J. Austral. Math. Soc. (Series A) 28 (1979), 82-86

SOLUTIONALLY COMPLETE VARIETIES

HARALD HULE

(Received 14 November 1978; revised 14 February 1979)

Communicated by R. Lidl

Abstract

A variety \mathfrak{A} is called solutionally complete if any solvable system of algebraic equations over an algebra A in \mathfrak{A} which has at most one solution in every extension of A in \mathfrak{A} has the solution in A. A necessary and sufficient condition for solutional completeness is given which is a weaker form of the strong amalgamation property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 08 A 15.

Let A be a universal algebra in the variety \mathfrak{A} , $X = \{x_1, ..., x_n\}$ a finite set of indeterminates, and W(A, X) the word algebra in X over A in the sense of Lausch and Nöbauer (1973). A system of algebraic equations (shortly 'algebraic system') in X over A is a family of pairs of elements of W(A, X). An algebraic system $\langle (p_i(x_1, ..., x_n), q_i(x_1, ..., x_n) \rangle_{i \in I}$ is 'solvable over (A, \mathfrak{A}) ' if there exist a \mathfrak{A} -extension B of A (that is, an algebra $B \in \mathfrak{A}$ which has A as a subalgebra) and elements $b_1, ..., b_n \in B$ such that $p_i(b_1, ..., b_n) = q_i(b_1, ..., b_n)$ for all $i \in I$.

Lausch and Nöbauer (1973) posed the following problem: If S is an algebraic system solvable over (A, \mathfrak{A}) which has at most one solution in every \mathfrak{A} -extension of A, is then the unique solution of S in A?

Negative answers to this question have been given independently by Taylor (1976) and Hule (1976). In some well-known varieties, however (for instance, the varieties of groups and of lattices), the answer is affirmative. Such varieties are called 'solutionally complete'.

We want to give a necessary and sufficient condition for solutional completeness. For this purpose we consider simple extensions of an algebra A, that is, algebras generated by $A \cup \{b\}$ for some $b \notin A$. Such an algebra will be denoted by A(b). Two simple extensions A(b) and A(c) will be called 'isomorphic over A' if there exists an isomorphism $\tau: A(b) \rightarrow A(c)$ such that $\tau a = a$ for every $a \in A$ and $\tau b = c$. **THEOREM** 1. A variety \mathfrak{A} is solutionally complete if and only if the following condition (A) holds:

(A) For any algebra $A \in \mathfrak{A}$ and any two simple \mathfrak{A} -extensions A(b), A(c) isomorphic over A there exist a \mathfrak{A} -extension D of A and homomorphisms $\varphi: A(b) \rightarrow D$, $\psi: A(c) \rightarrow D$ such that φ and ψ fix A and $\varphi b \neq \psi c$.

PROOF. Suppose that \mathfrak{A} satisfies condition (A). In Hule (1976) it is shown that a variety is solutionally complete if the definition is satisfied for algebraic systems in one indeterminate. So let $S = \langle p_i(x), q_i(x) \rangle_{i \in I}$ be an algebraic system in $\{x\}$ over A which is solvable over (A, \mathfrak{A}) and has no solution in A. Then the system has a solution b in some \mathfrak{A} -extension B of A. We take the subalgebra A(b) of B and construct an isomorphic copy A(c) of A(b) by renaming the elements of A(b) - A and defining an isomorphism τ such that $\tau b = c$ and $\tau a = a$ for every $a \in A$. Then A(b) and A(c) are simple \mathfrak{A} -extensions isomorphic over A. Let D, φ , ψ be as in the theorem. Then $p_i(b) = q_i(b)$ implies $p_i(\varphi b) = q_i(\varphi b)$ and $p_i(\psi c) = q_i(\psi c)$ for every $i \in I$. Hence φb and ψc are two different solutions of S in D. This shows that \mathfrak{A} is solutionally complete.

