COMPOSITIO MATHEMATICA

On discrete homology of a free pro-p-group

Sergei O. Ivanov and Roman Mikhailov

Compositio Math. 154 (2018), 2195-2204.

doi:10.1112/S0010437X1800739X

On discrete homology of a free pro-p-group

Sergei O. Ivanov and Roman Mikhailov

Abstract

For a prime p, let \hat{F}_{p} be a finitely generated free pro- p-group of rank at least 2 . We show that the second discrete homology group $H_{2}\left(\hat{F}_{p}, \mathbb{Z} / p\right)$ is an uncountable \mathbb{Z} / p-vector space. This answers a problem of A. K. Bousfield.

1. Introduction

Let p be a prime. For a profinite group G, there is a natural comparison map

$$
H_{2}^{\text {disc }}(G, \mathbb{Z} / p) \rightarrow H_{2}^{\text {cont }}(G, \mathbb{Z} / p),
$$

which connects discrete and continuous homology groups of G. Here $H_{2}^{\text {disc }}(G, \mathbb{Z} / p)=H_{2}(G$, $\mathbb{Z} / p)$ is the second homology group of G with \mathbb{Z} / p-coefficients, where G is viewed as a discrete group. The continuous homology $H_{2}^{\text {cont }}(G, \mathbb{Z} / p)$ can be defined as the inverse limit $\lim _{\leftarrow} H_{2}(G / U$, \mathbb{Z} / p), where U runs over all open normal subgroups of G. The above comparison map $H_{2}^{\text {disc }} \rightarrow$ $H_{2}^{\text {cont }}$ is the inverse limit of the coinflation maps $H_{2}(G, \mathbb{Z} / p) \rightarrow H_{2}(G / U, \mathbb{Z} / p)$ (see [FKRS08, Theorem 2.1]).

The study of the comparison map for different types of pro- p-groups is a fundamental problem in the theory of profinite groups (see [FKRS08] for discussion and references). It is well known that for a finitely generated free pro-p-group \hat{F}_{p},

$$
H_{2}^{\text {cont }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)=0 .
$$

Bousfield posed the following question in [Bou77, Problem 4.11], (case $R=\mathbb{Z} / n$).
Problem (Bousfield). Does $H_{2}^{\text {disc }}\left(\hat{F}_{n}, \mathbb{Z} / n\right)$ vanish when F is a finitely generated free group?
Here \hat{F}_{n} is the \mathbb{Z} / n-completion of F, which is isomorphic to the product of pro-p-completions \hat{F}_{p} over prime factors of n (see [Bou77, Proposition 12.3]). That is, the above problem is completely reduced to the case of homology groups $H_{2}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)$ for primes p and, since $H_{2}^{\text {cont }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)=0$, the problem becomes a question about the non-triviality of the kernel of the comparison map for \hat{F}_{p}.

In [Bou92], Bousfield proved that, for a finitely generated free pro- p-group \hat{F}_{p} on at least two generators, the group $H_{i}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)$ is uncountable for $i=2$ or $i=3$, or both. In particular, the wedge of two circles $S^{1} \vee S^{1}$ is a \mathbb{Z} / p-bad space in the Bousfield-Kan sense.

The group $H_{2}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)$ plays a central role in the theory of $H \mathbb{Z} / p$-localizations developed in [Bou77]. It follows immediately from the definition of $H \mathbb{Z} / p$-localization that, for a free group F, $H_{2}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)=0$ if and only if \hat{F}_{p} coincides with the $H \mathbb{Z} / p$-localization of F. (From the point of view of profinite groups the Bousfield problem is also discussed in [Nik11, §7] by Nikolov and in [Klo16, § 4] by Klopsch.)

In this paper we answer Bousfield's problem over \mathbb{Z} / p. Our main result is as follows.

[^0]
S. O. Ivanov and R. Mikhailov

Main Theorem. For a finitely generated free pro-p-group \hat{F}_{p} of rank at least $2, H_{2}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)$ is uncountable.

There are two cases in Bousfield's problem, $R=\mathbb{Z} / n$ and $R=\mathbb{Q}$. We give the answer for the case of $R=\mathbb{Z} / n$. (Recently the authors gave the solution for the $R=\mathbb{Q}$ case [IM17], using completely different methods.)

The proof is organized as follows. In $\S 2$ we consider properties of discrete and continuous homology of profinite groups. Using a result of Nikolov and Segal [NS07, Theorem 1.4], we show that for a finitely generated profinite group G and a closed normal subgroup H the cokernels of the maps $H_{2}^{\text {disc }}(G, \mathbb{Z} / p) \rightarrow H_{2}^{\text {disc }}(G / H, \mathbb{Z} / p)$ and $H_{2}^{\text {cont }}(G, \mathbb{Z} / p) \rightarrow H_{2}^{\text {cont }}(G / H, \mathbb{Z} / p)$ coincide (Theorem 2.5):

As a corollary we obtain (Corollary 2.6) that, for a finitely generated free pro-p-group \hat{F}_{p}, a continuous epimorphism $\pi: \hat{F}_{p} \rightarrow G$ to a pro- p-group induces the exact sequence

$$
\begin{equation*}
H_{2}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right) \xrightarrow{\pi_{*}} H_{2}^{\text {disc }}(G, \mathbb{Z} / p) \xrightarrow{\varphi} H_{2}^{\text {cont }}(G, \mathbb{Z} / p) \longrightarrow 0 . \tag{1.1}
\end{equation*}
$$

That is, to prove that, for a free group $F, H_{2}\left(\hat{F}_{p}, \mathbb{Z} / p\right) \neq 0$, it is enough to find a discrete epimorphism $F \rightarrow G$ such that the comparison map of the second homology groups of the pro-p-completion of G has a non-zero kernel. Observe that the statements in $\S 2$ significantly use the theory of profinite groups and there is no direct way to generalize them for pronilpotent groups. In particular, we do not see how to prove that $H_{2}\left(\hat{F}_{\mathbb{Z}}, \mathbb{Z} / p\right) \neq 0$, where $\hat{F}_{\mathbb{Z}}$ is the pronilpotent completion of F.

