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with corners

Bertrand Monthubert and Victor Nistor

Abstract

We define an analytic index and prove a topological index theorem for a non-compact
manifold M0 with poly-cylindrical ends. Our topological index theorem depends only
on the principal symbol, and establishes the equality of the topological and analytical
index in the group K0(C∗(M)), where C∗(M) is a canonical C∗-algebra associated to
the canonical compactification M of M0. Our topological index is thus, in general, not
an integer, unlike the usual Fredholm index appearing in the Atiyah–Singer theorem,
which is an integer. This will lead, as an application in a subsequent paper, to the deter-
mination of the K-theory groups K0(C∗(M)) of the groupoid C∗-algebra of the
manifolds with corners M . We also prove that an elliptic operator P on M0 has an
invertible perturbation P +R by a lower-order operator if and only if its analytic index
vanishes.

Introduction

Let M0 be a smooth, compact manifold and D be an elliptic differential operator of order m
acting between smooth sections of vector bundles on M0. Then D is continuous and Fredholm as
a map between suitable Sobolev spaces (more precisely Hs→Hs−m). In particular, the kernel
and cokernel of D are finite dimensional. This allows one to define ind(D), the Fredholm index
of D, by

ind(D) := dim ker(D)− dim coker(D) = dim ker(D)− dim(Hs−m/DHs).

The knowledge of the Fredholm index is relevant because it gives an obstruction to D being
invertible. More precisely, we have the following result whose proof is an easy exercise in
functional analysis.

Theorem 1. There exists a pseudodifferential operator R of order less than m= ord(D) on the
compact manifold M0 such that D +R :Hs→Hs−m is an isomorphism if and only if ind(D) = 0.
Moreover, if one such R exists, then it can be chosen to be of order −∞, i.e., regularizing.

If M0 is non-compact, which is the case of main interest in our paper, then an elliptic
differential operator D on M0 need not be Fredholm in general (here, by ‘elliptic’ we mean
that the principal symbol is invertible). The Fredholm index of D is therefore not defined and
Theorem 1 is meaningless as it stands. We therefore introduce an extension of the Fredholm
index on manifolds with poly-cylindrical ends. A manifold with poly-cylindrical ends is locally
diffeomorphic at infinity with a product of manifolds with cylindrical ends (see Definition 1).

Received 8 December 2009, accepted in final form 10 December 2010, published online 9 November 2011.
2010 Mathematics Subject Classification 58B34 (primary), 35S05 (secondary).
Keywords: index theory, manifold with poly-cylindrical ends, manifold with corners, Lie groupoid.
This journal is c© Foundation Compositio Mathematica 2011.

https://doi.org/10.1112/S0010437X11005458 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X11005458


A topological index theorem for manifolds with corners

From now on, M0 will denote a manifold with poly-cylindrical ends, usually non-compact,
and M will denote its canonical compactification to a manifold with corners. Two of the main
results of this paper are an extension of the Atiyah–Singer index theorem on the equality of the
topological and analytic index and an extension of Theorem 1 to manifolds with poly-cylindrical
ends (with the analytic index replacing the Fredholm index). Our work is motivated, in part, by
recent work of Leichtnam and Piazza [LP05] and Nistor and Troitsky [NT04], who have showed
that suitable generalizations of Theorem 1 are useful in geometric and topological applications.
Extensions of Theorem 1 seem to be important for the study of boundary value problems on
polyhedral domains [Nis05] using the method of layer potentials. In the process, we establish
several extensions to non-compact manifolds with poly-cylindrical ends of the classical properties
on the topological index of elliptic operators on compact manifolds [AS68, Car06].

Let us explain in a little more detail our main results. The tangent bundle TM0 extends to a
bundle AM on M (which, we recall, is the canonical compactification of M0 to a manifold with
corners) defined by the property that its sections are the vector fields tangent to the faces of M .
Let D be a differential (or pseudodifferential operator) on M0 compatible with the structure
at infinity on M0 (i.e., P ∈Ψ∞b (M), where Ψ∞b (M) denotes the algebra of pseudodifferential
operators on M0 compatible with the structure at infinity). Then the principal symbol of D
extends to a symbol defined on A∗M (see [Mel95]).

Assume that D is elliptic, in the sense that its principal symbol is invertible on A∗M outside
the zero section. Then D is invertible modulo regularizing operators. Let C∗(M) be the norm
closure of the algebra Ψ−∞b (M) of regularizing operators on M0 compatible with the structure
at infinity of M0. The obstruction of D to be invertible defines a map

inda = indMa :K0(A∗M )→K0(C∗(M)). (1)

This extension of the topological index is the analytic index map mentioned above. In particular,
the principal symbol of D defines an element inda(D) ∈K0(C∗(M)). Theorem 1 then remains
true for manifolds with poly-cylindrical ends if we use the analytic in place of the Fredholm
index.

To be more precise, the invertibility of the principal symbol of a differential operator D on
M0, i.e., the ellipticity of D, is not sufficient for the operator D to be Fredholm; but it is possible
to add extra conditions on D, namely the invertibility of the restriction of the operator to the
boundary, to obtain Fredholm operators. There are thus two types of index problems: one type
involving the analytic index of (1) (with values in the K-group of a C∗-algebra) and the other
type involving the usual Fredholm index (with values in Z). In this article, we deal with the
first type of index problem.