Now suppose that condition (A) is not satisfied in \mathfrak{A} . Then there exist an algebra $A \in \mathfrak{A}$ and a pair of simple \mathfrak{A} -extensions A(b), A(c) isomorphic over A such that for any \mathfrak{A} -extension D of A and any pair of homomorphisms $\varphi: A(b) \rightarrow D$ and $\psi: A(c) \rightarrow D$ which fix $A, \varphi b = \psi c$. By Lemma 4.43, Chap. 1 of Lausch and Nöbauer (1973) there exist a homomorphism λ from the polynomial algebra $A(\{x\}, \mathfrak{A})$ onto A(b) with $\lambda x = b$ and $\lambda a = a$ for every $a \in A$, and a homomorphism μ from $A(\{y\}, \mathfrak{A})$ onto A(c) with $\mu y = c$ and $\mu a = a$ for every $a \in A$ (we assume $x \neq y$, without loss of generality). Let β be the kernel of λ and γ the kernel of μ . Now we define $D = A(\{x, y\}, \mathfrak{A})/\delta$, where δ is the congruence on $A(\{x, y\}, \mathfrak{A})$ generated by $\beta \cup \gamma$. This means that $p(x, y) \equiv q(x, y) \mod \delta$ holds if and only if there exists a sequence of words $w_0, w_1, \dots, w_k \in W(A, \{x, y\})$ such that w_0 is a word representation of p(x, y), w_k represents q(x, y), and for any $i \in \{1, ..., k\}$ either w_{i-1} and w_i represent the same polynomial or w_i is obtained from w_{i-1} replacing some subword u of w_{i-1} by v where u and v represent polynomials congruent under β or under γ . We first show that δ separates the elements of A. Assume a_1, a_2 to be different elements of A and $w_0, w_1, ..., w_k$ a sequence of words as above which establishes $a_1 \equiv a_2 \mod \delta$. For each *i*, let \bar{w}_i be the element of A(b) obtained from w_i by substituting each occurrence of x or y by b and performing the operations in A(b). Then $a_1 = \bar{w}_0 = \bar{w}_1 = \ldots = \bar{w}_k = a_2$. Therefore, we can consider D as a **A**-extension of A. Since $\beta \subseteq \delta$ and $\gamma \subseteq \delta$, the canonical homomorphism χ from $A(\{x, y\}, \mathfrak{A})$ onto D induces homomorphisms $\varphi: A(b) \to D$ and $\psi: A(c) \to D$ defined by $\varphi \lambda x = \chi x$, $\psi \mu y = \chi y$, $\varphi a = \psi a = a$ for every $a \in A$. By hypothesis we have $\varphi b = \psi c$ and conclude

$$\chi x = \varphi \lambda x = \varphi b = \psi c = \psi \mu y = \chi y,$$

Harald Hule

whence $x \equiv y \mod \delta$. Now let $\{(p_i, q_i) i \in I\}$ be a generating set of the congruence β . Then the family $S = \langle (p_i, q_i) \rangle_{i \in I}$ (where we identify the polynomials p_i, q_i with corresponding words) is an algebraic system over A which has the solution b in A(b), not in A. We now show that S has at most one solution in any \mathfrak{A} -extension of A, which will prove that \mathfrak{A} is not solutionally complete. Let e and e' be solutions of S in some \mathfrak{A} -extension E of A. Then $u(x) \equiv v(x) \mod \beta$ implies u(e) = v(e) and $u(y) \equiv v(y) \mod \gamma$ implies u(e') = v(e'). Let w_0, w_1, \dots, w_k be a sequence of words which establishes the relation $x \equiv y \mod \delta$. This sequence is converted into a chain of equal elements of E if we substitute x by e and y by e'. This completes the proof of the theorem.

As an immediate consequence of Theorem 1 we get a sufficient condition for solutional completeness found previously by Hule (1976).

COROLLARY. A variety \mathfrak{A} is solutionally complete if it satisfies the following condition (B):

(B) If B and C are \mathfrak{A} -extensions of an algebra $A \in \mathfrak{A}$, then there exists an algebra $D \in \mathfrak{A}$ which is a common extension of B and C.

Condition (B) is usually called the 'strong amalgamation property'. Actually, it suffices that the strong amalgamation property hold for simple \mathfrak{A} -extensions of A isomorphic over A. A counterexample in Hule (1978) shows that this condition is not necessary for solutional completeness.

We want to prove a generalization of the preceding result for algebraic systems in arbitrary (not necessarily finite) sets of indeterminates. Thus, we consider an algebraic system $\langle (p_i(X), q_i(X) \rangle_{i \in I}$ where $X = \{x_j | j \in J\}$ is an arbitrary set of indeterminates and $p_i(X)$, $q_i(X)$ are elements of W(A, X). The system is 'solvable over (A, \mathfrak{A}) ' if there exist a \mathfrak{A} -extension E of A and a family $E = (e_j)_{j \in J}$ of elements of E such that $p_i(E) = q_i(E)$ for all $i \in I$. (For any $p(X) \in W(A, X)$, p(E) is the element of E which we obtain by substituting each x_j occurring in p(X) by e_j and performing the operations in E.)

A variety is called 'strongly solutionally complete' if the following condition holds: If S is an algebraic system (in an arbitrary set of indeterminates) solvable over (A, \mathfrak{A}) which has at most one solution in every \mathfrak{A} -extension of A, then the unique solution of S consists of elements of A.

In order to establish a necessary and sufficient condition for strong solutional completeness, we consider extensions A(B) of A where A(B) is generated by $A \cup B$ and $A \cap B = \emptyset$. Two extensions A(B) and A(C) will be called 'isomorphic over A' if there exists an isomorphism $\tau: A(B) \rightarrow A(C)$ which takes B onto C and such that $\tau a = a$ for every $a \in A$. When considering extensions A(B) and A(C) isomorphic

over A, we shall always assume that an isomorphism τ with the required properties is defined.

THEOREM 2. A variety \mathfrak{A} is strongly solutionally complete if and only if the following condition (C) holds:

(C) For any algebra $A \in \mathfrak{A}$ and any two \mathfrak{A} -extensions A(B), A(C) isomorphic over A there exist a \mathfrak{A} -extension D of A and homomorphisms $\varphi: A(B) \rightarrow D$, $\psi: A(C) \rightarrow D$ such that φ and ψ fix A and $\varphi b \neq \psi \tau b$ for at least one $b \in B$.