Section 3 follows the ideas of Bousfield from [Bou92]. Consider the ring of formal power series $\mathbb{Z} / p \llbracket x \rrbracket$, and the infinite cyclic group $C:=\langle t\rangle$. We will use the multiplicative notation of the p-adic integers $C \otimes \mathbb{Z}_{p}=\left\{t^{\alpha}, \alpha \in \mathbb{Z}_{p}\right\}$. Consider the continuous multiplicative homomorphism $\tau: C \otimes \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p \llbracket x \rrbracket$ sending t to $1-x$. The main result of $\S 3$ is Proposition 3.3, which claims that the kernel of the multiplication map

$$
\begin{equation*}
\mathbb{Z} / p \llbracket x \rrbracket \otimes_{\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]} \mathbb{Z} / p \llbracket x \rrbracket \longrightarrow \mathbb{Z} / p \llbracket x \rrbracket \tag{1.2}
\end{equation*}
$$

is uncountable.
Our main example is based on the p-lamplighter group $\mathbb{Z} / p \backslash \mathbb{Z}$, a finitely generated but not finitely presented group, which plays a central role in the theory of metabelian groups. The homological properties of the p-lamplighter group are considered in [Kro85]. The profinite completion of the p-lamplighter group is considered in [GK14], where it is shown that it is a semi-similar group generated by finite automaton. We consider the double lamplighter group,

$$
(\mathbb{Z} / p)^{2} \imath \mathbb{Z}=\left\langle a, b, c \mid\left[b, b^{a^{i}}\right]=\left[c, c^{a^{i}}\right]=\left[b, c^{a^{i}}\right]=b^{p}=c^{p}=1, i \in \mathbb{Z}\right\rangle .
$$

Denote by $\mathcal{D L}$ the pro- p-completion of the double lamplighter group. It follows from direct computations of homology groups that there is a diagram (in the above notation)

where the left vertical arrow is a split monomorphism and the upper horizontal map is the multiplication map (see proof of Theorem 4.3). This implies that, for the group $\mathcal{D} \mathcal{L}$, the comparison map $H_{2}^{\text {disc }}(\mathcal{D} \mathcal{L}, \mathbb{Z} / p) \rightarrow H_{2}^{\text {cont }}(\mathcal{D} \mathcal{L}, \mathbb{Z} / p)$ has an uncountable kernel. Since the double lamplighter group is 3 -generated, the sequence (1.1) implies that, for a free group F with at least three generators, $H_{2}\left(\hat{F}_{p}, \mathbb{Z} / p\right)$ is uncountable. Finally, we use [Bou92, Lemma 11.2] to get the same result for a 2-generated free group F.

In [Bou77], Bousfield formulated the following generalization of the above problem for the class of finitely presented groups (see [Bou77, Problem 4.10], the case $R=\mathbb{Z} / n$). Let G be a finitely presented group. Is it true that $H \mathbb{Z} / p$-localization of G equals its pro- p-completion \hat{G}_{p} ? (The problem is formulated for $H \mathbb{Z} / n$-localization, but it is reduced to the case of a prime $n=p$.) It follows immediately from the definition of $H \mathbb{Z} / p$-localization that this problem can be reformulated as follows: is it true that, for a finitely presented group G, the natural homomorphism $H_{2}(G, \mathbb{Z} / p) \rightarrow H_{2}\left(\hat{G}_{p}, \mathbb{Z} / p\right)$? It is shown in [Bou77] that this is true for the class of polycyclic groups. The same is true for finitely presented metabelian groups [IM16]. The main theorem of the present paper implies that, for any finitely presented group P, which maps epimorphically onto the double lamplighter group, the natural map $H_{2}(P, \mathbb{Z} / p) \rightarrow H_{2}\left(\hat{P}_{p}, \mathbb{Z} / p\right)$ has an uncountable cokernel.

2. Discrete and continuous homology of profinite groups

For a profinite group G and a normal subgroup H, denote by \bar{H} the closure of H in G in profinite topology.

Theorem 2.1 [NS07, Theorem 1.4]. Let G be a finitely generated profinite group and H be a closed normal subgroup of G. Then the subgroup $[H, G]$ is closed in G.

Corollary 2.2. Let G be a finitely generated profinite group and H be a closed normal subgroup of G. Then the subgroup $[H, G] \cdot H^{p}$ is closed in G.

Proof. Consider the abelian profinite group $H /[H, G]$. Then the p-power map $H /[H, G] \rightarrow$ $H /[H, G]$ is continuous and its image is equal to $\left([H, G] \cdot H^{p}\right) /[H, G]$. Hence $\left([H, G] \cdot H^{p}\right) /[H, G]$ is a closed subgroup of $H /[H, G]$. Using the fact that the preimage of a closed set under continuous function is closed, we obtain that $[H, G] \cdot H^{p}$ is closed.

Observe that, in the proof of Corollary 2.2, [NS07, Theorem 1.4] is not used in full generality. We only need it in the case of pro- p groups, and in this particular case the proof of this theorem is quite elementary.

S. O. Ivanov and R. Mikhailov

Lemma 2.3 (mod- p Hopf formula). Let G be a (discrete) group and H be its normal subgroup. Then there is a natural exact sequence

$$
H_{2}(G, \mathbb{Z} / p) \longrightarrow H_{2}(G / H, \mathbb{Z} / p) \longrightarrow \frac{H \cap\left([G, G] G^{p}\right)}{[H, G] H^{p}} \longrightarrow 0
$$