For manifolds with smooth, connected boundary, the structure of C∗(M) is very simple
(see [MN98, Mon03]), and that shows immediately that the groups Kj(C∗(M)) vanish, so our
topological index is trivial. This has, however, the non-trivial consequence that any Dirac
operator on a manifold with smooth boundary can be endowed with Fredholm boundary
conditions. This fact, which goes back to Atiyah et al. [APS73], is of course non-trivial. The
relation between the groups Kj(C∗(M)), for suitable M , and the existence of Fredholm boundary
conditions was discussed also in [Nis03a, Nis03b].

To explain our generalization of the topological index theorem, consider an embedding
ι :M →X of manifolds with corners and let ι! be the push-forward map in K-theory.
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B. Monthubert and V. Nistor

Then Theorem 12 states the commutativity of the diagram

K0(C∗(M))
ι∗ // K0(C∗(X))

K0(A∗M )

indM
a

OO

ι! // K0(A∗X)

indX
a

OO

(2)

where the morphism ι∗ is defined by Morita equivalence.
In order to interpret the above diagram as an index theorem in the usual way, we need

to choose X such that ι∗ :K0(C∗(M))→K0(C∗(X)) and indXa :K0(A∗X)→K0(C∗(X)) are
isomorphisms. This would the provide us with both an identification of the groups K0(C∗(M))
and of the analytic index map indMa .

To obtain a manifold X with the above mentioned properties, we shall proceed as follows. Let
us assume M is compact with embedded faces (recall [Mel95] that this means that each face of M
of maximal dimension has a defining function). To M we will associate a non-canonical manifold
with embedded faces XM and an embedding i :M →XM such that the following properties
hold.

(i) Each open face of XM is diffeomorphic to a Euclidean space.
(ii) Each face of M is the transverse intersection of M and of a face of XM .
(iii) The map F → F ∩M establishes a bijection between the open faces of M and those of XM .

We shall say that an embedding XM with the above properties is a classifying space for M and
prove that iK :K0(C∗(M))→K0(C∗(XM )) is an isomorphism, where jK is a canonical morphism
associated to any embedding of manifolds with corners j (see Lemma 6).

Let us now summarize the contents of the paper. In § 1, we review the definitions of manifolds
with corners, of Lie groupoids, and of Lie algebroids. We also review and extend a result
from [Nis00] on the integration of Lie algebroids. In § 2 we recall the definition of the analytic
index using the tangent groupoid and then compare this definition with other possible definitions
of an analytic index. In the process, we establish several technical results on tangent groupoids.
As an application, in Theorem 7, we provide the generalization of Theorem 1 mentioned above.
Section 3 contains the main properties of the analytic index. In that section, we also introduce the
morphism jK associated to an embedding of manifolds with corners j and we provide conditions
for jK and indMa to be isomorphisms. The compatibility of the analytic index and of the shriek
maps is established in § 4. This is then used in the following section to establish the equality
of the analytic and topological indexes. In the final section we show that it is indeed possible
to find a space XM and an embedding i :M →XM with the properties (i)–(iii) above (i.e., a
classifying space for M exists). The computation of the K-groups of XM can be obtained (at
least in concrete situations) using standard algebraic topology techniques. However, this requires
a different type of ideas, so is better left for another paper.

In addition to the works of Leichtnam–Piazza [LP05] and Nistor–Troitsky [NT04] mentioned
above, many other related works have appeared before and after our paper was first circulated.
While it is impractical to cite all these works, we do want to mention the following papers: the
paper of Androulidakis and Skandalis [AS09], where they use the integration of Lie algebroids
to study singular foliations and their index theory; the paper of Melo et al. [MSS06], where
they prove an index theorem for manifolds with boundary in the framework of Boutet–de-
Montvel calculus; the paper of Bunke [Bun09], in which analysis on families of manifolds with
corners plays an important role; and the papers of Nazăıkinskĭı et al. [NSS07], Melrose and his
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collaborators [AM09, MP92] and Nistor [Nis03b], where possible generalizations of the Atiyah–
Patodi–Singer boundary conditions were discussed.

1. Basic definitions

In this section we recall several basic definitions and constructions, including: manifolds with
corners, manifolds with poly-cylindrical ends, groupoids, adapted pseudodifferential operators,
and Lie algebroids. Good references to the special issues we deal with in this section are [LMN00,
Mon99, Mon03, NWX99]. General references to the subject are [Con94, Mac87, Mel95, Ren80].
See [AR09, AJ08, BP09, Erp10, Vas09] for some recent applications.

1.1 Manifolds with corners
A manifold with corners M is a manifold modeled on (R+)n (which is denoted Rn

+, and must
not be understood as a half-space of Rn, but as a quadrant). This means that any point x ∈M
has a neighborhood of the form Rn−k × Rk

+ (with x mapping to 0 = (0, 0, . . . , 0)). We shall call
k the depth of x.

The set of points of depth k is a union of connected components, each of which is a smooth
submanifold in its own, called an open face of codimension k. The closure of an open face (of
codimension k) is just called a face of M (of codimension k). A closed face is not necessarily a
manifold with corners (think of the ‘tear-drop domain’ in the plane). A codimension one face of
M is called a hyperface of M .

We shall sometimes require that each hyperface of M be an embedded submanifold of M . If
this is the case, we shall call M a manifold with embedded faces, while in Melrose’s terminology
it is just called a manifold with corners. A manifold M is a manifold with embedded faces if
each hyperface has a defining function. Recall that a function ρ :M → R+ is a defining function
of the hyperface H ⊂M if ρ is smooth, if ρ(x) = 0 precisely when x ∈H, and dρ does not vanish
on H. Such a defining function provides us, in particular, with a trivialization of NH = TM/TH,
the normal bundle of H.

