ON EXTENDING THE TRACE AS A LINEAR FUNCTIONAL, II

GEORGE A. ELLIOTT

1. Introduction. A positive bounded selfadjoint operator is in the trace class of von Neumann and Schatten ([4]) if the sum of its diagonal matrix elements with respect to some orthonormal basis is finite, and the trace is then defined to be this sum, which is independent of the basis. A bounded selfadjoint but not necessarily positive operator x is in the trace class if in the decomposition $x=x^{+}-x^{-}$, with x^{+}and x^{-}positive and $x^{+} x^{-}=0$, both x^{+}and x^{-}are in the trace class; the trace of x is then defined to be the difference of the finite traces of x^{+}and x^{-}. The trace defined in this way is a linear functional on the trace class, and is unitarily invariant; if u is a unitary operator, the trace of $u x u^{-1}$ is the same as the trace of x.

If the traces of x^{+}and x^{-}are infinite, it still seems to be possible in some cases to assign a finite value to the difference of these infinite numbers, in such a way that it is natural to consider this as the trace of x.
In [1], there was constructed an extension of the trace, related to a fixed projection p, from the von Neumann-Schatten trace class to a certain algebra of Hilbert-Schmidt operators N_{p}, consisting of those Hilbert-Schmidt operators x such that the diagonal part with respect to $p, p x p+(1-p) x(1-p)$, belongs to the trace class. This extension, denoted by τ_{p}, is a linear functional on N_{p} which is unitarily invariant in the sense that if u is a unitary operator such that $u N_{p} u^{-1}=N_{p}$, then

$$
\tau_{p}\left(u x u^{-1}\right)=\tau_{p}(x), \quad x \in N_{p} .
$$

These properties determine the extension uniquely; necessarily

$$
\tau_{p}(x)=\operatorname{trace}(p x p+(1-p) x(1-p)), x \in N_{p}
$$

In the present paper it is shown that if p and q are two projections, then τ_{p} and τ_{q} agree on $N_{p} \cap N_{q}$, the intersection of their domains (3.1). In other words, τ_{p} may be written just as τ. It is shown by an example that it is not, however, possible to extend τ to be linear on the linear span

[^0]of all the linear spaces N_{p}, p a projection (3.5). (Such an example, because of the above consistency, which allows a linear extension to $N_{p}+N_{q}$ for any two projections p and q, must involve at least three projections.)

There is not much difference among the linear extensions of the trace corresponding as above to different projections. Indeed, if the Hilbert space is separable, then any two such extensions, if proper, are unitarily equivalent, since the projections determining them are infinite and coinfinite, and so themselves unitarily equivalent. Somewhat greater variety is obtained by considering, for any operator $0 \leqq h \leqq 1$, the algebra N_{h} of those Hilbert-Schmidt operators x such that $h x h$ and $\bar{h} x \bar{h}$ belong to the trace class, where $\bar{h}=\left(1-h^{2}\right)^{1 / 2}$. Again there is a unique extension of the trace on the trace class to a unitarily invariant linear functional on N_{h}, given by

$$
\tau_{h}(x)=\operatorname{trace}(h x h+\bar{h} x \bar{h}), x \in N_{h} .
$$

The proof of unitary invariance of τ_{h} (see Section 2) is more technical than in the case $h^{2}=h$, which was handled by a simple algebraic computation in [1]; in particular the proof uses the closed graph theorem, applied to N_{h} with a suitable norm in which it is complete (see 2.7). The unitary invariance of τ_{h} also follows from the manifest unitary invariance of τ, the common extension of all the τ_{p} for different p (defined in the preceding paragraph), since τ in fact also extends τ_{h} (see Step 2 of 3.1). The very existence of τ, however, depends on a rather long argument, which makes up almost all of Section 3.
I am indebted to H. Araki and L.-E. Lundberg for helpful comments. I would like to emphasize that the origin of the ideas in this paper and its predecessor lies in the elegant theory of "second quantization" developed by Lundberg in [2] and [3], which, in particular, permitted him to make a precise mathematical analysis of vacuum polarization in quantum field theory, not requiring renormalization.