Proof. This follows from the five-term exact sequence

$$
H_{2}(G, \mathbb{Z} / p) \longrightarrow H_{2}(G / H, \mathbb{Z} / p) \longrightarrow H_{1}(H, \mathbb{Z} / p)_{G} \longrightarrow H_{1}(G, \mathbb{Z} / p)
$$

and the equations $H_{1}(H, \mathbb{Z} / p)_{G}=H /\left([H, G] H^{p}\right)$ and $H_{1}(G, \mathbb{Z} / p)=G /\left([G, G] G^{p}\right)$.
Lemma 2.4 (Profinite mod-p Hopf formula). Let G be a profinite group and H be its closed normal subgroup. Then there is a natural exact sequence

$$
H_{2}^{\text {cont }}(G, \mathbb{Z} / p) \longrightarrow H_{2}^{\text {cont }}(G / H, \mathbb{Z} / p) \longrightarrow \frac{H \cap \overline{\left([G, G] G^{p}\right)}}{\overline{\left([H, G] H^{p}\right)}} \longrightarrow 0
$$

Proof. For the sake of simplicity we set $H_{*}(-)=H_{*}^{\text {discr }}(-, \mathbb{Z} / p)$ and $H_{*}^{\text {cont }}(-):=H_{*}^{\text {cont }}(-, \mathbb{Z} / p)$. Consider the five-term exact sequence [RZ00, Corollary 7.2.6]

$$
H_{2}^{\text {cont }}(G) \longrightarrow H_{2}^{\text {cont }}(G) \longrightarrow H_{0}^{\text {cont }}\left(G, H_{1}^{\text {cont }}(H)\right) \longrightarrow H_{1}^{\text {cont }}(G) .
$$

Continuous homology and cohomology of profinite groups are Pontryagin dual to each other [RZ00, Proposition 6.3.6]. There are isomorphisms

$$
H_{\text {cont }}^{1}(G)=\operatorname{Hom}\left(G / \overline{[G, G] G^{p}}, \mathbb{Z} / p\right)=\operatorname{Hom}\left(G / \overline{[G, G] G^{p}}, \mathbb{Q} / \mathbb{Z}\right),
$$

where Hom denotes the set of continuous homomorphisms (see [Ser02, I.2.3]). It follows that $H_{1}^{\text {cont }}(G)=G / \overline{[G, G] G^{p}}$. Similarly, $H_{1}^{\text {cont }}(H)=H / \overline{[H, H] H^{p}}$. [RZ00, Lemma 6.3.3] implies that $H_{0}^{\text {cont }}(G, M)=M / \overline{\langle m-m g \mid m \in M, g \in G\rangle}$ for any profinite $(\mathbb{Z} / p[G])^{\wedge}$-module M. Therefore $H_{0}^{\text {cont }}\left(G, H_{1}^{\text {cont }}(H)\right)=H / \overline{[H, H] H^{p}}$. The assertion follows.

We denote by φ the comparison map

$$
\varphi: H_{2}^{\text {disc }}(G, \mathbb{Z} / p) \rightarrow H_{2}^{\text {cont }}(G, \mathbb{Z} / p) .
$$

Theorem 2.5. Let G be a finitely generated profinite group and H a closed normal subgroup of G. Denote

$$
\begin{aligned}
Q^{\text {disc }} & :=\operatorname{Coker}\left(H_{2}(G, \mathbb{Z} / p) \rightarrow H_{2}(G / H, \mathbb{Z} / p)\right), \\
Q^{\text {cont }} & :=\operatorname{Coker}\left(H_{2}^{\text {cont }}(G, \mathbb{Z} / p) \rightarrow H_{2}^{\text {cont }}(G / H, \mathbb{Z} / p)\right) .
\end{aligned}
$$

Then the comparison maps φ induce an isomorphism $Q^{\text {disc }} \cong Q^{\text {cont }}$:

Proof. This follows from Lemmas 2.3, 2.4 and Corollary 2.2.
Corollary 2.6. Let G be a finitely generated pro-p-group and $\pi: \hat{F}_{p} \rightarrow G$ be a continuous epimorphism from the pro-p-completion of a finitely generated free group F. Then the sequence

$$
H_{2}^{\text {disc }}\left(\hat{F}_{p}, \mathbb{Z} / p\right) \xrightarrow{\pi_{*}} H_{2}^{\text {disc }}(G, \mathbb{Z} / p) \xrightarrow{\varphi} H_{2}^{\text {cont }}(G, \mathbb{Z} / p) \longrightarrow 0
$$

is exact.
Proof. This follows from Theorem 2.5 and the fact that $H_{2}^{\text {cont }}\left(\hat{F}_{p}, \mathbb{Z} / p\right)=0$.

On discrete homology of a free pro- p-Group

3. Technical results about the ring of power series $\mathbb{Z} / p \llbracket x \rrbracket$

In this section we follow to ideas of Bousfield written in [Bou92, Lemmas 10.6, 10.7]. The goal of this section is to prove Proposition 3.3.

We use the following notation: $C=\langle t\rangle$ is the infinite cyclic group; $C \otimes \mathbb{Z}_{p}$ is the group of p-adic integers written multiplicatively as powers of the generator $C \otimes \mathbb{Z}_{p}=\left\{t^{\alpha} \mid \alpha \in \mathbb{Z}_{p}\right\} ; \mathbb{Z} / p \llbracket x \rrbracket$ is the ring of power series; $\mathbb{Z} / p((x))$ is the field of formal Laurent series.

Lemma 3.1. Let A be a subset of $\mathbb{Z} / p \llbracket x \rrbracket$. Denote by A^{i} the image of A in $\mathbb{Z} / p[x] /\left(x^{p^{i}}\right)$. Assume that

$$
\lim _{i \rightarrow \infty}\left|\mathrm{~A}^{i}\right| / p^{p^{i}}=0 .
$$

Then the interior of $\mathbb{Z} / p \llbracket x \rrbracket \backslash \mathrm{~A}$ is dense in $\mathbb{Z} / p \llbracket x \rrbracket$.
Proof. Take any power series f and any its neighbourhood of the form $f+\left(x^{p^{s}}\right)$. Then for any i the open set $f+\left(x^{p^{s}}\right)$ is the disjoint union of smaller open sets $\bigcup_{t=1}^{p^{p^{2}}} f+f_{t}+\left(x^{p^{s+i}}\right)$, where f_{t} runs over representatives of $\left(x^{p^{s}}\right) /\left(x^{p^{s+i}}\right)$. Chose i so that $\left|\mathrm{A}^{s+i}\right| / p^{p^{i+s}} \leqslant p^{-p^{s}}$. Then $\left|\mathrm{A}^{s+i}\right| \leqslant p^{p^{i}}$. Hence the number of elements in A^{i+s} is less than the number of open sets $f+f_{t}+\left(x^{p^{s+i}}\right)$. It follows that there exists t such that $\mathrm{A} \cap\left(f+f_{t}+\left(x^{p^{s+i}}\right)\right)=\varnothing$. The assertion follows.

