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ON EXTENDING THE TRACE AS A LINEAR 
FUNCTIONAL, II 

GEORGE A. ELLIOTT 

1. Introduction. A positive bounded selfadjoint operator is in the 
trace class of von Neumann and Schatten ([4]) if the sum of its diagonal 
matrix elements with respect to some orthonormal basis is finite, and the 
trace is then defined to be this sum, which is independent of the basis. 
A bounded selfadjoint but not necessarily positive operator x is in the 
trace class if in the decomposition x = x+ — x~~, with x+ and x~~ positive 
and x+x~ = 0, both x+ and x~ are in the trace class; the trace of x is then 
defined to be the difference of the finite traces of x+ and x~. The trace 
defined in this way is a linear functional on the trace class, and is unitarily 
invariant; if u is a unitary operator, the trace of uxu~l is the same as 
the trace of x. 

If the traces of x+ and x~ are infinite, it still seems to be possible in 
some cases to assign a finite value to the difference of these infinite 
numbers, in such a way that it is natural to consider this as the trace of x. 

In [1], there was constructed an extension of the trace, related to a 
fixed projection p, from the von Neumann-Schatten trace class to a 
certain algebra of Hilbert-Schmidt operators Np, consisting of those 
Hilbert-Schmidt operators x such that the diagonal part with respect to 
p, pxp + (1 — p)x(l — p), belongs to the trace class. This extension, 
denoted by rp, is a linear functional on Np which is unitarily invariant in 
the sense that if u is a unitary operator such that uNpu~1 = NP, then 

TP(UXU~1) = Tp(pc), x Ç Np. 

These properties determine the extension uniquely; necessarily 

rp(x) = trace (pxp + (1 - p)x(l - p)), x £ Np. 

In the present paper it is shown that if p and q are two projections, 
then TP and rq agree on Np C\ Nq, the intersection of their domains (3.1). 
In other words, rp may be written just as r. It is shown by an example 
that it is not, however, possible to extend r to be linear on the linear span 
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of all the linear spaces Np, p a projection (3.5). (Such an example, 
because of the above consistency, which allows a linear extension to 
Np + Ng for any two projections p and q, must involve at least three 
projections.) 

There is not much difference among the linear extensions of the trace 
corresponding as above to different projections. Indeed, if the Hilbert 
space is separable, then any two such extensions, if proper, are unitarily 
equivalent, since the projections determining them are infinite and co-
infinite, and so themselves unitarily equivalent. Somewhat greater variety 
is obtained by considering, for any operator 0 ^ h ^ 1, the algebra Nh of 
those Hilbert-Schmidt operators x such that hxh and hxh belong to the 
trace class, where h = (1 — h2)112. Again there is a unique extension of the 
trace on the trace class to a unitarily invariant linear functional on Nh, 
given by 

rh(x) = trace (hxh + hxh), x £ Nh. 

The proof of unitary invariance of rh (see Section 2) is more technical 
than in the case h2 = h, which was handled by a simple algebraic compu
tation in [1]; in particular the proof uses the closed graph theorem, 
applied to Nh with a suitable norm in which it is complete (see 2.7). The 
unitary invariance of rh also follows from the manifest unitary invariance 
of r, the common extension of all the rv for different p (defined in the 
preceding paragraph), since r in fact also extends rh (see Step 2 of 3.1). 
The very existence of r, however, depends on a rather long argument, 
which makes up almost all of Section 3. 

I am indebted to H. Araki and L.-E. Lundberg for helpful comments. 
I would like to emphasize that the origin of the ideas in this paper and 
its predecessor lies in the elegant theory of "second quantization" 
developed by Lundberg in [2] and [3], which, in particular, permitted 
him to make a precise mathematical analysis of vacuum polarization in 
quantum field theory, not requiring renormalization. 