2. The extension of the trace to $N_{h}, 0 \leqq h \leqq 1$.

2.1. In this section h denotes a fixed selfadjoint operator in a Hilbert space such that $0 \leqq h \leqq 1$, and N_{h} denotes the algebra of HilbertSchmidt operators x such that $h x h+\bar{h} x \bar{h}$ belongs to the trace class, where $\bar{h}=\left(1-h^{2}\right)^{1 / 2}$. We shall denote the trace class by L_{1}, the Hilbert-Schmidt class by L_{2}, and the algebra of all bounded operators by L_{∞}. We shall use that L_{∞} is identified with the dual of the Banach space L_{1} via the duality between L_{1} and L_{∞} defined by the trace, and also that L_{2} is identified with its own dual (see [4]).
2.2. Theorem. There exists a unique linear functional τ_{h} on N_{h} extending the trace on $L_{1} \subset N_{h}$ and such that if u is a unitary operator with
$u N_{h} u^{-1}=N_{h}$ then:

$$
\tau_{h}\left(u x u^{-1}\right)=\tau_{h}(x), x \in N_{h} .
$$

Proof of uniqueness. Since multiplication by h or \bar{h} on the left or on the right leaves N_{h} invariant, this also holds for the unitaries $u_{+}=h+i \bar{h}$ and $u_{-}=h-i \bar{h}=u_{+}^{-1}$. In view of the polarization identity

$$
\frac{1}{2}\left(u_{+} x u_{+}^{-1}+u_{-} x u_{-}^{-1}\right)=h x h+\bar{h} x \bar{h}, x \in N_{h},
$$

uniqueness of a linear extension of the trace on N_{h} invariant under transformation by the unitaries u_{+}and u_{-}is clear; the value at x must be just the trace of $h x h+\bar{h} x \bar{h}$.
2.3. The rest of this section is devoted to proving that the linear functional τ_{h} on N_{h} defined by

$$
\tau_{h}(x)=\operatorname{trace}(h x h+\bar{h} x \bar{h}), \quad x \in N_{h},
$$

has the unitary invariance property stated in 2.2 . The first step is to establish a weaker property, involving only those unitary operators u such that $u N_{n}+N_{n} u \subset N_{h}$, that is, which multiply N_{h}. This is done in 2.4 to 2.10. (What is stated in 2.5 is a little more than this.) In 2.11, the invariance property of 2.2 is established, with τ_{h} as defined here.

Later, in 3.1 (cf. 3.4), a property even stronger than that of 2.2 will be established, by completely different methods.
2.4. Definition. Denote by M_{h} the algebra of operators multiplying N_{h}, that is, the set

$$
\left\{y \in L_{\infty} \mid y N_{h}+N_{h} y \subset N_{h}\right\} .
$$

2.5. Theorem. τ_{h} as defined in 2.3 satisfies:

$$
\tau_{h}(y x)=\tau_{h}(x y), x \in N_{h}, y \in M_{h} .
$$

2.6. Lemma. The unit ball of L_{1} is weak ${ }^{*}$-closed in L_{∞}.

Proof. This follows immediately from the equation

$$
\|x\|_{1}=\sup _{y \in L_{1}, \| y} \|_{\infty \leq 1}|\operatorname{trace}(x y)|, x \in L_{\infty},
$$

where $\|x\|_{1}<\infty$ if and only if $x \in L_{1}$. This equation in turn follows from the facts that L_{∞} is identified isometrically with the dual of L_{1} by the duality between L_{1} and L_{∞} determined by the trace, and that the intersection of L_{1} with the unit ball of L_{∞} is weak ${ }^{*}$-dense in this ball (if (p_{n}) is a net of projections of finite rank increasing to 1 , then for any $y \in L_{\infty}$, each $p_{n} y \in L_{1}$ and $p_{n} y$ converges weak* to y).
2.7. Lemma. N_{h} is complete in the norm