Denote by

$$
\tau: C \otimes \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p \llbracket x \rrbracket
$$

the continuous multiplicative homomorphism sending tor $1-x$. It is well defined because $(1-x)^{p^{i}}=1-x^{p^{i}}$.

Lemma 3.2. Let K be the subfield of $\mathbb{Z} / p((x))$ generated by the image of τ. Then the degree of the extension $[\mathbb{Z} / p((x)): K]$ is uncountable.

Proof. Denote the image of the map $\tau: C \otimes \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p \llbracket x \rrbracket$ by A. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$, where $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{Z} / p$, and $k \geqslant 1$. Denote by $\mathrm{A}_{\alpha, \beta, k}$ the subset of $\mathbb{Z} / p \llbracket x \rrbracket$ consisting of elements that can be written in the form

$$
\begin{equation*}
\frac{\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}}{\beta_{1} b_{1}+\cdots+\beta_{n} b_{n}} \tag{3.1}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathrm{~A}$ and $\beta_{1} b_{1}+\cdots+\beta_{n} b_{n} \notin\left(x^{p^{k}}\right)$. Then $K \cap \mathbb{Z} / p \llbracket x \rrbracket=\bigcup_{\alpha, \beta, k} \mathrm{~A}_{\alpha, \beta, k}$.
Fix some α, β, k. Take $i \geqslant k$ and consider the images of A and $\mathrm{A}_{\alpha, \beta, k}$ in $\mathbb{Z} / p[x] /\left(x^{p^{i}}\right)$. Denote them by A^{i} and $\mathrm{A}_{\alpha, \beta, k}^{i}$. Obviously A^{i} is the image of the map $C / C^{p^{i}} \rightarrow \mathbb{Z} / p[x] /\left(x^{p^{i}}\right)$ that sends t to $1-x$. Then A^{i} consists of p^{i} elements. Fix some elements $\bar{a}_{1}, \ldots, \bar{a}_{n}, \bar{b}_{1}, \ldots, \bar{b}_{n} \in \mathrm{~A}^{i}$ that have preimages $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathrm{~A}$ such that the ratio (3.1) is in $\mathrm{A}_{\alpha, \beta, k}$. For any such preimages $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathrm{~A}$ the image \bar{r} of the ratio (3.1) satisfies the equation

$$
\bar{r} \cdot\left(\beta_{1} \bar{b}_{1}+\cdots+\beta_{n} \bar{b}_{n}\right)=\alpha_{1} \bar{a}_{1}+\cdots+\alpha_{n} \bar{a}_{n} .
$$

Since $\beta_{1} \bar{b}_{1}+\cdots+\beta_{n} \bar{b}_{n} \notin\left(x^{p^{k}}\right)$, the annihilator of $\beta_{1} \bar{b}_{1}+\cdots+\beta_{n} \bar{b}_{n}$ consists of no more than $p^{p^{k}}$ elements and the equation has no more than $p^{p^{k}}$ solutions. Then we have no more than $p^{2 i n}$

S. O. Ivanov and R. Mikhailov

variants of collections $\bar{a}_{1}, \ldots, \bar{a}_{n}, \bar{b}_{1}, \ldots, \bar{b}_{n} \in \mathrm{~A}^{i}$, and for any such variant there are no more than $p^{p^{k}}$ variants for the image of the ratio. Therefore

$$
\begin{equation*}
\left|\mathrm{A}_{\alpha, \beta, k}^{i}\right| \leqslant p^{2 i n+p^{k}} . \tag{3.2}
\end{equation*}
$$

Take any sequence of elements $v_{1}, v_{2}, \ldots \in \mathbb{Z} / p((x))$ and prove that $\sum_{m=1}^{\infty} K v_{m} \neq \mathbb{Z} / p((x))$. Note that $x \in K$ because $t \mapsto 1-x$. Multiplying the elements $v_{1}, v_{2}, v_{3}, \ldots$ by powers of x, we can assume that $v_{1}, v_{2}, \ldots \in \mathbb{Z} / p \llbracket x \rrbracket$. Fix some α, β, k as above. Set

$$
\mathrm{A}_{\alpha, \beta, k, l}=\mathrm{A}_{\alpha, \beta, k} \cdot v_{1}+\cdots+\mathrm{A}_{\alpha, \beta, k} \cdot v_{l} .
$$

Then $\sum_{m=1}^{\infty} K v_{m}=\bigcup_{\alpha, \beta, k, l, j} \mathrm{~A}_{\alpha, \beta, k, l} \cdot x^{-j}$. Denote by $\mathrm{A}_{\alpha, \beta, k, l}^{i}$ the image of $\mathrm{A}_{\alpha, \beta, k, l}$ in $\mathbb{Z} / p[x] /\left(x^{i}\right)$. Then (3.2) implies $\left|\mathrm{A}_{\alpha, \beta, k, l}^{i}\right| \leqslant p^{\left(2 i n+p^{k}\right) l}$. Therefore

$$
\lim _{i \rightarrow \infty}\left|\mathrm{~A}_{\alpha, \beta, k, l}^{i}\right| / p^{p^{i}}=0 .
$$

