SOLUTIONALLY COMPLETE VARIETIES

HARALD HULE
(Received 14 November 1978; revised 14 February 1979)
Communicated by R. Lidl

Abstract

A variety $\mathfrak{A l}$ is called solutionally complete if any solvable system of algebraic equations over an algebra A in \mathfrak{U} which has at most one solution in every extension of A in \mathfrak{A} has the solution in A. A necessary and sufficient condition for solutional completeness is given which is a weaker form of the strong amalgamation property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 08 A 15.

Let A be a universal algebra in the variety $\mathfrak{A}, X=\left\{x_{1}, \ldots, x_{n}\right\}$ a finite set of indeterminates, and $W(A, X)$ the word algebra in X over A in the sense of Lausch and Nöbauer (1973). A system of algebraic equations (shortly 'algebraic system') in X over A is a family of pairs of elements of $W(A, X)$. An algebraic system $\left\langle\left(p_{i}\left(x_{1}, \ldots, x_{n}\right), q_{i}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{i \in I}\right.$ is 'solvable over (A, \mathfrak{N}) ' if there exist a \mathfrak{A}-extension B of A (that is, an algebra $B \in \mathfrak{H}$ which has A as a subalgebra) and elements $b_{1}, \ldots, b_{n} \in B$ such that $p_{i}\left(b_{1}, \ldots, b_{n}\right)=q_{i}\left(b_{1}, \ldots, b_{n}\right)$ for all $i \in I$.

Lausch and Nöbauer (1973) posed the following problem: If S is an algebraic system solvable over (A, \mathfrak{H}) which has at most one solution in every \mathfrak{H}-extension of A, is then the unique solution of S in A ?

Negative answers to this question have been given independently by Taylor (1976) and Hule (1976). In some well-known varieties, however (for instance, the varieties of groups and of lattices), the answer is affirmative. Such varieties are called 'solutionally complete'.

We want to give a necessary and sufficient condition for solutional completeness. For this purpose we consider simple extensions of an algebra A, that is, algebras generated by $A \cup\{b\}$ for some $b \notin A$. Such an algebra will be denoted by $A(b)$. Two simple extensions $A(b)$ and $A(c)$ will be called 'isomorphic over A ' if there exists an isomorphism $\tau: A(b) \rightarrow A(c)$ such that $\tau a=a$ for every $a \in A$ and $\tau b=c$.

Theorem 1. A variety \mathfrak{A} is solutionally complete if and only if the following condition (A) holds:
(A) For any algebra $A \in \mathfrak{H}$ and any two simple \mathfrak{U}-extensions $A(b), A(c)$ isomorphic over A there exist a \mathfrak{U}-extension D of A and homomorphisms $\varphi: A(b) \rightarrow D$, $\psi: A(c) \rightarrow D$ such that φ and ψ fix A and $\varphi b \neq \psi c$.

Proof. Suppose that \mathfrak{U} satisfies condition (A). In Hule (1976) it is shown that a variety is solutionally complete if the definition is satisfied for algebraic systems in one indeterminate. So let $S=\left\langle p_{i}(x), q_{i}(x)\right\rangle_{i \in I}$ be an algebraic system in $\{x\}$ over A which is solvable over (A, \mathfrak{U}) and has no solution in A. Then the system has a solution b in some \mathfrak{A}-extension B of A. We take the subalgebra $A(b)$ of B and construct an isomorphic copy $A(c)$ of $A(b)$ by renaming the elements of $A(b)-A$ and defining an isomorphism τ such that $\tau b=c$ and $\tau a=a$ for every $a \in A$. Then $A(b)$ and $A(c)$ are simple \mathfrak{A}-extensions isomorphic over A. Let D, φ, ψ be as in the theorem. Then $p_{i}(b)=q_{i}(b)$ implies $p_{i}(\varphi b)=q_{i}(\varphi b)$ and $p_{i}(\psi c)=q_{i}(\psi c)$ for every $i \in I$. Hence φb and ψc are two different solutions of S in D. This shows that \mathfrak{U} is solutionally complete.