$$
\|x\|_{h}=\|x\|_{2}+\|h x h\|_{1}+\|\bar{h} x \bar{h}\|_{1} .
$$

Proof. Let $\left(x_{n}\right)$ be a Cauchy sequence in N_{h} with respect to the above norm. Then in particular $\left(x_{n}\right)$ is Cauchy in L_{2} and so converges in L_{2} to $x \in L_{2}$. Since $L_{1} \subset L_{2} \subset L_{\infty}, x_{n}$ converges weak* to x in L_{∞}, and hence $h x_{n} h$ and $\bar{h} x_{n} \bar{h}$ converge weak* to $h x h$ and $\bar{h} x \bar{h}$ respectively. Since the sequence $\left(x_{n}\right)$ is bounded in the norm on N_{h}, the sequences ($h x_{n} h$) and ($\bar{h} x_{n} \bar{h}$) are bounded in L_{1}, whence by $2.6 h x h$ and $\bar{h} x \bar{h}$ belong to L_{1}. This shows that x belongs to N_{h}.

Again by the weak* closure in L_{∞} of balls in L_{1},

$$
\left\|h\left(x_{n}-x_{m}\right) h\right\|_{1} \leqq \epsilon \text { for almost all } m
$$

implies

$$
\left\|h\left(x_{n}-x\right) h\right\|_{1} \leqq \epsilon,
$$

and similarly with \bar{h} in place of h. This shows that

$$
\left\|x_{n}-x\right\|_{h}=\left\|x_{n}-x\right\|_{2}+\left\|h\left(x_{n}-x\right) h\right\|_{1}+\left\|\bar{h}\left(x_{n}-x\right) \bar{h}\right\|_{1}
$$

converges to 0 .
2.8. Corollary. For each $y \in M_{h}$, the map

$$
N_{h} \ni x \mapsto y x \in N_{h}
$$

is continuous in the norm defined in 2.7.
Proof. Because N_{h} is complete in this norm, it is enough to show that the map is closed.

Suppose that $\left(x_{n}\right)$ is a sequence in N_{h} such that $\left\|x_{n}\right\|_{h}$ converges to 0 and such that for some $y \in L_{\infty}$ and some $z \in N_{h}$, each $y x_{n} \in N_{h}$, and $\left\|y x_{n}-z\right\|_{h}$ converges to 0 . Then in particular x_{n} and $y x_{n}-z$ converge to 0 in L_{2}, but since

$$
\left\|y x_{n}\right\|_{2} \leqq\|y\|_{\infty}\left\|x_{n}\right\|_{2}
$$

(see [4]), so also does $y x_{n}$; this shows that $z=0$.
2.9. Lemma. L_{1} is dense in N_{h} in the norm defined in 2.7.

Proof. Denote by f_{n} the spectral projection of h corresponding to the interval $\left[n^{-1}, 1\right], n=1,2, \ldots$ Choose an increasing sequence $g_{1} \leqq$ $g_{2} \leqq \ldots$ of projections of finite rank inside the kernel of h with supremum equal to the projection onto this subspace. Set $f_{n}+g_{n}=e_{n}$; then e_{n} increases to 1 , and $e_{n} h=h e_{n}$ for each n. Since $h f_{n} \geqq n^{-1} f_{n}$, there is $y_{n} \in L_{\infty}$ with $y_{n} h=h y_{n}=f_{n}$. Hence $f_{n} N_{h} f_{n} \subset L_{1}$ (for $x \in N_{h}, f_{n} x f_{n}=$ $\left.y_{n} h x h y_{n} \in L_{1}\right)$, and so $e_{n} N_{h} e_{n} \subset L_{1}$.