By Lemma 3.1 the interior of the complement of $\mathrm{A}_{\alpha, \beta, k, l}$ is dense in $\mathbb{Z} / p \llbracket x \rrbracket$. By the Baire theorem $\sum_{m=1}^{\infty} K v_{m}=\bigcup_{\alpha, \beta, k, l, j} \mathrm{~A}_{\alpha, \beta, k, l} \cdot x^{-j}$ has empty interior. In particular, $\sum_{m=1}^{\infty} K v_{m} \neq \mathbb{Z} / p((x))$.
Proposition 3.3. Consider the ring homomorphism $\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right] \rightarrow \mathbb{Z} / p \llbracket x \rrbracket$ induced by τ. Then the kernel of the multiplication map

$$
\begin{equation*}
\mathbb{Z} / p \llbracket x \rrbracket \otimes_{\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]} \mathbb{Z} / p \llbracket x \rrbracket \longrightarrow \mathbb{Z} / p \llbracket x \rrbracket \tag{3.3}
\end{equation*}
$$

is uncountable.
Proof. As in Lemma 3.2, we denote by K the subfield of $\mathbb{Z} / p((x))$ generated by the image of $C \otimes \mathbb{Z}_{p}$. Since $t \mapsto 1-x$, we have $x, x^{-1} \in K$. Set $R:=K \cap \mathbb{Z} / p \llbracket x \rrbracket$. Note that the image of $\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]$ lies in R. Consider the multiplication map

$$
\mu: \mathbb{Z} / p \llbracket x \rrbracket \otimes_{R} K \rightarrow \mathbb{Z} / p((x)) .
$$

We claim that this is an isomorphism. Construct the map in the inverse direction

$$
\kappa: \mathbb{Z} / p((x)) \rightarrow \mathbb{Z} / p \llbracket x \rrbracket \otimes_{R} K
$$

given by

$$
\kappa\left(\sum_{i=-n}^{\infty} \alpha_{i} x^{i}\right)=\sum_{i=0}^{\infty} \alpha_{i+n} x^{i} \otimes x^{-n}
$$

Since we have $a x \otimes b=a \otimes x b, \kappa$ does not depend on the choice of n, we just have to chose it big enough. Using this, we get that κ is well defined. Obviously $\mu \kappa=$ id. Chose $a \otimes b \in \mathbb{Z} / p \llbracket x \rrbracket \otimes_{R} K$. Then $b=b_{1} b_{2}^{-1}$, where $b_{1}, b_{2} \in R$. Since b_{2} is a power series, we can chose n such that $b_{2}=x^{n} b_{3}$, where b_{3} is a power series with non-trivial constant term. Then b_{3} is invertible in the ring of power series and $b_{3}, b_{3}^{-1} \in R$ because $x \in K$. Hence $a \otimes b=a b_{3}^{-1} b_{3} \otimes b=a b_{3}^{-1} \otimes x^{-n} b_{1}=a b_{1} b_{3}^{-1} \otimes x^{-n}$. Using this presentation, we see that $\kappa \mu=\mathrm{id}$. Therefore

$$
\begin{equation*}
\mathbb{Z} / p \llbracket x \rrbracket \otimes_{R} K \cong \mathbb{Z} / p((x)) . \tag{3.4}
\end{equation*}
$$

Since the image of $\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]$ lies in R, the tensor product $\mathbb{Z} / p \llbracket x \rrbracket \otimes_{R} \mathbb{Z} / p \llbracket x \rrbracket$ is a quotient of the tensor product $\mathbb{Z} / p \llbracket x \rrbracket \otimes_{\mathbb{Z}} / p\left[C \otimes \mathbb{Z}_{p}\right] \mathbb{Z} / p \llbracket x \rrbracket$ and it is enough to prove that the kernel of

$$
\begin{equation*}
\mathbb{Z} / p \llbracket x \rrbracket \otimes_{R} \mathbb{Z} / p \llbracket x \rrbracket \longrightarrow \mathbb{Z} / p \llbracket x \rrbracket \tag{3.5}
\end{equation*}
$$

is uncountable.

For any ring homomorphism $R \rightarrow S$ and any R-modules M, N there is an isomorphism $\left(M \otimes_{R} N\right) \otimes_{R} S=\left(M \otimes_{R} S\right) \otimes_{S}\left(N \otimes_{R} S\right)$. Using this and the isomorphism (3.4), we obtain that after application of $-\otimes_{R} K$ to (3.5) we have

$$
\begin{equation*}
\mathbb{Z} / p((x)) \otimes_{K} \mathbb{Z} / p((x)) \longrightarrow \mathbb{Z} / p((x)) \tag{3.6}
\end{equation*}
$$

Assume to the contrary that the kernel of the map (3.5) is countable (countable $=$ countable or finite). It follows that the linear map (3.6) has countable-dimensional kernel. Finally, note that the homomorphism

$$
\Lambda_{K}^{2} \mathbb{Z} / p((x)) \rightarrow \mathbb{Z} / p((x)) \otimes_{K} \mathbb{Z} / p((x))
$$

given by $a \wedge b \mapsto a \otimes b-b \otimes a$ is a monomorphism, its image lies in the kernel and the dimension of $\Lambda_{K}^{2} \mathbb{Z} / p((x))$ over K is uncountable because $[\mathbb{Z} / p((x)): K]$ is uncountable (Lemma 3.2). A contradiction follows.

4. Double lamplighter pro-p-group

Let A be a finitely generated free abelian group written multiplicatively; $\mathbb{Z} / p[A]$ be its group algebra; I be its augmentation ideal; and M be a $\mathbb{Z} / p[A]$-module. Then denote by $\hat{M}=$ $\lim _{\leftarrow} M / M I^{i}$ its I-adic completion. We embed A into the pro- p-group $A \otimes \mathbb{Z}_{p}$. We use the 'multiplicative' notation $a^{\alpha}:=a \otimes \alpha$ for $a \in A$ and $\alpha \in \mathbb{Z}_{p}$. Note that for any $a \in A$ the power $a^{p^{i}}$ acts trivially on $M / M I^{p^{i}}$ because $1-a^{p^{i}}=(1-a)^{p^{i}} \in I^{p^{i}}$. Then we can extend the action of A on \hat{M} to the action of $A \otimes \mathbb{Z}_{p}$ on \hat{M} in a continuous way.