Now suppose that condition (A) is not satisfied in \mathfrak{A}. Then there exist an algebra $A \in \mathfrak{A}$ and a pair of simple \mathfrak{H}-extensions $A(b), A(c)$ isomorphic over A such that for any \mathfrak{H}-extension D of A and any pair of homomorphisms $\varphi: A(b) \rightarrow D$ and $\psi: A(c) \rightarrow D$ which fix $A, \varphi b=\psi c$. By Lemma 4.43, Chap. 1 of Lausch and Nöbauer (1973) there exist a homomorphism λ from the polynomial algebra $A(\{x\}, \mathfrak{V})$ onto $A(b)$ with $\lambda x=b$ and $\lambda a=a$ for every $a \in A$, and a homomorphism μ from $A(\{y\}, \mathfrak{H})$ onto $A(c)$ with $\mu y=c$ and $\mu a=a$ for every $a \in A$ (we assume $x \neq y$, without loss of generality). Let β be the kernel of λ and γ the kernal of μ. Now we define $D=A(\{x, y\}, \mathfrak{2}) / \delta$, where δ is the congruence on $A(\{x, y\}, \mathfrak{H})$ generated by $\beta \cup \gamma$. This means that $p(x, y) \equiv q(x, y) \bmod \delta$ holds if and only if there exists a sequence of words $w_{0}, w_{1}, \ldots, w_{k} \in W(A,\{x, y\})$ such that w_{0} is a word representation of $p(x, y), w_{k}$ represents $q(x, y)$, and for any $i \in\{1, \ldots, k\}$ either w_{i-1} and w_{i} represent the same polynomial or w_{i} is obtained from w_{i-1} replacing some subword u of w_{i-1} by v where u and v represent polynomials congruent under β or under γ. We first show that δ separates the elements of A. Assume a_{1}, a_{2} to be different elements of A and $w_{0}, w_{1}, \ldots, w_{k}$ a sequence of words as above which establishes $a_{1} \equiv a_{2} \bmod \delta$. For each i, let \bar{w}_{i} be the element of $A(b)$ obtained from w_{i} by substituting each occurrence of x or y by b and performing the operations in $A(b)$. Then $a_{1}=\bar{w}_{0}=\bar{w}_{1}=\ldots=\bar{w}_{k}=a_{2}$. Therefore, we can consider D as a \mathfrak{U}-extension of A. Since $\beta \subseteq \delta$ and $\gamma \subseteq \delta$, the canonical homomorphism χ from $A(\{x, y\}, \mathfrak{X})$ onto D induces homomorphisms $\varphi: A(b) \rightarrow D$ and $\psi: A(c) \rightarrow D$ defined by $\varphi \lambda x=\chi x, \psi \mu y=\chi y, \varphi a=\psi a=a$ for every $a \in A$. By hypothesis we have $\varphi b=\psi c$ and conclude

$$
\chi x=\varphi \lambda x=\varphi b=\psi c=\psi \mu y=\chi y
$$

whence $x \equiv y \bmod \delta$. Now let $\left\{\left(p_{i}, q_{i}\right) i \in I\right\}$ be a generating set of the congruence β. Then the family $S=\left\langle\left(p_{i}, q_{i}\right)\right\rangle_{i \in I}$ (where we identify the polynomials p_{i}, q_{i} with corresponding words) is an algebraic system over A which has the solution b in $A(b)$, not in A. We now show that S has at most one solution in any \mathfrak{U}-extension of A, which will prove that \mathfrak{A} is not solutionally complete. Let e and e^{\prime} be solutions of S in some \mathfrak{U}-extension E of A. Then $u(x) \equiv v(x) \bmod \beta$ implies $u(e)=v(e)$ and $u(y) \equiv v(y) \bmod \gamma$ implies $u\left(e^{\prime}\right)=v\left(e^{\prime}\right)$. Let $w_{0}, w_{1}, \ldots, w_{k}$ be a sequence of words which establishes the relation $x \equiv y \bmod \delta$. This sequence is converted into a chain of equal elements of E if we substitute x by e and y by e^{\prime}. This completes the proof of the theorem.

As an immediate consequence of Theorem 1 we get a sufficient condition for solutional completeness found previously by Hule (1976).