For any $x \in L_{1},\left\|x\left(1-e_{n}\right)\right\|_{1}$ converges to 0 (since for any $\epsilon>0$, $x=x_{\epsilon}+x_{\epsilon}^{\prime}$ with x_{ϵ} of finite rank and $\left\|x_{\epsilon}\right\|_{1} \leqq \epsilon$), and hence $\left\|x-e_{n} x e_{n}\right\|_{1}$ converges to $0\left(\| x-\right.$ exe $\left\|_{1} \leqq\right\| x(1-e)\left\|_{1}+\right\|(1-e) x e \|_{1}$, and $\left.\|(1-e) x e\|_{1} \leqq\|(1-e) x\|_{1}\|e\|_{\infty}\right)$. It is trivial that $\left\|x-e_{n} x e_{n}\right\|_{2}$
converges to 0 for any $x \in L_{2}$. It follows, by use of $e_{n} h=h e_{n}$, that $x-e_{n} x e_{n}$ converges to 0 in the norm of N_{h} defined in 2.7.
2.10. Proof of Theorem 2.5. First note that for $x \in L_{1}$,

$$
\operatorname{trace}(h x h+\bar{h} x \bar{h})=\operatorname{trace}\left(x\left(h^{2}+\bar{h}^{2}\right)\right)=\operatorname{trace}(x)
$$

so τ_{n} does extend the trace.
Hence for $y \in M_{h}$ and $x \in L_{1}$,

$$
\tau_{h}(y x)=\operatorname{trace}(y x)=\operatorname{trace}(x y)=\tau_{h}(x y)
$$

Fix $y \in M_{h}$. With respect to the norm in N_{h} defined in $2.7, \tau_{h}$ is clearly continuous, the maps $x \mapsto y x$ and (by symmetry) $x \mapsto x y$ are continuous by 2.8 , and L_{1} is dense by 2.9 . Therefore the equality $\tau_{h}(x y-y x)=0$ for $x \in L_{1}$ persists for $x \in N_{h}$.
2.11. Proof of Theorem 2.2 (existence). In 2.10 it was shown that τ_{h} defined as in 2.3 extends the trace. It remains to show that τ_{h} has the invariance property stated in Theorem 2.2. In other words, we must show that if u is a unitary in L_{∞} such that $u N_{h} u^{-1}=N_{h}$, then the functional θ on N_{h} defined by

$$
\theta(x)=\tau_{h}\left(u x u^{-1}\right), \quad x \in N_{h}
$$

is equal to τ_{h}.
Clearly θ is linear and extends the trace on L_{1}. Since $u N_{h} u^{-1}=N_{h}$ implies $u M_{h} u^{-1}=M_{h}, \theta$ also has the property established for τ_{h} in 2.5. Let ϕ be any functional on N_{h} with these properties, and let us show that ϕ must be equal to τ_{h}. To use the proof of uniqueness given in 2.2 (exactly as given there), it is enough to show that ϕ is invariant under transformation by the unitaries u_{+}and u_{-}defined there, or, more generally, by any unitary u such that $u, u^{-1} \in M_{h}$. Let $a \in N_{h}$. Then $u a \in N_{h}$, and by the assumption that $\phi(x y)=\phi(y x)$ if $x \in N_{h}$ and $y \in M_{h}$, applied to $x=u a$ and $y=u^{-1}, \phi\left(u a u^{-1}\right)=\phi(x y)=\phi(y x)=\phi(a)$. It follows by the uniqueness argument in 2.2 that ϕ is uniquely determined, and equal to τ_{h} defined as in 2.3. In particular, θ is equal to τ_{h}. This shows that τ_{h} defined in this way satisfies the invariance condition of Theorem 2.2, and the proof of Theorem 2.2 is thus complete.

3. Consistency of the extensions $\tau_{h}, 0 \leqq h \leqq 1$.

3.1. Theorem. For any selfadjoint operators $0 \leqq h \leqq 1,0 \leqq k \leqq 1$, the extensions τ_{h} and τ_{k} of the trace to N_{h} and N_{k} coincide on $N_{h} \cap N_{k}$.

Proof. Step 1. We can dispose immediately of the case that $h k=k h$.