2. The extension of the trace to Nh, 0 ^ h g l. 

2.1. In this section h denotes a fixed selfadjoint operator in a Hilbert 
space such that 0 ^ h ^ 1, and Nh denotes the algebra of Hilbert-
Schmidt operators x such that hxh + hxh belongs to the trace class, 
where h = (1 — h2)112. We shall denote the trace class by Li, the 
Hilbert-Schmidt class by L2, and the algebra of all bounded operators by 
Lœ. We shall use that Lœ is identified with the dual of the Banach space 
Li via the duality between Lx and Lœ defined by the trace, and also that 
Z2 is identified with its own dual (see [4]). 

2.2. THEOREM. There exists a unique linear functional rh on Nh extending 
the trace on L\ C Nh and such that if u is a unitary operator with 
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uNhu~l = Nh then: 

rh(uxu-1) = Th(x), x £ Nn. 

Proof of uniqueness. Since multiplication by h or h on the left or on the 
right leaves Nh invariant, this also holds for the unitaries u+ = h + ih 
and U- = h — ih = u+~l. In view of the polarization identity 

\(u+xu+~l + U-XU-~l) — hxh + hxh, x Ç Nh, 

uniqueness of a linear extension of the trace on Nh invariant under 
transformation by the unitaries u+ and u~ is clear; the value at x must be 
just the trace of hxh + hxh. 

2.3. The rest of this section is devoted to proving that the linear 
functional rh on Nh defined by 

rh(x) = trace (hxh + hxh), x Ç Nh, 

has the unitary invariance property stated in 2.2. The first step is to 
establish a weaker property, involving only those unitary operators u 
such that uNh + Nhu C Nh1 that is, which multiply Nn. This is done in 
2.4 to 2.10. (What is stated in 2.5 is a little more than this.) In 2.11, the 
invariance property of 2.2 is established, with rh as defined here. 

Later, in 3.1 (cf. 3.4), a property even stronger than that of 2.2 will be 
established, by completely different methods. 

2.4. Definition. Denote by Mh the algebra of operators multiplying Nh, 
that is, the set 

{y£ Lœ\yNh + NhyCNh}. 

2.5. THEOREM. rh as defined in 2.3 satisfies: 

rh(yx) = rh(xy), x G Nh, y G Mh. 

2.6. LEMMA. The unit ball of Li is weak*-closed in Lœ. 

Proof. This follows immediately from the equation 

II*Hi = sup^z, lJy||œ^i|trace(x;y)|, x Ç Lœ, 

where ||x||i < oo if and only if x G Lx. This equation in turn follows from 
the facts that Lœ is identified isometrically with the dual of L\ by the 
duality between L\ and Lœ determined by the trace, and that the inter
section of Li with the unit ball of Lœ is weak*-dense in this ball (if (pn) 
is a net of projections of finite rank increasing to 1, then for any y G Lœ, 
each pny 6 L\ and pny converges weak* to y). 

2.7. LEMMA. Nh is complete in the norm 

IMIft = IMI2 + ||teft||] + ||ÂO;Â||I. 
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Proof. Let (xn) be a Cauchy sequence in Nh with respect to the above 
norm. Then in particular (xn) is Cauchy in L2 and so converges in L2 to 
x G L2. Since Li Q L2 C Lœ} xn converges weak* to x in Lœ, and hence 
hxnh and hxnh converge weak* to hxh and hxh respectively. Since the 
sequence (xn) is bounded in the norm on Nh, the sequences (hxnh) and 
(hxnh) are bounded in L1} whence by 2.6 hxh and hxh belong to L\. This 
shows that x belongs to Nh. 

Again by the weak* closure in Lœ of balls in Li, 

\\h(xn — xm)h\\i ^ e for almost all m 

implies 

\\h(xn - x)h\\! ^ e, 

and similarly with h in place of h. This shows that 

Il*n - *||a = \\%n - xh + \\h(xn - x)h\\i + \\h(xn - x)h\\i 

converges to 0. 

2.8. COROLLARY. For each y G Mh, the map 

Nh 3 x f-> yx G Nh 

is continuous in the norm defined in 2.7. 

Proof. Because Nh is complete in this norm, it is enough to show that 
the map is closed. 