Corollary. A variety \mathfrak{H} is solutionally complete if it satisfies the following condition (B):
(B) If B and C are \mathfrak{Y}-extensions of an algebra $A \in \mathfrak{A}$, then there exists an algebra $D \in \mathfrak{U}$ which is a common extension of B and C.

Condition (B) is usually called the 'strong amalgamation property'. Actually, it suffices that the strong amalgamation property hold for simple \mathfrak{A}-extensions of A isomorphic over A. A counterexample in Hule (1978) shows that this condition is not necessary for solutional completeness.

We want to prove a generalization of the preceding result for algebraic systems in arbitrary (not necessarily finite) sets of indeterminates. Thus, we consider an algebraic system $\left\langle\left(p_{i}(X), q_{i}(X)\right\rangle_{i \in I}\right.$ where $X=\left\{x_{j} \mid j \in J\right\}$ is an arbitrary set of indeterminates and $p_{i}(X), q_{i}(X)$ are elements of $W(A, X)$. The system is 'solvable over $(A, \mathfrak{2})$ ' if there exist a \mathfrak{Q}-extension E of A and a family $E=\left(e_{j}\right)_{j \in J}$ of elements of E such that $p_{i}(E)=q_{i}(E)$ for all $i \in I$. (For any $p(X) \in W(A, X), p(E)$ is the element of E which we obtain by substituting each x_{j} occurring in $p(X)$ by e_{j} and performing the operations in E.)
A variety is called 'strongly solutionally complete' if the following condition holds: If S is an algebraic system (in an arbitrary set of indeterminates) solvable over (A, \mathfrak{Q}) which has at most one solution in every \mathfrak{Q}-extension of A, then the unique solution of S consists of elements of A.

In order to establish a necessary and sufficient condition for strong solutional completeness, we consider extensions $A(B)$ of A where $A(B)$ is generated by $A \cup B$ and $A \cap B=\emptyset$. Two extensions $A(B)$ and $A(C)$ will be called 'isomorphic over A ' if there exists an isomorphism $\tau: A(B) \rightarrow A(C)$ which takes B onto C and such that $\tau a=a$ for every $a \in A$. When considering extensions $A(B)$ and $A(C)$ isomorphic
over A, we shall always assume that an isomorphism τ with the required properties is defined.

Theorem 2. A variety \mathfrak{A} is strongly solutionally complete if and only if the following condition (C) holds:
(C) For any algebra $A \in \mathfrak{A}$ and any two \mathfrak{H}-extensions $A(B), A(C)$ isomorphic over A there exist a \mathfrak{H}-extension D of A and homomorphisms $\varphi: A(B) \rightarrow D$, $\psi: A(C) \rightarrow D$ such that φ and ψ fix A and $\varphi b \neq \psi \tau b$ for at least one $b \in B$.

Proof. Suppose that \mathfrak{A} satisfies condition (C). Let $S=\left\langle p_{i}(X), q_{i}(X)\right\rangle_{i_{\in} I}$ be an algebraic system in $X=\left\{x_{j} \mid j \in J\right\}$ solvable over (A, \mathfrak{N}) which has no solution in A (which means that no family $\left(a_{j}\right)_{j \in J}$ with $a_{j} \in A$ is a solution). Then S has a solution $\bar{B}=\left(b_{j}\right)_{j \in J}$ in some \mathfrak{U}-extension E of A where $b_{j} \notin A$ for at least one j. Let $B=\left\{b_{j} \mid j \in J\right.$ and $\left.b_{j} \notin A\right\}$. Then we take the subalgebra $A(B)$ of E and construct an isomorphic copy $A(C)$ of $A(B)$ by renaming the elements of $A(B)-A$ and defining an isomorphism $\tau: A(B) \rightarrow A(C)$ such that the two extensions are isomorphic over A. Then we define $\bar{C}=\left(c_{j}\right)_{j \in J}$ where $c_{j}=\tau b_{j}$ if $b_{j} \in B$ and $c_{j}=b_{j}$ if $b_{j} \in A$. Let D, φ, ψ be as in condition (C), $\varphi \bar{B}=\left(\varphi b_{j}\right)_{j_{\epsilon} J}$ and $\psi \bar{C}=\left(\psi c_{j}\right)_{j \in J}$. Then $p_{i}(\bar{B})=q_{i}(\bar{B})$ implies $p_{i}(\varphi \bar{B})=q_{i}(\varphi \bar{B})$ and $p_{i}(\psi \bar{C})=q_{i}(\psi \bar{C})$ for every $i \in I$. Hence $\varphi \bar{B}$ and $\psi \bar{C}$ are two solutions of S in D which are different because $\varphi b_{j} \neq \psi \tau b_{j}=\psi c_{j}$ for at least one $b_{j} \in B$. This shows that \mathfrak{A} is strongly solutionally complete.

