## DEAR EDITOR,

Re: Paul Scott, Some recent discoveries in elementary geometry, Math. Gaz. 81 (Nov 1997), pp. 391-397 and I. Ward, The tritet rule, Math. Gaz. 79 (July 1995), pp. 380-382.

Readers may like to know of some earlier references which discuss the generalisation of Pythagoras' Theorem to 3-space. The first, originally published in 1962 is George Pólya, Mathematical discovery, Wiley (1981), p. 34. The others were collected as Note 62.23 in the Gazette: (1) Lewis Hull, (2) Hazel Perfect, (3) I. Heading, Pythagoras in higher dimensions: three approaches, Math. Gaz. 62 (October 1978) pp. 206-211.

Yours sincerely,
A. K. JOBBINGS

Bradford Grammar School, Keighley Road, Bradford BD9 4JP

## DEAR EDITOR,

In Note 82.53 a proof is given for a test of divisibilty by 19. I offer a shorter proof.

Let the number to be tested be $N=10 a+b$ where $b$ is the units digit. The reduced test number is given by $P=a+2 b$, so that $2 N-P=19 a$. Therefore, $19 \mid N$ if and only if $19 \mid P$.

Yours sincerely,
E. J. PEET

3 Queensway, Newby, Scarborough YO12 6SJ

## DEAR EDITOR,

In [1] Murray Humphreys and Nicholas Macharia show that the $(n+1)$-digit number

$$
\begin{equation*}
k=\overline{a_{n} a_{n-1} \ldots a_{0}}=10^{n} a_{n}+10^{n-1} a_{n-1}+\ldots+a_{0} \tag{1}
\end{equation*}
$$

is divisible by 19 if and only if

$$
\begin{equation*}
m=10 a_{n}+a_{n-1}+2 a_{n-2}+4 a_{n-3}+\ldots+2^{n-2} a_{1}+a_{0} \tag{2}
\end{equation*}
$$

is divisible by 19. This is essentially a special case of the method of James Voss in [2] for determining divisibility by any integer $s$ relatively prime to 10 . The method hinges on using the multiplicative inverse of $10(\bmod s)$. When $s=19$, the multiplicative inverse is 2 because

$$
\begin{equation*}
2 \times 10=20 \equiv 1(\bmod 19) \tag{3}
\end{equation*}
$$

If we multiply (1) by $2^{n-1}$ we get

$$
\begin{aligned}
2^{n-1} k= & 2^{n-1}\left(10^{n} a_{n}+10^{n-1} a_{n-1}+10^{n-2} a_{n-2}+10^{n-3} a_{n-3}+\ldots+10 a_{1}+a_{0}\right) \\
= & 2^{n-1} 10^{n-1} 10 a_{n}+2^{n-1} 10^{n-1} a_{n-1}+2^{n-2} 10^{n-2} 2 a_{n-2}+2^{n-3} 10^{n-3} 4 a_{n-3} \\
& +\ldots+2 \times 10 \times 2^{n-2} a_{1}+2^{n-1} a_{0}
\end{aligned}
$$