In this case, if $x \in N_{h} \cap N_{k}$, then

$$
\begin{aligned}
\tau_{h}(x) & =\operatorname{trace}(h x h+\bar{h} x \bar{h}) \\
& =\operatorname{trace}(k(h x h+\bar{h} x \bar{h}) k+\bar{k}(h x h+\bar{h} x \bar{h}) \bar{k}) \\
& =\operatorname{trace}(k h x h k+k \bar{h} x \bar{h} k+\bar{k} h x h \bar{k}+\bar{k} \bar{h} x \bar{h} \bar{k}) \\
& =\operatorname{trace}(h(k x k+\bar{k} x \bar{k}) h+\bar{h}(k x k+\bar{k} x x \bar{k}) \bar{h}) \\
& =\operatorname{trace}(k x k+\bar{k} x \bar{k}) \\
& =\tau_{k}(x) .
\end{aligned}
$$

Step 2. With p the spectral projection of h corresponding to the interval $[1 / 2,1]$, there exist $s, t \in L_{\infty}$ with $p=s h=h s$ and $1-p=t \bar{h}=\bar{h} t$. Then $N_{h} \subset N_{p}$.

By Step 1 , with $k=p$, it follows that τ_{p} extends τ_{h}. Therefore, to prove the theorem, it is sufficient to consider p in place of h, and an analogous projection q in place of k.

Step 3. We may suppose that the Hilbert space in which the projections p and q act is separable, since for any $x \in N_{p} \cap N_{q}$ there is a direct sum decomposition of the space into separable subspaces, each one invariant under p, q, x and x^{*}.

Step 4. We may suppose that both p and $1-p$ have infinite rank, since otherwise $N_{p}=L_{1}$, and so we may write p and q as operator matrices:

$$
p=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad q=\left(\begin{array}{ll}
r & s \\
s^{*} & t
\end{array}\right)
$$

where

$$
r \geqq 0, t \geqq 0, r s=s(1-t), r-r^{2}=s s^{*}, \text { and } t-t^{2}=s^{*} s
$$

Step 5. Extending the Hilbert space if necessary, we may suppose that ker s and coker s are both infinite, so that there exists a unitary operator u with $u s \geqq 0$.

Step 6. Denote by v the operator matrix

$$
\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
v q v^{-1}=\left(\begin{array}{cc}
u r u^{-1} & u s \\
(u s)^{*} & t
\end{array}\right)
$$

From $v p=p v$ it follows immediately that $v N_{p} v^{-1}=N_{p}$ and

$$
\tau_{p}(x)=\tau_{p}\left(v x v^{-1}\right), \quad x \in N_{p}
$$

(this does not use 2.2). Moreover, for $x \in N_{q}$,

$$
\begin{aligned}
\tau_{q}(x) & =\operatorname{trace}(q x q+(1-q) x(1-q)) \\
& =\operatorname{trace}\left(v(q x q+(1-q) x(1-q)) v^{-1}\right) \\
& =\tau_{v q v^{-1}}\left(v x v^{-1}\right)
\end{aligned}
$$

Hence the desired identity

$$
\tau_{p}(x)=\tau_{q}(x), \quad x \in N_{p} \cap N_{q},
$$

that is,

$$
\tau_{p}\left(v x v^{-1}\right)=\tau_{v q v^{-1}}\left(v x v^{-1}\right), \quad x \in N_{p} \cap N_{q},
$$

is equivalent to the identity

$$
\tau_{p}(x)=\tau_{v q v^{-1}}(x), \quad x \in N_{p} \cap N_{v q v^{-1}}
$$

(recall that $v p v^{-1}=p$).
Therefore, replacing q by $v q v^{-1}$, so that r is replaced by $u r u^{-1}$ and s by $u s \geqq 0$, we may suppose that $s \geqq 0$.

Step 7. It is enough to show that if the operator matrix

$$
\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)=y
$$

is such that $y \in N_{q}$ then $\tau_{q}(y)=0$.
Indeed, this is certainly necessary, since any such y belongs to N_{p} and satisfies $\tau_{p}(y)=0$. If x is an arbitrary element of $N_{p} \cap N_{q}$, say

$$
x=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

then with

$$
\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)=y, \quad\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)=z,
$$

$x=y+z$ and $z \in L_{1}$. In particular, as $y=x-z \in N_{q}, y$ has the form above. Moreover,

$$
\tau_{p}(x)=\tau_{p}(z)=\tau_{q}(z),
$$

so to show that $\tau_{p}(x)=\tau_{q}(x)$ it is enough to show that $\tau_{q}(y)=0$.
Step 8. Denote by e the support projection of s. Then e commutes with r and t, and $e r=e(1-t)$.