Now suppose that condition (C) is not satisfied in \mathfrak{A}. Then there exist an algebra $A \in \mathfrak{A}$ and a pair of \mathfrak{A}-extensions $A(B), A(C)$ isomorphic over A such that for any \mathfrak{Q}-extension D of A and any pair of homomorphisms $\varphi: A(B) \rightarrow D$ and $\psi: A(C) \rightarrow D$ which fix $A, \varphi b=\psi \tau b$ for every $b \in B$. We index B and C by an appropriate set J such that $B=\left\{b_{j} \mid j \in J\right\}, C=\left\{c_{j} \mid j \in J\right\}$ and $c_{j}=\tau b_{j}$ for all $j \in J$, then we take disjoint sets of indeterminates $X=\left\{x_{j} \mid j \in J\right\}$ and $Y=\left\{y_{j} \mid j \in J\right\}$. There exist a homomorphism λ from $A(X, \mathfrak{A})$ onto $A(B)$ with $\lambda x_{j}=b_{j}$ for every $j \in J$ and $\lambda a=a$ for every $a \in A$, and a homomorphism μ from $A(Y, \mathfrak{Q})$ onto $A(C)$ with $\mu y_{j}=c_{j}$ for $j \in J$ and $\mu a=a$ for $a \in A$. Let β be the kernel of λ, γ the kernel of μ, and $D=A(X \cup Y, \mathfrak{A}) / \delta$, where δ is the congruence on $A(X \cup Y, \mathfrak{Q})$ generated by $\beta \cup \gamma$. Like in the proof of Theorem 1, taking for \bar{w}_{i} the element of $A(B)$ obtained by substituting each x_{j} or y_{j} occurring in w_{i} by b_{j}, we see that δ separates A, and hence we consider D as an extension of A. Homomorphisms $\varphi: A(B) \rightarrow D$ and $\psi: A(C) \rightarrow D$ are defined by the conditions $\varphi \lambda x_{j}=\chi x_{j}, \psi \mu y_{j}=\chi y_{j}$ and $\varphi a=\psi a=a$ for every $a \in A$, where χ is the canonical homomorphism from $A(X \cup Y, \mathfrak{H})$ onto D. By hypothesis we have $\varphi b_{j}=\psi \tau b_{j}=\psi c_{j}$ for every j which implies $x_{j} \equiv y_{j} \bmod \delta$. Also the rest of the proof is analogous to that of Theorem 1. The algebraic system S constructed as in that proof has the solution $\bar{B}=\left(b_{j}\right)_{j \in J}$ in $A(B)$, not in A, and for two arbitrary solutions of S in some \mathfrak{A}-extension of $A,\left(e_{j}\right)_{j \in J}$ and $\left(e_{j}^{\prime}\right)_{j \in J}$, we deduce $e_{j}=e_{j}^{\prime}$ from $x_{j} \equiv y_{j} \bmod \delta$. So \mathfrak{A} is not strongly solutionally complete.

References

H. Hule (1976), 'Úber die Eindeutigkeit der Lösungen algebraischer Gleichungssysteme', J. Reine Angew. Math. 282, 157-161.
H. Hule (1978), 'Relations between the amalgamation property and algebraic equations', J. Austral. Math. Soc. Ser. A 25, 257-263.
H. Lausch and W. Nöbauer (1973), Algebra of polynomials (North-Holland, Amsterdam).
W. Taylor (1976), 'Pure compactifications in quasi-primal varieties', Canad. J. Math. 28, 50-62.

Departamento de Matemática
Universidade de Brasília
Brasilia
Brazil