If X and Y are two manifolds with corners, a map f :X → Y is called a closed embedding of
manifolds with corners if the following properties hold.

(a) It is differentiable, injective, with closed range.

(b) The differential df is injective.

(c) For each open face F of Y , f(X) is transverse to F (recall that this means that
df(TxX) + TyF = TyY , if y = f(x) ∈ F ).

(d) Each hyperface of X is a connected component of the inverse image of a hyperface of Y .

In particular, x and f(x) will have the same depth.
A submersion f :M →N (between two manifolds with corners M and N) is a differentiable

map f such that the following properties hold.

(a) The differential df(v) is an inward pointing tangent vector of N if and only if v is an inward
pointing vector of M .

(b) The differential df is surjective at all points.

If i :X → Y is a closed embedding, then there exists a tubular neighborhood U ⊂ Y , which
means that there exists a vector bundle E over X, and an open neighborhood Z of the zero
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section isomorphic to U , such that the following diagram is commutative.

Z
' // U

��
X

i //

OO

Y

The existence of such a tubular neighborhood is proved in [AIN06, Dou64]. For the benefit of
the reader, we now provide a sketch of the proof of such a tubular neighborhood that formulated
in our framework. Let us denote by Vb(X)⊂ Γ(TX) the subspace of vector fields tangent to all
faces of X. Then Vb(X) is a Lie algebra with respect to the Lie bracket and a C∞(X)-module.
Moreover, there exists a vector bundle AX →X, uniquely determined up to isomorphism, such
that

Vb(X)' Γ(AX) as C∞(X)-modules.
If Y ⊂X is a closed, embedded submanifold with corners, then Vb(Y ) consists of the restrictions
to Y of the vector fields V ∈ Vb(M) with the property that V is tangent to Y . Fix an arbitrary
open face F of Y . The assumption that every hyperface of Y be contained in a hyperface of X
(even a connected component of the intersection of Y with a hyperface of X) implies that there
exists an open face F ′ of X, of the same codimension as F , such that F ⊂ F ′. Next, the definition
of an embedded submanifold with corners implies that Y is transverse to F ′ and hence the natural
map TxF ′/TxF → TxX/TxY is an isomorphism for any x ∈ F . It is then possible1 to construct a
connection whose associated exponential map exp :NY

X → Y is such that its restrictions to each
face is a map exp|F : (NY

X )F → F ′ and is a local diffeomorphism around the zero section. Using
this exponential map, one can define E, Z, and U with the required properties.

1.2 Manifolds with poly-cylindrical ends
We shall use the notation and terminology introduced in the previous subsection. Let us fix a
metric on the bundle AM →M . This metric defines, in particular, a Riemannian metric on M0,
the interior of M . The following definition is from [Mel95].

Definition 1. A manifold with poly-cylindrical ends is a smooth Riemannian manifold M0 that
is diffeomorphic with the interior of a compact manifold with corners M such that the metric
on M0 is the restriction of a metric on AM .

The interior M0 of any compact manifold with corners M is therefore a manifold with poly-
cylindrical ends, for any choice of a metric on AM →M . The compact manifold with corners M
will be called the compactification of M0.

Let us denote the hyperfaces of M by Hi, i= 1, . . . , N , and fix, for any hyperface Hi, a
defining function ρi, if that hyperface has such a function (i.e., if Hi is an embedded hyperface).
Let h be a smooth metric on a manifold with embedded faces M . Then a typical example of a
manifold with poly-cylindrical ends is provided by M0, the interior of M , with the metric

g = h+
N∑
i=1

(ρ−1
i dρi)2. (3)

For instance, if we take M = [0, 1]n with defining functions xj and 1− xj and let h= 0, then
the resulting manifold with poly-cylindrical ends is isometrically diffeomorphic with Rn with the
standard (flat) Euclidean metric.

1 This was done in the general framework of Lie manifolds in [ALN04] and was used in [AIN06].
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We shall denote by Diffb(M) the algebra of differential operators generated by Vb(M) together
with multiplications by functions in C∞(M). A simple but useful result [ALN04] states that all
geometric operators (Laplace, Dirac, signature, . . . ) associated to the Riemannian manifold with
poly-cylindrical ends M0 are in Diffb(M). We shall therefore restrict our study of differential
operators on M0 to differential operators in Diffb(M).

If each face of M has a defining function (i.e., M has embedded faces), then in [Mel95, MP92]
an algebra Ψ∞b (M) of pseudodifferential operators on M was constructed. One of the main
properties of Ψ∞b (M) is that a differential operator P is in Ψ∞b (M) precisely when P ∈Diffb(M).
This construction was generalized in [Mon99] to arbitrary manifolds with corners. For the purpose
of this paper, it is convenient to introduce the algebra Ψ∞b (M) and related algebras using Lie
groupoids. (In fact, our algebras are slightly smaller than the ones in [Mel95, MP92].) An operator
P ∈Ψ∞b (M) will be called compatible with the structure at infinity on M0.

1.3 Differentiable groupoids

A small category is a category whose class of morphisms is a set. The class of objects of a small
category is then a set as well. By definition, a groupoid is a small category G in which every
morphism is invertible. See [Ren80] for general references on groupoids.