To show this it is enough to show that s commutes with r and t, since $r s=s(1-t)\left(\right.$ Step 4). From $s=s^{*}\left(\right.$ Step 6), and $r-r^{2}=t-t^{2}=s^{2}$ (Step 4) it follows that r and t commute with s^{2}, and therefore also with s (as $s \geqq 0$; see Step 6).
Step 9. Suppose that the operator matrix

$$
\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)=y
$$

belongs to N_{q}. To show that $\tau_{q}(y)=0$ (cf. Step 7) it is enough to consider the case that $b=e b e$ and $c=e c e$; in other words, we may suppose that $e=1$.

Indeed, if f denotes the operator matrix

$$
\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right)
$$

then the case that we must reduce the given one to is that $y=f y f$. Since e commutes with r, s and t (Step 8), f commutes with q, and in particular multiplies N_{q}. Using both properties of f, we have

$$
\begin{aligned}
\tau_{q}(y) & =\tau_{q}(f y f+(1-f) y(1-f)) \\
& =\tau_{q}(f y f)+\tau_{q}((1-f) y(1-f))
\end{aligned}
$$

We shall show that $\tau_{q}((1-f) y(1-f))=0$; this will reduce the consideration of $\tau_{q}(y)$ to that of $\tau_{q}(f y f)$, and fyf is just y with b and c replaced by ebe and ece. Since $s(1-e)=0, q(1-f)$ commutes with p. Hence by Step 1,

$$
\begin{aligned}
\tau_{q}((1-f) y(1-f)) & =\tau_{q(1-f)}((1-f) y(1-f)) \\
& =\tau_{p}((1-f) y(1-f))=0
\end{aligned}
$$

Step 10. Suppose that the operator matrix

$$
\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)=y
$$

belongs to N_{q}. We shall now show that $\tau_{q}(y)=0$. (Cf. Step 7.)
First, calculation yields (in view of Steps 8 and 9):

$$
\begin{aligned}
& q y q=\left(\begin{array}{ll}
s c r+r b s & s c s+r b(1-r) \\
(1-r) c r+s b s & (1-r) c s+s b(1-r)
\end{array}\right) \\
& (1-q) y(1-q)=\left(\begin{array}{cc}
-s c(1-r)-(1-r) b s & s c s+(1-r) b r \\
r c(1-r)+s b s & -r c s-s b r
\end{array}\right)
\end{aligned}
$$

Since $y \in N_{q}$, both $q y q$ and $(1-q) y(1-q)$ and hence also their difference belong to L_{1}. We have then

$$
q y q-(1-q) y(1-q)=\left(\begin{array}{cc}
s c+b s & r b-b r \\
c r-r c & c s+s b
\end{array}\right) \in L_{1}
$$

and we deduce that the commutators $[s, b-c],[r, b-c]$ belong to L_{1}.
We must show that $\tau_{q}(y)=0$, that is, that

$$
\operatorname{trace}(q y q+(1-q) y(1-q))=0
$$

Inspection of the matrices for $q y q$ and $(1-q) y(1-q)$ reveals that for this it is sufficient to show that:

$$
\begin{aligned}
& \operatorname{trace}(r(b-c) s-s(b-c) r)=0 \\
& \text { trace }[s, b-c]=0
\end{aligned}
$$

Since

$$
r(b-c) s-s(b-c) r=[r(b-c), s]+[r, s(b-c)]
$$

(this uses $r s=s r$; see Step 8), both trace equalities follow from 3.2 below, applied three times, once to each of the three commutators involved.