Suppose that (xn) is a sequence in Nh such that \\xn\\h converges to 0 
and such that for some y G Lœ and some z Ç Nhl each yxn 6 Nh, and 
||3Wn — z\\h converges to 0. Then in particular xn and yxn — z converge to 
0 in Z2, but since 

llyx.ll» ^ llyLlkll» 
(see [4]), so also does yxn; this shows that z = 0. 

2.9. LEMMA. LI is dense in Nh in the norm defined in 2.7. 

Proof. Denote by fn the spectral projection of h corresponding to the 
interval [n -1, 1], n = 1, 2, . . . . Choose an increasing sequence g\ ^ 
g2 ^ . . . of projections of finite rank inside the kernel of h with supremum 
equal to the projection onto this subspace. Set fn + gn = en\ then en 

increases to 1, and enh = hen for each n. Since hfn ^ n~lfn, there is 
yn Ç Lœ with ynh = hyn = fn. Hence fnNhfn C Lx (for x G Nh, fnxfn = 
ynhxhyn G i i ) , and so enNhen C Lx. 

For any x G Zi, \\x(\ — ew)||i converges to 0 (since for any e > 0, 
x = x( + x / with xe of finite rank and | |x/| | i ^ e), and hence 
\\x — enx^n||i converges to 0 (||x — exe\\i ^ ||x(l — e)\\i + ||(1 — e)xe||i, 
and ||(1 — e)xe\\1 ^ ||(1 — g)x||i||e||œ). It is trivial that \\x — enxen\<i 
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converges to 0 for any x G Z2. It follows, by use of enh = hen, that 
x — enxen converges to 0 in the norm of Nh defined in 2.7. 

2.10. Proof of Theorem 2.5. First note that for x G L b 

trace(hxh + hxh) = trace(x(h2 + h2)) = trace (x), 

so rh does extend the trace. 
Hence for y G M^ and x G Li, 

T/»(^X) = trace (yx) — trace (xy) = rh(xy). 

Fix 3; G A/V With respect to the norm in Nh defined in 2.7, rh is clearly 
continuous, the maps x 1—> 3>x and (by symmetry) x 1—> x;y are continuous 
by 2.8, and Zi is dense by 2.9. Therefore the equality rh(xy — yx) = 0 
for x G Li persists for x ^ Nh. 

2.11. Proof of Theorem 2.2 (existence). In 2.10 it was shown that r/, 
defined as in 2.3 extends the trace. It remains to show that r^ has the 
invariance property stated in Theorem 2.2. In other words, we must 
show that if u is a unitary in Lœ such that uNhu~l = Nh, then the func
tional 6 on Nh defined by 

6(x) = rh(uxu~l), x G Nh 

is equal to rh. 
Clearly 6 is linear and extends the trace on L\. Since uNhu~l = Nh 

implies uMhu~l = Mh, 6 also has the property established for rh in 2.5. 
Let </> be any functional on Nh with these properties, and let us show that 
<t> must be equal to rh. To use the proof of uniqueness given in 2.2 (exactly 
as given there), it is enough to show that </> is invariant under transforma
tion by the unitaries u+ and U- defined there, or, more generally, by any 
unitary u such that u, u~l G Mh. Let a 6 Nh. Then ua G Nh, and by the 
assumption that <t>(xy) = <f>(yx) if x G Nh and y G Mh, applied to x = ua 
and y = u~l, <j>(uau~l) — <t>(xy) = <j>{yx) = 0(a). It follows by the 
uniqueness argument in 2.2 that <j> is uniquely determined, and equal to 
rh defined as in 2.3. In particular, 6 is equal to rh. This shows that rh 

defined in this way satisfies the invariance condition of Theorem 2.2, and 
the proof of Theorem 2.2 is thus complete. 

3. Consistency of the extensions rh, 0 S h ^ 1. 

3.1. THEOREM. For any self adjoint operators 0 ^ h ^ 1, 0 ^ k ^ 1, the 
extensions rh and rk of the trace to Nh and Nk coincide on Nh P\ Nk. 