We shall follow the general notations: the set of objects (or units) of a groupoid G is denoted by
G(0), and the set of morphisms (or arrows) is denoted, by abuse of notation, by G instead of G(1).
A groupoid is endowed with two maps, the domain d : G → G(0) and the range r : G → G(0). The
multiplication gh of g, h ∈ G(0) is defined if, and only if, d(g) = r(h). A groupoid G is completely
determined by the spaces G(0) and G and by the structural morphisms: d, r, multiplication,
inversion, and the inclusion G(0)→G.

We shall consider Lie groupoids (G, M), that is, groupoids endowed with a differential
structure such that the set of arrows, G, and the set of units, M , are smooth manifolds with
corners, all structural maps are differentiable, and d is a submersion of manifolds with corners.
In particular, d−1(x) is a smooth manifold (without corners) for any x ∈M and G(0) is an
embedded submanifold with corners of G. (The terminology ‘differentiable groupoid’ was used
in [NWX99] instead of ‘Lie groupoid’, because the name ‘Lie groupoid’ was used in the past
for differentiable groupoids with additional structures. This has changed, however, and the
terminology ‘Lie groupoid’ better reflects the current use.)

A Lie groupoid G is called d-connected if and only if all the sets Gx := d−1(x) are connected
(and hence also path connected). If we are given a Lie groupoid G, let us define G0 to consist
of all the path components of the units in the fibers Gx. Then G0 is the an open subset of G
containing the units and is closed under the groupoid operations. We shall call G0 the d-connected
component of the units in G. It is a Lie groupoid on its own, and, as such, it is d-connected.

Examples 2. Let us include here some examples of Lie groupoids that will be needed later on.

(1) If X is a smooth manifold, X ×X, the pair groupoid has units X and is defined by
d(x, y) = y, r(x, y) = y, and (x, y)(y, z) = (x, z).

(2) Let π :X →M be a fibration with smooth fibers, and M a manifold with corners. Recall
then that the fiberwise product groupoid G :=X ×M X also has units X, and is defined as
G := {(x1, x2) ∈X2, π(x1) = π(x2)} with units X, d(x1, x2) = x2, r(x1, x2) = x1, and product
(x1, x2)(x2, x3) = (x1, x3). Thus G is a subgroupoid of the pair groupoid X ×X. This example
will be needed later on in the proof of Proposition 5.
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(3) If Gj , j = 1, 2, are Lie groupoids, then G1 × G2 is also a Lie groupoid.

(4) If M is a manifold with corners, G =M is a Lie groupoid with only units.

1.4 Lie algebroids
This subsection may be skipped at a first reading. A Lie algebroid π :A→M over a smooth
manifold with corners M is a smooth vector bundle A over M for which there is given a vector
bundle map % :A→ TM satisfying the following conditions for any C∞-sections X and Y of A
and any C∞-function f on M .

(a) The space Γ(A) is endowed with a Lie algebra structure.

(b) We have [%(X), %(Y )] = %([X, Y ]).

(c) We have [X, fY ] = (%(X)f)Y + f [X, Y ].

The simplest example of a Lie algebroid is the tangent bundle TM →M , with the Lie algebra
structure on Γ(TM) being given by the Lie bracket. Similarly, the vector bundle AM →M
introduced above is also a Lie algebroid, the Lie algebra structure being again given by the Lie
bracket.

If G is a Lie groupoid, let us denote by

TdG :=
⋃
g∈G

TgGd(g) and A(G) :=
⋃

x∈G(0)

TxGx = TdG|G(0)

the d-vertical tangent bundle of G and, respectively, the Lie algebroid of G. The sections of TdG
are vector fields tangent to the fibers of d, and hence the space of all these sections, Γ(TdG), is
closed under the Lie bracket. Multiplication to the right by γ maps Gy to Gx, where x and y are
the domain and the range of γ ∈ G. A vector field X ∈ Γ(TdG) will be called right invariant if it is
invariant under all these right multiplications. The space ΓR(TdG) of right invariant vector fields
is also closed under the Lie bracket because a local diffeomorphism preserves the Lie bracket.
Since A(G) is the restriction of the d-vertical tangent bundle TdG to the space of units M and r
is a submersion, we have ΓR(TdG)' Γ(A(G)), and hence the later is a Lie algebra. It turns out
that A(G) is, indeed, a Lie algebroid, where % := r∗, the differential of the map r.

In this paper, we shall use the following result from [Nis00], formulated in the way it will be
used in this paper. For any set S, we shall denote by Sc its complement (in a larger set that is
understood from the context).

Theorem 3. Let A→M be a Lie algebroid with anchor map % :A→ TM . Let N ⊂ F be a
closed submanifold (possibly with corners) of a face F of M . Assume that N is invariant, in
the sense that %(X) is tangent to N for any X ∈ Γ(A). Let G1 be a groupoid with units N and
Lie algebroid A|N . Also, let G2 be a groupoid with units N c =M rN and Lie algebroid A|Nc .
Assume that both G1 and G2 are d-connected. Then the disjoint union G := G1 ∪ G2 has at most
one differentiable structure compatible with the differentiable structures on G1 and G2 that makes
it a Lie groupoid with Lie algebroid A.

Let us remark that, by abstract set theory nonsense, it is enough to require in the
above theorem that A(G1)'A|N and A(G2)'A|Nc , but then we have to make sure that the
isomorphism A(G)'A is such that it is restricted to the given isomorphisms on N and N c.