The proof of the following lemma can be found in [IM16], but we include it here for completeness.

Lemma 4.1. Let A be a finitely generated free abelian group and M be a finitely generated $\mathbb{Z} / p[A]$-module. Then

$$
H_{*}(A, M) \cong H_{*}(A, \hat{M}) \cong H_{*}\left(A \otimes \mathbb{Z}_{p}, \hat{M}\right)
$$

Proof. The first isomorphism is proven in [BD75]. Since $\mathbb{Z} / p[A]$ in Noetheran, it follows that $H_{n}(A, \hat{M})$ is a finite \mathbb{Z} / p-vector space for any n. Prove the second isomorphism. The action of $A \otimes \mathbb{Z}_{p}$ on \hat{M} gives an action of $A \otimes \mathbb{Z}_{p}$ on $H_{*}(A, \hat{M})$ such that A acts trivially on $H_{*}(A, \hat{M})$. Then we have a homomorphism from $A \otimes \mathbb{Z} / p$ to a finite group of automorphisms of $H_{n}(A, \hat{M})$, whose kernel contains A. Since any subgroup of finite index in $A \otimes \mathbb{Z}_{p}$ is open (see [RZ00, Theorem 4.2.2]) and A is dense in $A \otimes \mathbb{Z}_{p}$, we obtain that the action of $A \otimes \mathbb{Z}_{p}$ on $H_{*}(C, \hat{M})$ is trivial. Note that $\mathbb{Z}_{p} / \mathbb{Z}$ is a divisible torsion free abelian group, and hence $A \otimes\left(\mathbb{Z}_{p} / \mathbb{Z}\right) \cong \mathbb{Q}^{\oplus \mathbf{c}}$, where \mathbf{c} is the continuous cardinal. Then the second page of the spectral sequence of the short exact sequence $A \hookrightarrow A \otimes \mathbb{Z}_{p} \rightarrow \mathbb{Q}^{\oplus \mathbf{c}}$ with coefficients in \hat{M} is $H_{n}\left(\mathbb{Q}^{\oplus \mathbf{c}}, H_{m}(A, \hat{M})\right)$, where $L_{m}:=H_{m}(A, \hat{M})$ is a trivial $\mathbb{Z} / p\left[\mathbb{Q}^{\oplus \mathbf{c}}\right]$-module. Then by universal coefficient theorem we have

$$
0 \longrightarrow \Lambda^{n}\left(\mathbb{Q}^{\oplus \mathbf{c}}\right) \otimes L_{m} \longrightarrow H_{n}\left(\mathbb{Q}^{\oplus \mathbf{c}}, L_{m}\right) \longrightarrow \operatorname{Tor}\left(\Lambda^{n-1}\left(\mathbb{Q}^{\oplus \mathbf{c}}\right), L_{m}\right) \longrightarrow 0
$$

Since $\Lambda^{n}\left(\mathbb{Q}^{\oplus \mathbf{c}}\right)$ is torsion free and L_{m} is a \mathbb{Z} / p-vector space, we get $\Lambda^{n}\left(\mathbb{Q}^{\oplus \mathbf{c}}\right) \otimes L_{m}=0$ and $\operatorname{Tor}\left(\Lambda^{n-1}\left(\mathbb{Q}^{\oplus \mathbf{c}}\right), L_{m}\right)=0$. It follows that $H_{n}\left(\mathbb{Q}^{\oplus \mathbf{c}}, L_{m}\right)=0$ for $n \geqslant 1$ and $H_{0}\left(\mathbb{Q}^{\oplus \mathbf{c}}, L_{m}\right)=L_{m}$. Then the spectral sequence consists of only one column, and hence $H_{*}\left(A \otimes \mathbb{Z}_{p}, \hat{M}\right)=H_{*}(A, \hat{M})$.

S. O. Ivanov and R. Mikhailov

Lemma 4.2. Let A be an abelian group, M be a $\mathbb{Z}[A]$-module and $\sigma_{M}: M \rightarrow M$ be an automorphism of the underlying abelian group such that $\sigma_{M}(m a)=\sigma_{M}(m) a^{-1}$ for any $m \in M$ and $a \in A$. Then there is an isomorphism

$$
(M \otimes M)_{A} \cong M \otimes_{\mathbb{Z}[A]} M
$$

given by

$$
m \otimes m^{\prime} \leftrightarrow m \otimes \sigma_{M}\left(m^{\prime}\right)
$$

Proof. Consider the isomorphism $\Phi: M \otimes M \rightarrow M \otimes M$ given by $\Phi\left(m \otimes m^{\prime}\right)=m \otimes \sigma\left(m^{\prime}\right)$. The group of coinvariants $(M \otimes M)_{A}$ is the quotient of $M \otimes M$ by the subgroup R generated by elements $m a \otimes m^{\prime} a-m \otimes m^{\prime}$, where $a \in A$ and $m, m^{\prime} \in M$. We can write the generators of R in the following form: $m a \otimes m^{\prime}-m \otimes m^{\prime} a^{-1}$. Then $\Phi(R)$ is generated by $m a \otimes \sigma_{M}\left(m^{\prime}\right)-$ $m \otimes \sigma_{M}\left(m^{\prime}\right) a$. Using the fact that σ_{M} is an automorphism, we can rewrite the generators of R as follows: $m a \otimes m^{\prime}-m \otimes m^{\prime} a$. Taking linear combinations of the generators of $\Phi(R)$, we obtain that $\Phi(R)$ is generated by elements $m \lambda \otimes m^{\prime}-m \otimes m^{\prime} \lambda$, where $\lambda \in \mathbb{Z}[A]$. Then $(M \otimes M) / \Phi(R)=$ $M \otimes_{\mathbb{Z}[A]} M$.