Proof. Step 1. We can dispose immediately of the case that hk = kh. 
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In this case, if x Ç Nhr\ Nk, then 

rh(x) = trace (hxh + hxh) 

— trace (k(hxh + hxh)k + k(hxh + hxh)k) 

— trace (khxhk + khxhk + khxhk + khxhk) 

= trace (h(kxk + kxk)h + ^(&x& + kxk)h) 

= trace (&x& + £x&) 

= ^0)-
Step 2. With £ the spectral projection of A corresponding to the interval 

[1/2, 1], there exist 5, / Ç L œ with p = sh = hs and 1 - p = th = Tit. 
Then Nh C Np. 

By Step 1, with k = p, it follows tha t rp extends r^. Therefore, to prove 
the theorem, it is sufficient to consider p in place of h, and an analogous 
projection g in place of k. 

Step 3. We may suppose tha t the Hilbert space in which the projec
tions p and g act is separable, since for any x £ Np C\ Nq there is a direct 
sum decomposition of the space into separable subspaces, each one in
var iant under p, g, x and x*. 

Step 4. We may suppose tha t both p and 1 — p have infinite rank, 
since otherwise Np = Li, and so we may write p and g as operator 
matrices: 

^ = ( o o ) ' q=\s* / ) ' 
wThere 

r è 0, / ê 0, rs = 5(1 - / ) , r - r2 = ss*, and / - t2 = s*s. 

Step 5. Extending the Hilbert space if necessary, we may suppose tha t 
ker s and coker s are both infinite, so t ha t there exists a uni tary operator 
u with us ^ 0. 

Step 6. Denote by v the operator matrix 

lu 0\ 
\ 0 1 / ' 

Then 

_i I uru~ us\ 
vqv = W tl-

From vp = pv it follows immediately tha t vNpv~l = Np and 

TP(X) = TP(VXV~1), x (z Np 

(this does not use 2.2). Moreover, for x £ A^, 

Tç(x) = trace (gxg + (1 — g)x(l — g)) 

= trace (v(gxg + (1 — q)x(\ — g))v~x) 

= TVQV-I(VXV~1). 
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Hence the desired identity 

TP(X) = rq(x), x G Np H Nq, 

that is, 

TP(VXV~1) = Tvqv-i(vxv~l), x £ NVC\ NQ, 

is equivalent to the identity 

7>(X) = Tvqv-l(x), X £ Np n Nvqv-l 

(recall that vpv~l = p). 
Therefore, replacing q by vqv~l, so that r is replaced by uru~l and 5 by 

us ^ 0, we may suppose that s ^ 0. 
Step 7. It is enough to show that if the operator matrix 

c°i)-> 
is such that y € Nq then rq(y) = 0. 

Indeed, this is certainly necessary, since any such y belongs to Nv 

and satisfies rp(y) = 0. If x is an arbitrary element of Np C\ Nqy say 

then with 

x = y + z and z G Li. In particular, as y = x — z Ç 7VÇ, 3; has the form 
above. Moreover, 

T P (X) = TP(Z) = T f f ( z ) , 

so to show that rp(x) = rfl(x) it is enough to show that rq(y) = 0. 

Step 8. Denote by e the support projection of s. Then e commutes 
with r and t, and er = e(l — /). 

To show this it is enough to show that 5 commutes with r and t, since 
r^ = 5(1 — t) (Step 4). From s = s* (Step 6), and r — r2 = / — t2 = 52 

(Step 4) it follows that r and t commute with s2, and therefore also with 5 
(as 5 ^ 0; see Step 6). 

Step 9. Suppose that the operator matrix 

C i ) - » 
belongs to Nq. To show that rq(y) = 0 (cf. Step 7) it is enough to consider 
the case that b = ebe and c = ece; in other words, we may suppose that 
e = 1. 
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Indeed, if/ denotes the operator matrix 

(s:). 
then the case that we must reduce the given one to is that y = fyf. Since 
e commutes with r, s and t (Step 8 ) , / commutes with q, and in particular 
multiplies Nq. Using both properties of/, we have 

r,{y) = rt(fyf+ ( 1 - / M 1 - / ) ) 

= T,(fyf)+Tt«l-f)y(l-f)). 