To verify that the hypotheses of 3.2 are satisfied for each of the commutators

$$
[r(b-c), s],[r, s(b-c)] \text { and }[s, b-c]
$$

recall that both s (see Step 6) and r are selfadjoint, and that b, c and therefore also $b-c, r(b-c)$ and $s(b-c)$ belong to L_{2}. Moreover, since $[r, s]=0$ (see Step 8), and both $[s, b-c]$ and $[r, b-c]$ belong to L_{1} (see the third paragraph of this step), it follows by the derivation law that also

$$
\begin{aligned}
& {[r(b-c), s]=r[b-c, s] \in L_{1}} \\
& {[r, s(b-c)]=s[r, b-c] \in L_{1}}
\end{aligned}
$$

and so the third hypothesis of 3.2 is satisfied in each of the three cases under consideration.
3.2. Lemma. Let $a=a^{*} \in L_{\infty}$ and $b \in L_{2}$ be such that $a b-b a \in L_{1}$. Then

$$
\text { trace }(a b-b a)=0
$$

Proof. By [5], $a=a_{1}+a_{2}$ where a_{1} has an orthonormal basis of eigenvectors and $a_{2} \in L_{2}$. Since $a_{2} \in L_{2}, a_{2} b-b a_{2} \in L_{1}$ and

$$
\operatorname{trace}\left(a_{2} b-b a_{2}\right)=0
$$

(see [4]). On the other hand, $a_{1} b-b a_{1}$ is equal to $(a b-b a)-\left(a_{2} b-\right.$ $b a_{2}$) and so belongs to L_{1}. Moreover, $a_{1} b-b a_{1}$ has zero diagonal with respect to the basis diagonalizing a_{1}. It follows that

$$
\text { trace }\left(a_{1} b-b a_{1}\right)=0
$$

Adding these two displayed equations gives the conclusion of the lemma.
3.3. Remark. In 3.2, a need only be assumed to be normal, although the proof is then much more difficult; see [6].
3.4. Remark. 3.1 is equivalent to the following statement: For each selfadjoint operator $0 \leqq h \leqq 1$, if $x \in N_{h}$ and if $u \in L_{\infty}$ is a unitary operator such that also $u x u^{-1} \in N_{h}$, then

$$
\tau_{h}\left(u x u^{-1}\right)=\tau_{h}(x)
$$

To see this, just note that $u x u^{-1} \in N_{h}$ is equivalent to $x \in N_{u^{-1} h u}$, and

$$
\tau_{h}\left(u x u^{-1}\right)=\operatorname{trace}\left(h u x u^{-1} h+\bar{h} u x u^{-1} \bar{h}\right)=\tau_{u^{-1} h u}(x) .
$$

This is a much stronger invariance property than that stated in 2.2 . The invariance property stated in 2.5 , however, does not seem to follow from 3.1 (except for multipliers which are unitary).
3.5. Remark. While the different $\tau_{h}, 0 \leqq h \leqq 1$ are consistent, so that they have a common extension, say τ, to the union of all $N_{h}, 0 \leqq h \leqq 1$ (this, by 3.1.1, is equal to the union just over $h=h^{2}$), it is not possible to extend τ so as to be linear on the linear span of this union.

To see this, fix an orthonormal basis, and consider the three diagonal operators a, b and c with the following eigenvalue sequences:

$$
\begin{array}{rrrrrrrr}
1, & -1, & 2, & -2, & 3, & -3, & 4, & -4, \\
2, & 1, & -1, & 3, & 4, & 5, & -2, & 7, \\
-1, & 2, & 1, & 4, & -2, & 6, & 3, & 8, \\
-3, & 10, \ldots
\end{array}
$$

Here, for each $n=1,2, \ldots$ the column beginning with $-n$ is ($-n, 2 n-1,2 n$), and for each $m=1,2, \ldots$ the column beginning with m is a cyclic permutation of (a unique) one of the columns beginning with $-n, n=1,2, \ldots$ Clearly, a, b and c are unitarily equivalent to one another, and also to the operator matrix

$$
\left(\begin{array}{ll}
0 & d \\
d & 0
\end{array}\right)=\tilde{d}
$$

where d is diagonal with eigenvalue sequence

$$
1,2,3,4,5, \ldots
$$

Since $d^{-1} \in L_{2}$, the operator matrix \tilde{d}^{-1} belongs to the domain of τ. Therefore so also do a^{-1}, b^{-1}, c^{-1}, and, by unitary invariance of τ,

$$
\tau\left(a^{-1}\right)=\tau\left(b^{-1}\right)=\tau\left(c^{-1}\right)=\tau\left(\tilde{d}^{-1}\right)=0
$$