The group $C=\langle t\rangle$ acts on $\mathbb{Z} / p \llbracket x \rrbracket$ by multiplication on $1-x$. As above, we can extend the action of C on $\mathbb{Z} \llbracket x \rrbracket$ to the action of $C \otimes \mathbb{Z}_{p}$ in a continuous way. The group

$$
\mathbb{Z} / p \imath C=\mathbb{Z} / p[C] \rtimes C=\left\langle a, b \mid\left[b, b^{a^{i}}\right]=b^{p}=1, i \in \mathbb{Z}\right\rangle
$$

is called the lamplighter group. We consider the 'double version' of this group, the double lamplighter group:

$$
(\mathbb{Z} / p[C] \oplus \mathbb{Z} / p[C]) \rtimes C=\left\langle a, b, c \mid\left[b, b^{a^{i}}\right]=\left[c, c^{a^{i}}\right]=\left[b, c^{a^{i}}\right]=b^{p}=c^{p}=1, i \in \mathbb{Z}\right\rangle
$$

Its pro-p-completion is equal to the semidirect product

$$
\mathcal{D} \mathcal{L}=(\mathbb{Z} / p \llbracket x \rrbracket \oplus \mathbb{Z} / p \llbracket x \rrbracket) \rtimes\left(C \otimes \mathbb{Z}_{p}\right)
$$

with the action of $C \otimes \mathbb{Z}_{p}$ on $\mathbb{Z} / p \llbracket x \rrbracket$ described above (see [IM16, Proposition 4.12]). We call the group $\mathcal{D} \mathcal{L}$ the double lamplighter pro-p-group.

TheOrem 4.3. The kernel of the comparison homomorphism for the double lamplighter pro-pgroup,

$$
\varphi: H_{2}^{\text {disc }}(\mathcal{D} \mathcal{L}, \mathbb{Z} / p) \longrightarrow H_{2}^{\text {cont }}(\mathcal{D} \mathcal{L}, \mathbb{Z} / p)
$$

is uncountable.
Proof. For the sake of simplicity we set $H_{2}(-)=H_{2}(-, \mathbb{Z} / p)$ and $H_{2}^{\text {cont }}(-)=H_{2}^{\text {cont }}(-, \mathbb{Z} / p)$. Consider the homological spectral sequence E of the short exact sequence $\mathbb{Z} / p \llbracket x \rrbracket^{2} \rightharpoondown \mathcal{D} \mathcal{L} \rightarrow$ $C \otimes \mathbb{Z}_{p}$. Then the zero line of the second page is trivial: $E_{k, 0}^{2}=H_{k}\left(C \otimes \mathbb{Z}_{p}\right)=\left(\Lambda^{k} \mathbb{Z}_{p}\right) \otimes \mathbb{Z} / p=0$ for $k \geqslant 2$. Using Lemma 4.1, we obtain $H_{k}\left(C \otimes \mathbb{Z}_{p}, \mathbb{Z} / p \llbracket x \rrbracket\right)=H_{k}(C, \mathbb{Z} / p[C])=0$ for $k \geqslant 1$, and hence $E_{k, 1}^{2}=0$ for $k \geqslant 1$. It follows that

$$
\begin{equation*}
H_{2}(\mathcal{D} \mathcal{L})=E_{0,2}^{2} \tag{4.1}
\end{equation*}
$$

For any \mathbb{Z} / p-vector space V, the Künneth formula gives a natural isomorphism

$$
H_{2}(V \oplus V) \cong(V \otimes V) \oplus H_{2}(V)^{2}
$$

Then we have a split monomorphism,

$$
\begin{equation*}
(\mathbb{Z} / p \llbracket x \rrbracket \otimes \mathbb{Z} / p \llbracket x \rrbracket)_{C \otimes \mathbb{Z}_{p}} \mapsto E_{0,2}^{2}=H_{2}(\mathcal{D} \mathcal{L}) . \tag{4.2}
\end{equation*}
$$

It easy to see that the groups $\mathcal{D} \mathcal{L}_{(i)}=\left(\left(x^{i}\right) \oplus\left(x^{i}\right)\right) \rtimes\left(C \otimes p^{i} \mathbb{Z}_{p}\right)$ form a fundamental system of open normal subgroups. Consider the quotients $\mathcal{D} \mathcal{L}^{(i)}=\mathcal{D} \mathcal{L} / \mathcal{D} \mathcal{L}_{(i)}$. Then

$$
H_{2}^{\text {cont }}(\mathcal{D} \mathcal{L})=\lim _{\leftrightarrows} H_{2}\left(\mathcal{D} \mathcal{L}^{(i)}\right)
$$

The short exact sequence $\mathbb{Z} / p \llbracket x \rrbracket^{2} \mapsto \mathcal{D} \mathcal{L} \rightarrow C \otimes \mathbb{Z}_{p}$ maps onto the short exact sequence $\left(\mathbb{Z} / p[x] /\left(x^{i}\right)\right)^{2} \mapsto \mathcal{D} \mathcal{L}^{(i)} \rightarrow C / C^{p^{i}}$. Consider the morphism of corresponding spectral sequences $E \rightarrow{ }^{(i)} E$. Using (4.1), we obtain

$$
\operatorname{Ker}\left(H_{2}(\mathcal{D L}) \rightarrow H_{2}\left(\mathcal{D} \mathcal{L}^{(i)}\right)\right) \supseteq \operatorname{Ker}\left(E_{2,0}^{2} \rightarrow{ }^{(i)} E_{2,0}^{2}\right)
$$

Similarly to (4.2), we have a split monomorphism

$$
\left(\mathbb{Z} / p[x] /\left(x^{i}\right) \otimes \mathbb{Z} / p[x] /\left(x^{i}\right)\right)_{C \otimes \mathbb{Z}_{p}}{ }^{(i)} E_{2,0}^{2} .
$$