We shall show that rff((l — / )y(l — / )) = 0; this will reduce the con
sideration of rq(y) to that of rq(fyf), and fyf is just y with b and c 
replaced by ebe and ece. Since s{\ — e) = 0, q{\ — f ) commutes with £. 
Hence by Step 1, 

r , ( ( l - / M l - / ) ) = r t ( W ) ( ( l - / ) y ( l - / ) ) 

= r„((i - / M i - / ) ) = o. 
Step 10. Suppose that the operator matrix 

Ci) -» 
belongs to Ng. We shall now show that rq(y) = 0. (Cf. Step 7.) 

First, calculation yields (in view of Steps 8 and 9): 

_ ( scr + rbs ses + rb(l — r) \ 
qyq " \ (1 - r)cr + ^ (1 - r)cs + sb(l - r) I ; 

n _ „ w i _ ^ _ l-nlX ~r) - i l - r)bs ses + (1 - r)6r\ 
U g ^ u q) - y rc(1_r)+sbs -rcs-sbr I' 

Since y G iVff, both qyq and (1 — q)y{\ — q) and hence also their 
difference belong to Li. We have then 

«»-a-«wi-«)-(:+J; * -%)*L, . 
and we deduce that the commutators [s, b — c], [r, b — c] belong to L\. 

We must show that rq(y) = 0, that is, that 

trace {qyq + (1 - q)y(l — q)) = 0 . 

Inspection of the matrices for qyq and (1 — q)y{\ — q) reveals that for 
this it is sufficient to show that: 

trace (r(b — c)s — s(b — c)r) — 0, 

trace [s, b — c] = 0 . 
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Since 

r(b - c)s - s(b - c)r = [r(b - c), s] + [r, 5(6 - c)] 

(this uses rs = sr; see Step 8) , both trace equalities follow from 3.2 below, 
applied three times, once to each of the three commuta to r s involved. 

T o verify t ha t the hypotheses of 3.2 are satisfied for each of the com
muta tors 

[rib — c), 5], [r, s(b — c)] and [s, b — c], 

recall t ha t both 5 (see Step 6) and r are selfadjoint, and tha t b, c and 
therefore also b — c, r(b — c) and s(b — c) belong to L2 . Moreover, 
since [>, s] = 0 (see Step 8) , and both [s, b — c] and [r, b — c] belong to 
L\ (see the third paragraph of this s tep) , it follows by the derivation law 
tha t also 

[r(b — c), s] = r[b — c, s] Ç Li , 

[r, s(b - c)] = s[r, b - c] G Zi , 

and so the third hypothesis of 3.2 is satisfied in each of the three cases 
under consideration. 

3.2. LEMMA. Let a = a* Ç L œ and b G L2 be such that ab — ba 6 Li . 

trace (a& — 6a) = 0. 

Proo/ . By [5], a = a 1 -\- CZ2 where a\ has an or thonormal basis of 
eigenvectors and a2 Ç Z2. Since a2 Ç L2 , a2& — 6a2 G ̂ 1 and 

trace (a26 — ba2) = 0 

(see [4]). On the other hand, a,\b — bax is equal to (ab — ba) — (a^b — 
ba2) and so belongs to L\. Moreover, a\b — bax has zero diagonal with 
respect to the basis diagonalizing ax. I t follows t ha t 

trace (a\b — bax) = 0. 

Adding these two displayed equat ions gives the conclusion of the lemma. 

3.3. Remark. In 3.2, a need only be assumed to be normal, al though 
the proof is then much more difficult; see [6]. 

3.4. Remark. 3.1 is equivalent to the following s ta tement : For each 
selfadjoint operator 0 ^ h ^ 1, if x G Nh and if u Ç Lœ is a un i ta ry 
operator such t ha t also uxu~l G Nh, then 

Th(uXU~l) = Th(x). 