The differentiable structure, if there is one, is obtained using the exponential maps (see [Nis00]
for details). It may happen, however, that there is no differentiable structure with the given
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properties on G or that the resulting manifold is non-Hausdorff. Variants of the above result for
stratifications with finitely many strata can be obtained by induction.

A corollary of the above result is the following. We use the same notation as in the previous
theorem.

Corollary 1. Assume G has a smooth structure that makes it a Lie groupoid. Let φ : G → G
be an isomorphism of groupoids that restricts to diffeomorphisms G1→G1 and G2→G2. If the
induced map φ∗ map defines a smooth isomorphism A(G)'A(G), then φ is a diffeomorphism
itself.

Proof. Consider, on G, the smooth structure coming from φ, and denote by Gφ the resulting Lie
groupoid. Then φ∗ establishes an isomorphism of A(Gφ) with A(G). By the previous theorem,
Theorem 3, the smooth structure Gφ and the given smooth structure on G are the same. Thus φ
is differentiable. Similarly, φ−1 is differentiable. 2

2. The analytic index

We shall need to consider a special class of pseudodifferential operators on a manifold with poly-
cylindrical ends M0 with compactification M , very closely related to the b-calculus of Melrose.
For us, it will be convenient to introduce this calculus using groupoids. For simplicity, we shall
assume from now on that all our manifolds with corners have embedded faces.

2.1 Pseudodifferential operators on groupoids
If G is a Lie groupoid with units M , then there is associated to it a pseudodifferential calculus
(or algebra of pseudodifferential operators) Ψ∞(G), whose operators of order m form a linear
space denoted Ψm(G), m ∈ R, such that Ψm(G)Ψm′(G)⊂Ψm+m′(G). See [MP97, NWX99]. We
shall need this construction only for Hausdorff groupoids, so we assume that G is Hausdorff
from now on. This calculus is defined as follows: Ψm(G), m ∈ Z consists of smooth families of
classical pseudodifferential operators (Px) of order m, acting on C∞c (Gx) for each x ∈M , that
are right invariant with respect to multiplication by elements of G and are ‘uniformly supported’.
To define what uniformly supported means, let us observe that the right invariance of the
operators Px implies that their distribution kernels KPx descend to a distribution kP ∈ Im(G, M)
(see [Mon98, NWX99]). Then the family P = (Px) is called uniformly supported if, by definition,
kP has compact support in G. The right invariance condition means, for P = (Px) ∈Ψ∞(G), that
right multiplication Gx 3 g′ 7→ g′g ∈ Gy maps Py to Px, whenever d(g) = y and r(g) = x.

We then have the following result (see [LMN00, Mon99, NWX99]).

Theorem 4. Let G be a Lie groupoid with units M and Lie algebroid A=A(G). The space
Ψ∞(G) is an algebra of pseudodifferential operators so that there exist surjective principal symbol

maps σ
(m)
G with kernel Ψm−1(G),

σ
(m)
G : Ψm(G)→ Smcl (A∗)/Sm−1

cl (A∗).

Also, the algebra Ψ∞(G) acts on C∞(M) such that Ψ∞(G)C∞c (M0)⊂ C∞c (M0).

In order to define the algebra of pseudodifferential operators Ψ∞b (M) on our manifold with
corners M (and acting on C∞c (M0), where M0 is our manifold with poly-cylindrical ends), we
shall first define a Lie groupoid G canonically associated to M , and then consider the associated
pseudodifferential calculus Ψ∞(G) of G (see [LN01, Mon99, Mon03, NWX99]).
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Let us denote the hyperfaces of M by Hi, i= 1, . . . , N , as above. Since M has embedded
faces, any hyperface Hi has a defining function ρi, which we shall fix from now on. To M and
Y = {ρi} we associate the groupoid

G̃(M ; Y ) := {(x, y, λ1, . . . , λN ) ∈M ×M × R∗+
N , ρi(x) = λiρi(y), for all i}. (4)

Definition 2. We define G(M) to be the d-connected component of G̃(M).

This definition is not canonical, since it depends on the choice of the defining functions
(see [Mon98, Mon99] for a canonical definition). Then G(M) is a Lie groupoid with units M .
The operations are the ones induced from the pair groupoid on the first components and from
the group structure on the last components, as follows:

d(x, y, λj) = y, r(x, y, λj) = x and (x, y, λj)(y, z, λ′j) = (x, z, λjλ′j).

We can also consider more general systems Y of functions {ρ} with the property that each
function has a non-degenerate set of zeroes that is a disjoint union of hyperfaces of M . In
particular, we have the following lemma.

Lemma 1. Let Y = {ρi} and let Y ′ = {ρ1ρ2, ρ3, . . .}, where the zero sets of ρ1 and ρ2 are disjoint.
Then G̃(M ; Y ) identifies, as a Lie groupoid, with an open subset of G̃(M ; Y ′).

Proof. The identification of G̃(M ; Y ) with an open subset of G̃(M ; Y ′) is provided by (x, y, λi)→
(x, y, λ1λ2, λ3, . . .). Let Zj be the zero set of ρj . The difference between G̃(M ; Y ) and
G̃(M ; Y ′) is that d−1(Z1 ∪ Z2) is ' (Z1 ∪ Z2)2 × R in the larger groupoid, whereas d−1(Z1 ∪
Z2) ∩ G̃(M ; Y )' (Z2

1 ∪ Z2
2 )× R. 2

We shall write C∗(M) := C∗(G(M)), for simplicity. This lemma leads immediately to the
following corollary.

