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PROOF: (1) implies (2) follows immediately from the observation that, for any

nonnegative regular summability method T, if a sequence z is strongly 7'-summable
to A then T —limz = .

¥r)
(2) implies (3): Suppose that inf P_;'(i) > pr=0. Let (6,) be a sequence of pos-
r k>vy(r—1)
v(r)
tive numbers decreasing monotonically to 0. Select »; such that X "1) > m<
E>v(r-1)

6;. Now suppose that n > 1 and r; < .-+ < ro_; have been selected. First, using the
hypothesis that (R, p) is regular, select N such that { > N implies that

n-1  ¥(r)

Pl_l Z Z pr < 8, /2.

i=1 k>+(r;—1)

¥(rn)
Now select 7, such that y(r, —1) > N and P. 1(,_ ) 5> pr < 6,/2. Note that
k>~(rn—1)

n ¥(r¢)

‘Y("n)z: E pk<6

=1 k>'1(1" _1)

An elementary computation using the definition of (R,p) yields that if
1€ [¥(rn —1),7(Tn+1)), then

oo Y(ri+1) n (r)

Z Z (va’)x,ksp-,_(i,.)z z Pk < bn.

i=1 k>~(r;) =1 k>(r;—1)

It follows that
[~ <] ‘7(r|+1)

hmsupz Z (B,p)py =0

i=1 k>v(r;)

and hence, by 2.2(3), G(v4) is not a gap Tauberian condition for strong (R,p)-
summability.
(3) implies (1): Note that
()
inf ||67 (7)|| > inf Py D0 pe>0

k>v(r—1)

and, since (R, p) is regular, it follows that (b7(7y)) is equivalent to ¢o’s unit vector basis.
The result now follows from 1.2. 1]
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CorROLLARY 3.2. G(v) is a gap Tauberian condition for (R,p) if there is a

é > 0 such that
)
Pk
k>~(r—1)
¥(r-1)

Pk
k=1

>6

for all r € N..

REMARKS. 1. Recall that a conservative BK space F is conull if it is not coregular,
that is, f(e) = 3 f(e*) for all f € E'. It has been shown in [3] that, for any v and
k

any conull BK space E, G(7v) is never a gap Tauberian condition for E. It turns out,
however, that one can establish an analog of a gap Tauberian theorem for a large class
of conservative conull BK spaces.

Let » = (r,) be an increasing sequence of natural numbers with »; = 1. For
T Ew, let

Ol(z) = max{|zy — Zv| :Th LU <V < Tpp1}

and set
Qr) = {z € w : im O, (z) = 0}.

If we define ||z||, = z1 +sup OL(z), then (§(r),|| ||,) is a conservative conull BK space
n

[13, p.95]. Also, given an arbitrary conservative conull BK space E, there is an r such
that Q(») C E.
Now define Z(r) C w by

Z(r) = {z : thereis a scalar X such that zx = A if 72, < j < 7341 for all n € N}.

An elementary € — N argument yields that Z(r) N Q(r) C ¢, which we record via the
following proposition.

PROPOSITION 4.1. Z(r) is a Tauberian condition for Q(r).
T2n41 |
This is analogous to a gap Tauberian theorem in that { ) e’ :n € N) is equiv-
i>rn
alent to cp’s unit vector basis in Q(r).
2. Let T be a nonnegative regular summability matrix and ¢ = (z;) € w. For each
e >0 and A € R, let A(e,A) = {k : |zx — A| 2 €}. The sequence z is said to be
T -statistically convergent to A if T — lim I4(.») = 0 for all € > 0. It is known that if
z is strongly T-summable to A then z is T -statistically convergent to A and, if = is

bounded and T-statistically convergent to A, then z is strongly T'-summable to A [2].
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The above observations allow us to conclude that G(v) is a gap Tauberian condi-
tion for T-statistical convergence if and only if G(v) is a gap Tauberian condition for
strong T-summability. Since strong T'-summability implies T -statistical convergence,
a gap Tauberian condition for T-statistical convergence must also be a gap Tauberian
condition for strong T -summability. To establish the converse, suppose G(7) is a gap
Tauberian condition for strong T-summability and that z € G(y) is T -statistically
convergent to A. Define £ by Zp = 2z if |24 — A| <1 and Zx = A + 1 otherwise. Note
that Z is bounded and statistically convergent to A and hence strongly T-summable
to X. Now, since Z € G(v), Z, and hence z, is convergent to X.

When we restrict our attention to (R,p) where pg = 1 forall k, (R, p) is the Cesaro
mean (order 1) and (R, p)-statistical convergence is the usual statistical convergence as
discussed in [7] and [11]. Theorem 3.1 yields Fridy’s result that G(7) is a gap Tauberian
condition for statistical convergence if lim"inf v(n +1)/v(n) > 1 and its converse.

3. If we recall a few elementary facts about the Stone-Cech compactification of N,
the result of section 2 can be given an interpretation in the setting of N* = SN — N.
Recall that SN can be identified with the set of all ultrafilters on N [12, 8]. If p is an
ultrafilter on N, we say that p is a free ultrafilter if p does not contain a bounded subset
of N and recall that N* can be identified with the collection of all free ultrafilters on
N. If A C N, welet A* = {p € N*|A € p} and recall that {4*| A C N} is a base
of clopen sets for the relative topology on N*. Also recall that if z = (z,) € I,
then z can be extended to 2 € C(BN) by defining z?(p) = N{clr(z~(4)) | 4 € p}
for an ultrafilter p on N and that, for a sequence z € I, liF z, = A if and only if

P [ N* = ).
If T is a nonnegative regular summability matrix, the support set Kz of T is
defined by

Kr=[{A"|ACN, lim) ¢ ,I,(k)=1}.
k

The support set of a matrix was introduced in [9] and has been discussed by a number
of authors. Note that p € K1 if and only if p € A* whenever T —limI4 = 1. As was
noted in [1], Theorem 2.1 can be reformulated to yield that K7 is a P-set in N* (that
is, K is interior to any Gs that contains Kr). It can also be used to show that if
z € loo, then z is strongly T-summable to A if and only if zf [ K7 = A. It follows
that G(v) is a gap Tauberian condition for bounded strong T'-summability if and only
if £ € G(7) Nl and zP | K = X implies that 2# | N* = ).

THEOREM 4.2. G(v) is a gap Tauberian condition for strong T -summability if

https://doi.org/10.1017/50004972700015215 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015215

[9]

Gap Tauberian theorems 393

and only if

clns ( U (v(ns),y(nr + 1)]) NKr#0

reN

for any increasing sequence of integers (n,).

PROOF: Observe that clNa( U (v(ne)yv(ne + 1)]) NA*#0 for all A C N such
kEN

Y(ne+1)
that T —limI4 =1 if and only if imsup), Y, ¢ , > 0. The result now follows
n r k>v(ns) '
from 2.2(3). 0
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