PROOF. Suppose that \mathfrak{A} satisfies condition (C). Let $S = \langle p_i(X), q_i(X) \rangle_{i \in I}$ be an algebraic system in $X = \{x_j | j \in J\}$ solvable over (A, \mathfrak{A}) which has no solution in A (which means that no family $(a_j)_{j \in J}$ with $a_j \in A$ is a solution). Then S has a solution $\overline{B} = (b_j)_{j \in J}$ in some \mathfrak{A} -extension E of A where $b_j \notin A$ for at least one j. Let $B = \{b_j | j \in J \text{ and } b_j \notin A\}$. Then we take the subalgebra A(B) of E and construct an isomorphic copy A(C) of A(B) by renaming the elements of A(B) - A and defining an isomorphism $\tau: A(B) \rightarrow A(C)$ such that the two extensions are isomorphic over A. Then we define $\overline{C} = (c_j)_{j \in J}$ where $c_j = \tau b_j$ if $b_j \in B$ and $c_j = b_j$ if $b_j \in A$. Let D, φ, ψ be as in condition (C), $\varphi \overline{B} = (\varphi b_j)_{j \in J}$ and $\psi \overline{C} = (\psi c_j)_{j \in J}$. Then $p_i(\overline{B}) = q_i(\overline{B})$ implies $p_i(\varphi \overline{B}) = q_i(\varphi \overline{B})$ and $p_i(\psi \overline{C}) = q_i(\psi \overline{C})$ for every $i \in I$. Hence $\varphi \overline{B}$ and $\psi \overline{C}$ are two solutions of S in D which are different because $\varphi b_j + \psi \tau b_j = \psi c_j$ for at least one $b_i \in B$. This shows that \mathfrak{A} is strongly solutionally complete.

Now suppose that condition (C) is not satisfied in \mathfrak{A} . Then there exist an algebra $A \in \mathfrak{A}$ and a pair of \mathfrak{A} -extensions A(B), A(C) isomorphic over A such that for any \mathfrak{A} -extension D of A and any pair of homomorphisms $\varphi: A(B) \to D$ and $\psi: A(C) \to D$ which fix A, $\varphi b = \psi \tau b$ for every $b \in B$. We index B and C by an appropriate set J such that $B = \{b_i | j \in J\}$, $C = \{c_i | j \in J\}$ and $c_i = \tau b_i$ for all $j \in J$, then we take disjoint sets of indeterminates $X = \{x_i | j \in J\}$ and $Y = \{y_i | j \in J\}$. There exist a homomorphism λ from $A(X, \mathfrak{A})$ onto A(B) with $\lambda x_j = b_j$ for every $j \in J$ and $\lambda a = a$ for every $a \in A$, and a homomorphism μ from $A(Y, \mathfrak{A})$ onto A(C) with $\mu y_i = c_i$ for $j \in J$ and $\mu a = a$ for $a \in A$. Let β be the kernel of λ , γ the kernel of μ , and $D = A(X \cup Y, \mathfrak{A})/\delta$, where δ is the congruence on $A(X \cup Y, \mathfrak{A})$ generated by $\beta \cup \gamma$. Like in the proof of Theorem 1, taking for \bar{w}_i the element of A(B) obtained by substituting each x_j or y_j occurring in w_i by b_j , we see that δ separates A, and hence we consider D as an extension of A. Homomorphisms $\varphi: A(B) \rightarrow D$ and $\psi: A(C) \rightarrow D$ are defined by the conditions $\varphi \lambda x_i = \chi x_i, \psi \mu y_i = \chi y_i$ and $\varphi a = \psi a = a$ for every $a \in A$, where χ is the canonical homomorphism from $A(X \cup Y, \mathfrak{A})$ onto D. By hypothesis we have $\varphi b_j = \psi \tau b_j = \psi c_j$ for every j which implies $x_j \equiv y_j \mod \delta$. Also the rest of the proof is analogous to that of Theorem 1. The algebraic system S constructed as in that proof has the solution $\overline{B} = (b_i)_{i \in J}$ in A(B), not in A, and for two arbitrary solutions of S in some \mathfrak{A} -extension of A, $(e_i)_{i \in J}$ and $(e'_i)_{i \in J}$, we deduce $e_j = e'_j$ from $x_j \equiv y_j \mod \delta$. So \mathfrak{A} is not strongly solutionally complete.

Harald Hule

References

- H. Hule (1976), 'Über die Eindeutigkeit der Lösungen algebraischer Gleichungssysteme', J. Reine Angew. Math. 282, 157-161.
- H. Hule (1978), 'Relations between the amalgamation property and algebraic equations', J. Austral. Math. Soc. Ser. A 25, 257-263.
- H. Lausch and W. Nöbauer (1973), Algebra of polynomials (North-Holland, Amsterdam).
- W. Taylor (1976), 'Pure compactifications in quasi-primal varieties', Canad. J. Math. 28, 50-62.

Departamento de Matemática Universidade de Brasília Brasilia Brazil