Corollary 2. Let Ω⊂M be an open subset. Fix a system of defining functions Y for M , then
G̃(Ω; Y )⊂ G̃(M ; Y ) as an open subset. Consequently, G(Ω) identifies canonically with an open
subset of G(M), and hence we have a natural inclusion C∗(Ω)⊂ C∗(M) := C∗(G(M)).

Proof. Equation (4) gives

G̃(Ω; Y ) := {(x, y, λ1, . . . , λN ) ∈ Ω× Ω× R∗+
N , ρi(x) = λiρi(y), for all i}

= d−1(Ω) ∩ r−1(Ω),

so G̃(Ω; Y ) is indeed an open subset of G̃(M ; Y ). Passing to the d-connected component preserves
open inclusion. 2

Remark 5. We clearly have G(Ω)⊂ d−1(Ω) ∩ r−1(Ω), but we do not have equality unless there
exists a bijection between the faces of Ω and those of M .

We now introduce the class of pseudodifferential operators we are interested in.

Definition 3. Let M be a manifold with embedded faces (by our earlier assumption) and G(M)
be the Lie groupoid introduced in Definition 2, then we let

Ψ∞b (M) := Ψ∞(G(M)).

This algebra is slightly smaller than the one constructed by Melrose [Mel95], but, for
our purposes, it is as good. In fact, our algebra is the subalgebra of properly supported
pseudodifferential operators in the Melrose’s algebra.
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We also have that a differential operator D on M0 is in Ψ∞b (M) if and only if it is in Diffb(M).
We also obtain a principal symbol map

σ
(m)
b : Ψm

b (M)→ Smcl (A∗M )/Sm−1
cl (A∗M ).

This new definition of the principal symbol recovers the usual principal symbol in the interior
of M , but it also provides additional information at the boundary. Indeed, the usual principal
symbol of a differential operator P ∈Diffb(M) is never invertible at the boundary, so this
differential operator can never be elliptic in the usual sense (unless, of course, it is actually a
function). On the other hand, there are many differential operators P ∈Diffb(M) whose principal
symbol is invertible on A∗M . An example is provided by x∂x on the interval [0,∞). This operator
has xξ as its usual principal symbol, where (x, ξ) ∈ T ∗[0,∞) = [0,∞)× R, but in the calculus of
Ψ∞b (M), it has principal symbol σ(1)(x∂x) = ξ.

2.2 The adiabatic and tangent groupoids

For the definition and study of the analytic index, we shall need the adiabatic and tangent
groupoids associated to a differentiable groupoid G. We now recall their definition and establish
a few elementary properties.

Let G be a Lie groupoid with space of units M . We construct both the adiabatic groupoid
adG and the tangent groupoid TG (see [Con94, Lan03, LMN00, MP97, Ram99]). The space of
units of adG is M × [0,∞) and the tangent groupoid TG will be defined as the restriction of adG
to M × [0, 1].

The underlying set of the groupoid adG is the disjoint union

adG =A(G)× {0} ∪ G × (0,∞).

We endow A(G)× {0} with the structure of commutative bundle of Lie groups induced by
its vector bundle structure. We endow G × (0,∞) with the product (or pointwise) groupoid
structure. Then the groupoid operations of adG are such that A(G)× {0} and G × (0,∞) are
subgroupoids with the induced structure. Now let us endow adG with a differentiable structure.
The differentiable structure on adG is such that

Γ(A(adG)) = tΓ(A(G × [0,∞))). (5)

More precisely, consider the product groupoid G × [0,∞) with pointwise operations. Then a
section X ∈ Γ(A(G × [0,∞))) can be identified with a smooth function [0,∞) 3 t→X(t) ∈
Γ(A(G)). We thus require Γ(A(adG)) = {tX(t)}, with X ∈ Γ(A(G × [0,∞))).

Specifying the Lie algebroid of A(adG) completely determines its differentiable stru-
cture [Nis00]. For clarity, let us include also an explicit description of this differentiable
structure. Let us consider an atlas (Ωα), consisting of domains of coordinate charts Ωα ⊂ adG
and diffeomorphisms φα : Ωα→ Uα, where Uα is an open subset of a Euclidean space.

Let Ω = Ωα be a chart of G, such that Ω ∩ G(0) 6= ∅; one can assume without loss of generality
that Ω' T × U with respect to s, and that Ω' T ′ × U with respect to r. Let us denote by φ
and ψ these diffeomorphisms. Thus, if x ∈ U , then Gx ' T , and A(G)U ' Rk × U . Let (Θx)x∈U
(respectively (Θ′x)x∈U ) be a smooth family of diffeomorphisms from Rk to T (respectively T ′)
such that ι(x) = φ(Θx(0), x) (respectively ι(x) = ψ(Θ′x(0), x), where ι denotes the inclusion of
G(0) into G).
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Then Ω =A(G)U × {0} ∪ Ω× (0,∞) is an open subset of adG, homeomorphic to Rk × U × R+

with respect to s and to r as follows:

φ(ξ, u, α) =
{

(φ(Θu(αξ), u), α) if α 6= 0,
(ξ, u, 0) if α= 0,

ψ(ξ, u, α) =
{

((φ(Θu(αξ), u))−1, α) if α 6= 0,
(ξ, u, 0) if α= 0.