T o see this, jus t note t ha t uxu~l G Nh is equivalent to x G Nu-ihui and 

rh(uxu~l) — trace(huxu~lh + huxu~lh) = rM-i^M(x). 
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This is a much stronger invariance property than tha t s tated in 2.2. 
The invariance property s ta ted in 2.5, however, does not seem to follow 
from 3.1 (except for multipliers which are uni ta ry) . 

3.5. Remark. While the different rh, 0 ^ h ^ 1 are consistent, so t ha t 
they have a common extension, say r, to the union of all Nh, 0 ^ h ^ 1 
(this, by 3.1.1, is equal to the union just over h = h2), it is not possible 
to extend r so as to be linear on the linear span of this union. 

T o see this, fix an orthonormal basis, and consider the three diagonal 
operators a, b and c with the following eigenvalue sequences: 

1, - 1 , 2, - 2 , 3, - 3 , 4, - 4 , 5, - 5 , . . . , 
2, 1 , - 1 , 3, 4, 5 , - 2 , 7, 6, 9 , . . . , 

- 1 , 2, 1, 4, - 2 , 6, 3, 8, - 3 , 10, 

Here, for each n — 1, 2, . . . the column beginning with — n is 
( — n, 2n — 1, 2n), and for each m = 1 , 2 , . . . the column beginning with 
m is a cyclic permutat ion of (a unique) one of the columns beginning with 
— n, n — 1 , 2 , . . . . Clearly, a, b and c are unitarily equivalent to one 
another , and also to the operator matrix 

where d is diagonal with eigenvalue sequence 

1, 2, 3, 4, 5, 

Since d~l £ L2} the operator matrix d~l belongs to the domain of r. 
Therefore so also do a~1, b~1

} c~l, and, by uni tary invariance of r, 

r(a~l) = rib-1) = r ^ " 1 ) - r ^ " 1 ) = 0. 

On the other hand, a - 1 + b~l + c~l has eigenvalues 

-n~l + (2n - I ) " 1 + (2n)~\ n = l,2,..., 

each wi th multiplicity three, so a - 1 + b~l + c~l is positive, nonzero, 
and belongs to LY. Thus : 

r(a-1 + b~' + c-1) * ria-1) + rib'1) + r^"" 1 ) . 

3.6. Application. The criterion of G. Stamatopoulos (thesis, University 
of Pennsylvania, 1974) for the equivalence of quasifree pure states of the 
gauge invariant subalgebra of the canonical ant icommutat ion relation 
C*-algebra (or Fermion C*-algebra) determined by projections e and / 
in the one-particle Hilbert space to be equivalent, namely, tha t e — f be 
Hi lber t -Schmidt and t ha t trace (1 — e)i(l — e) and trace (1 —f)e(l —f), 
which are then finite, be equal, may be simplified in terms of the present 
extension r of the trace as follows: e — f should be Hi lber t -Schmidt , so 
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that it belongs to the domain of r (since e(e — f)e = e{e — f)2e), and 
r{e — f) should be equal to 0. 

3.7. Application. Theorem 3.1 has the following rather striking conse
quence for square-summable sequences of real numbers, obtained by 
restricting r to operators diagonal with respect to a fixed basis. (Note that 
the proof given above that r is well defined does not become any simpler 
for this restriction of r.) If two sequences X, /z 6 h have the property that 
their terms occur in equal and opposite pairs, i.e., if each of X, \x has the 
form (a, — a, b, —b,c, —c, . . .) up to a permutation, and if moreover 
X', \x G h are such that X + X' = /z + //, then J^\n

f = IL^n'• (Indeed, 
X + X' is the eigenvalue sequence of a selfadjoint element of the domain of 
r, which with respect to a suitable projection has diagonal part £ L\ and 
of trace ^\n'. It can be shown that in fact X + X' is a completely general 
such eigenvalue sequence.) It would be desirable to have a proof of this 
fact using only sequences. 
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