On the other hand, $a^{-1}+b^{-1}+c^{-1}$ has eigenvalues

$$
-n^{-1}+(2 n-1)^{-1}+(2 n)^{-1}, \quad n=1,2, \ldots,
$$

each with multiplicity three, so $a^{-1}+b^{-1}+c^{-1}$ is positive, nonzero, and belongs to L_{1}. Thus:

$$
\tau\left(a^{-1}+b^{-1}+c^{-1}\right) \neq \tau\left(a^{-1}\right)+\tau\left(b^{-1}\right)+\tau\left(c^{-1}\right)
$$

3.6. Application. The criterion of G. Stamatopoulos (thesis, University of Pennsylvania, 1974) for the equivalence of quasifree pure states of the gauge invariant subalgebra of the canonical anticommutation relation C^{*}-algebra (or Fermion C^{*}-algebra) determined by projections e and f in the one-particle Hilbert space to be equivalent, namely, that $e-f$ be Hilbert-Schmidt and that trace $(1-e) f(1-e)$ and trace $(1-f) e(1-f)$, which are then finite, be equal, may be simplified in terms of the present extension τ of the trace as follows: $e-f$ should be Hilbert-Schmidt, so
that it belongs to the domain of τ (since $\left.e(e-f) e=e(e-f)^{2} e\right)$, and $\tau(e-f)$ should be equal to 0 .
3.7. Application. Theorem 3.1 has the following rather striking consequence for square-summable sequences of real numbers, obtained by restricting τ to operators diagonal with respect to a fixed basis. (Note that the proof given above that τ is well defined does not become any simpler for this restriction of τ.) If two sequences $\lambda, \mu \in l_{2}$ have the property that their terms occur in equal and opposite pairs, i.e., if each of λ, μ has the form ($a,-a, b,-b, c,-c, \ldots$) up to a permutation, and if moreover $\lambda^{\prime}, \mu^{\prime} \in l_{1}$ are such that $\lambda+\lambda^{\prime}=\mu+\mu^{\prime}$, then $\sum \lambda_{n}{ }^{\prime}=\sum \mu_{n}{ }^{\prime}$. (Indeed, $\lambda+\lambda^{\prime}$ is the eigenvalue sequence of a selfadjoint element of the domain of τ, which with respect to a suitable projection has diagonal part $\in L_{1}$ and of trace $\sum \lambda_{n}{ }^{\prime}$. It can be shown that in fact $\lambda+\lambda^{\prime}$ is a completely general such eigenvalue sequence.) It would be desirable to have a proof of this fact using only sequences.

References

1. G. A. Elliott, On extending the trace as a linear functional, Rep. Math. Phys. 15 (1979), 199-203.
2. L.-E. Lundberg, Quasi-free "second quantization", Comm. Math. Phys. 50 (1976), 103-112.
3. - Vacuum polarization due to potential perturbations, preprint, University of Copenhagen (1977).
4. R. Schatten and J. von Neumann, The cross-space of linear transformations II, Ann. of Math. 47 (1946), 608-630.
5. J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actualités Sci. Indust., no. 229 (Hermann, Paris, 1935).
6. G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators I, Trans. Amer. Math. Soc. 246 (1978), 193-209.

University of Copenhagen, Copenhagen, Denmark

[^0]: *Received May 17, 1978 and in revised form September 26, 1978. This work was done while the author was a Guest Scholar at the Research Institute for Mathematical Sciences, Kyoto University, partially supported by a grant from the Carlsberg Foundation. The final version was prepared while the author was a Visiting Professor in the Department of Pure Mathematics at the University of New South Wales supported by a special projects grant.