This defines an atlas of adG, endowing it with a Lie groupoid structure.
Recall that a subset S of the units of a groupoid H is called invariant if and only

if d−1(S) = r−1(S). Then we shall use the notation HS := d−1(S) = r−1(S), and call it the
restriction of H to S. Then HS is also a groupoid precisely because S is invariant. We shall
sometimes write H|S instead of HS . For instance, TG, the tangent groupoid of G is defined to be
the restriction of adG to M × [0, 1].

We have the following simple properties.

Lemma 2. Let G be a Lie groupoid and H= G × Rn be the product of G with the Lie group Rn

with the induced product structure. Then adH' adG × Rn

Proof. Let us denote by M the set of units of G. We have that A(H) =A(G)⊕ Rn as vector
bundles, where the right copy of Rn stands for the trivial bundle with fiber Rn over M . Note
that, as a set, A(H) =A(G)× Rn, so our notation will not lead to any confusion.

By definition,
adH=A(H)× {0} ∪ H × (0,∞) = A(G)× Rn × {0} ∪ G × Rn × (0,∞)

= [A(G)× {0} ∪ G × (0,∞)
]
× Rn = adG × Rn.

So we can identify the underlying sets of adH and adG × Rn. However, this identification is
not the bijection we are looking for, because it does not preserve the differentiable structure.
Instead, we define φ : adH→ adG × Rn as follows. Let g ∈ adG and ξ ∈ Rn, so that (g, ξ) ∈ adH,
using the previous identification. Then φ(g, ξ) = (g, ξ) if g ∈A(H)× {0} and φ(g, ξ) = (g, t−1ξ)
if (g, ξ) ∈ G × {t} × Rn.

It remains to check that φ is differentiable with differentiable inverse. For this, it is enough to
check that it induces an isomorphism at the level of Lie algebroids, because the smooth structures
on both adH and adG × Rn are defined by their Lie algebroids (see Theorem 3 and Corollary 1).
Indeed, (5) gives

Γ(A(adH)) = tΓ(A(H× [0,∞))) = t[Γ(A(G × [0,∞)))⊕ C∞(M × [0,∞))n]
φ∗−−−→ t[Γ(A(G × [0,∞)))]⊕ C∞(M × [0,∞))n = Γ(A(adG × Rn))

where φ∗ is an isomorphism. 2

This gives the following corollary.

Corollary 3. Let H= G × Rn, as above. We have that C∗(adH)' C∗(adG)⊗ C0(Rn) and
that C∗(TH)' C∗(TG)⊗ C0(Rn), the tensor product being the (complete, maximal) C∗-tensor
product.

Proof. This corollary follows immediately from Lemma 2 and the relation

C∗(G′ × Rn)' C∗(G′)⊗ C0(Rn)

valid for any locally compact groupoid G′. 2
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A similar argument using again Theorem 3 and Corollary 1 yields the following result.

Lemma 3. Let G with a Lie groupoid with units M . Let N ⊂M be an invariant subset. Assume
that N ⊂ F is an embedded submanifold of a face F of M . Then the restriction operations and
the formation of adiabatic and tangent groupoids commute, in the sense that we have

(G|N )ad ' adG|N×[0,∞) and (G|Nc)ad ' adG|Nc×[0,∞).

A similar results holds for the tangent groupoids.

Proof. Again, it follows from the definition that (G|N )ad and adG|N×[0,∞) have the same
underlying set. Moreover, this canonical bijection is a groupoid isomorphism. From the definition
of the Lie algebroid of the adiabatic groupoid, if follows that this canonical bijection is also
differentiable with differentiable inverse, because it induces an isomorphism of the spaces of
sections of the corresponding Lie algebroids. See Theorem 3 and, especially, Corollary 1. 2

We then obtain the following corollary.

Corollary 4. With the notations of the above lemma we have a short exact sequence

0→ C∗(TG|Nc)→ C∗(TG)→ C∗(TG|N )→ 0,

and a similar exact sequence for the adiabatic groupoid.

2.3 The analytic index

We now give two definitions of the analytic index. The first definition is based on a generalization
of Connes’ tangent groupoid [Con94]. The second definition is based on the boundary map of
the six-term exact sequence in K-theory induced by the symbol map. Both definitions will be
needed in what follows.

For each t ∈ [0, 1], M × {t} is a closed invariant subset of M × [0,∞), and hence we obtain
an evaluation map

et : C∗(TG)→ C∗(TGM×{t}).
By abuse of notation, we shall sometimes denote also by et the induced map in K-theory.

Let us also notice that the decomposition

M × [0, 1] =M × {0} ∪M × (0, 1]

into open and closed invariant subspaces, gives rise to an exact sequence

0→ C∗(TGM×(0,1])→ C∗(TG) e0−−→ C∗(A(G))→ 0. (6)

This leads to the following six-terms exact sequence in K-theory.

K0(C∗(TGM×(0,1])) // K0(C∗(TG)) // K0(C∗(A(G)))

��
K1(C∗(A(G)))

OO

K1(C∗(TG))oo K1(C∗(TGM×(0,1]))oo

We have TGM×(0,1] = G × (0, 1] and hence C∗(TGM×(0,1])' C∗(G)⊗ C0((0, 1]). In particular,
K∗(C∗(TGM×(0,1])) =K∗(C∗(G)⊗ C0((0, 1]) = 0. Thus the evaluation map e0 is an isomorphism
in K-theory.
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The C∗-algebra C∗(A(G)) is commutative, and we have C∗(A(G))' C0(A∗(G)). Therefore
K∗(C∗(A(G))) =K∗(A∗(G)). In turn, this isomorphism allows us to define the analytic index
inda as the composition map

indGa = e1 ◦ e−1
0 :K∗(A∗(G))→K∗(C∗(G)), (7)

where e1 : C∗(TG)→ C∗(TGM×{1}) = C∗(G) is defined by the restriction map to M × {1}.
The definition of the analytic index gives the following proposition.