Then we need to prove that the kernel of the map

$$
\begin{equation*}
(\mathbb{Z} / p \llbracket x \rrbracket \otimes \mathbb{Z} / p \llbracket x \rrbracket)_{C \otimes \mathbb{Z}_{p}} \longrightarrow \lim _{\rightleftarrows}\left(\mathbb{Z} / p[x] /\left(x^{i}\right) \otimes \mathbb{Z} / p[x] /\left(x^{i}\right)\right)_{C \otimes \mathbb{Z}_{p}} \tag{4.3}
\end{equation*}
$$

is uncountable.
Consider the antipod $\sigma: \mathbb{Z} / p[C] \rightarrow \mathbb{Z} / p[C]$, that is, the ring homomorphism given by $\sigma\left(t^{n}\right)=$ t^{-n}. The antipod induces a homomorphism $\sigma: \mathbb{Z} / p[x] /\left(x^{i}\right) \rightarrow \mathbb{Z} / p[x] /\left(x^{i}\right)$ such that $\sigma(1-x)=$ $1+x+x^{2}+\cdots$. It induces the continuous homomorphism $\sigma: \mathbb{Z} / p \llbracket x \rrbracket \rightarrow \mathbb{Z} / p \llbracket x \rrbracket$ such that $\sigma(x)=-x-x^{2}-\cdots$. Moreover, we consider the antipode σ on $\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]$. Note that the homomorphisms

$$
\mathbb{Z} / p[C] \rightarrow \mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right] \rightarrow \mathbb{Z} / p \llbracket x \rrbracket \rightarrow \mathbb{Z} / p[x] /\left(x^{i}\right)
$$

commute with the antipodes.
By Lemma 4.2 the correspondence $a \otimes b \leftrightarrow a \otimes \sigma(b)$ gives isomorphisms

$$
\begin{aligned}
(\mathbb{Z} / p \llbracket x \rrbracket \otimes \mathbb{Z} / p \llbracket x \rrbracket)_{C \otimes \mathbb{Z}_{p}} & \cong \mathbb{Z} / p \llbracket x \rrbracket \otimes_{\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]} \mathbb{Z} / p \llbracket x \rrbracket, \\
\left(\mathbb{Z} / p[x] /\left(x^{i}\right) \otimes \mathbb{Z} / p[x] /\left(x^{i}\right)\right)_{C \otimes \mathbb{Z}_{p}} & \cong \mathbb{Z} / p[x] /\left(x^{i}\right) \otimes_{\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]} \mathbb{Z} / p[x] /\left(x^{i}\right) .
\end{aligned}
$$

Moreover, since $\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right] \rightarrow \mathbb{Z} / p[x] /\left(x^{i}\right)$ is an epimorphism, we obtain

$$
\mathbb{Z} / p[x] /\left(x^{i}\right) \otimes_{\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]} \mathbb{Z} / p[x] /\left(x^{i}\right) \cong \mathbb{Z} / p[x] /\left(x^{i}\right)
$$

Therefore the homomorphism (4.3) is isomorphic to the multiplication homomorphism

$$
\mathbb{Z} / p \llbracket x \rrbracket \otimes_{\mathbb{Z} / p\left[C \otimes \mathbb{Z}_{p}\right]} \mathbb{Z} / p \llbracket x \rrbracket \longrightarrow \mathbb{Z} / p \llbracket x \rrbracket,
$$

whose kernel is uncountable by Proposition 3.3.

5. Proof of main theorem

Since the double lamplighter pro- p-group is 3 -generated, we have a continuous epimorphism $\hat{F}_{p} \rightarrow \mathcal{D} \mathcal{L}$, where F is the 3 -generated free group. Then the statement of the theorem for the 3 -generated free group follows from Proposition 4.3 and Corollary 2.6. Using the fact that the 3 -generated free group is a retract of the k-generated free group for $k \geqslant 3$, we obtain the result for $k \geqslant 3$. The result for the 2-generated free group follows from [Bou92, Lemma 11.2].

On discrete homology of a free pro-p-Group

Acknowledgement

The research is supported by the Russian Science Foundation grant N 16-11-10073.

REFERENCES

Bou77 A. K. Bousfield, Homological localization towers for groups and π-modules, Mem. Amer. Math. Soc. 186 (1977).
Bou92 A. K. Bousfield, On the p-adic completions of nonnilpotent spaces, Trans. Amer. Math. Soc. 331 (1992), 335-359.
BD75 K. S. Brown and E. Dror, The Artin-Rees property and homology, Israel J. Math. 22 (1975), 93-109.
FKRS08 G. A. Fernandez-Alcober, I. V. Kazatchkov, V. N. Remeslennikov and P. Symonds, Comparison of the discrete and continuous cohomology groups of a pro-p-group, St. Petersburg Math. J. 19 (2008), 961-973.

GK14 R. Grigorchuk and R. Kravchenko, On the lattice of subgroups of the lamplighter group, Internat. J. Algebra Comput. 24 (2014), 837-877.
IM16 S. O. Ivanov and R. Mikhailov, On a problem of Bousfield for metabelian groups, Adv. Math. 290 (2016), 552-589.
IM17 S. O. Ivanov and R. Mikhailov, A finite \mathbb{Q}-bad space, Preprint (2017), arXiv:1708.00282.
Klo16 B. Klopsch, Abstract quotients of profinite groups, after Nikolov and Segal, Preprint (2016), arXiv:1601.00343.
Kro85 P. H. Kropholler, A note on the cohomology of metabelian groups, Math. Proc. Cambridge Philos. Soc. 98 (1985), 437-445.
Nik11 N. Nikolov, Algebraic properties of profinite groups, Preprint (2011), arXiv:1108.5130.
NS07 N. Nikolov and D. Segal, On finitely generated profinite groups, I: Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), 171-238.
RZ00 L. Ribes and P. Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 40 (Springer, Berlin, 2000).
Ser02 J.-P. Serre, Galois cohomology, Springer Monographs in Mathematics (Springer, Berlin, 2002).

Sergei O. Ivanov ivanov.s.o.1986@gmail.com
Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia

Roman Mikhailov rmikhailov@mail.ru
Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia
and
St. Petersburg Department of Steklov Mathematical Institute, Russia

[^0]: Received 1 August 2017, accepted in final form 14 February 2018, published online 7 September 2018. 2010 Mathematics Subject Classification 55P60, 20E18 (primary).
 Keywords: completion, profinite group, group homology.
 This journal is © Foundation Compositio Mathematica 2018.