Proposition 1. Let G be a Lie groupoid with Lie algebroid π :A(G)→M . Also, let N ⊂ F ⊂M
be a closed, invariant subset which is an embedded submanifold of a face F of M . Then
the analytic index defines a morphism of the six-term exact sequences associated to the pair
(A∗(G), π−1(N)) and to the ideal C∗(GNc)⊂ C∗(G), N c :=M rN .

K0(π−1(N c)) //

��

K0(A∗(G)) //

��

K0(π−1(N)) //

��

K1(π−1(N c))

��
K0(C∗(GNc)) // K0(C∗(G)) // K0(C∗(GN )) // K1(C∗(GNc))

Proof. The six-term, periodic long exact sequence in K-theory associated to the pair
(A∗(G), π−1(N)) is naturally and canonically isomorphic to the six-term exact sequence in K-
theory associated to the pair C0(A∗MrN )⊂ C0(A∗(G)) consisting of an algebra and an ideal in
that algebra. Since e0 and e1 also induce morphisms of pairs (algebra, ideal), the result follows
from Corollary 4, the naturality of the six-term exact sequence in K-theory, and the definition
of the analytic index (8). 2

For M a smooth manifold with embedded faces, we have A(G(M)) =AM . Recall that
C∗(M) := C∗(G(M)). Then the analytic index becomes the desired map

indMa :K∗(A∗M )→K∗(C∗(M)). (8)

Remark 6. Assume M has no corners (or boundary). Then G(M) =M ×M is the product
groupoid and hence Ψ∞(G(M)) = Ψ∞(M). In particular, C∗(M) := C∗(G(M))'K, the algebra
of compact operators on M . In this case K0(C∗(M)) = Z, and inda is precisely the analytic index
as introduced by [AS68]. This construction holds also for the case when M is not compact, but
we have to use pseudodifferential operators of order zero that are ‘multiplication at infinity’, as
in [Car06].

We now turn to the application mentioned in the introduction to obstructions to finding
invertible perturbations by regularizing operators. Let A(G) be the enveloping C∗-algebra of
Ψ0(G) and let S∗G ⊂A∗(G) be the subset of vectors of length one. The second method is based
on the exact sequence

0→ C∗(G)→ A(G) σ(0)

−−−→ C(S∗G)→ 0. (9)
The six-term exact sequence in K-theory associated to this exact sequence yields a boundary
map

indGa := ∂ :K∗+1(S∗G)→K∗(C∗(G)). (10)

Considering the exact sequence

0→ C0(A(G))→ C(B(G))→ C(S(G))→ 0,

where B(G) is the ball bundle, we get a map b :K∗+1(S∗G)→K∗(A∗M), and indMa ◦ b= indGa .
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This second definition of the analytic index has the advantage that it leads to the following
theorem. Let Ψ∞b (M) be as in Definition 3 and

Ψm
b (M ; E0, E1) = e1MN (Ψm

b (M))e0,

where ej is the orthogonal projection onto the subbundle Ej ⊂M × CN , j = 1, 2.

Theorem 7. Assume M is a connected manifold with corners such that all its faces have positive
dimension. Let P ∈Ψm

b (M ; E0, E1) be an elliptic pseudodifferential operator acting between
sections of two vector bundles E0, E1→M . Then there exists R ∈Ψ−∞b (M ; E0, E1) such that
P +R is invertible if, and only if, indMa (σP ) = 0, where σP is the principal symbol of P .

Proof. If E0 = E1 is the trivial bundle, then the proof is the same as that of [NT04, Theorem 4.10].

Let us observe as in [LM03] that E0 ' E1 because TM has a non-zero section. By embedding
E0 into a trivial bundle, we can therefore assume that P ∈MN (Ψm

b (M)). The index indMa (σP ) =
∂[σP ] ∈K0(C∗(M)) is therefore defined as in (10). Moreover, this definition is independent of
the isomorphism E0 ' E1 and of the embedding of E0 into a trivial bundle. This reduces the
proof to the case of a trivial bundle. 2

3. Properties of the analytic index

We now prove some results on the analytic index whose definition was recalled in the previous
section. In this and the following sections, we continue to assume that our manifolds with corners
have embedded faces. Recall that G(M) is the Lie groupoid associated to a manifold with
corners M in Definition 2.

Also, recall that we have denoted AM :=A(G(M)) and C∗(M) := C∗(G(M)). In particular,
Γ(AM ) = Vb, the space of all vector fields tangent to the faces of M .

3.1 The role of faces

Let F ⊂M be a face of a manifold with embedded faces M . Recall that in our terminology, ‘face’
always means ‘closed face’. Then F is a closed, invariant subset of M (‘invariant’ here is with
respect to the action of G(M) on its units).

Lemma 4. Let π :AM →M be the Lie algebroid of G(M). Then, for any face F ⊂M of
codimension k, we have isomorphisms

π−1(F )'AF × Rk and G(M)|F 'G(F )× Rk.

Proof. We have that π−1(F )'AF ⊕ π−1(F )/AF . The choice of defining functions for the k
hyperfaces containing F then gives an isomorphism π−1(F )/AF ' F × Rk. The last part follows
from the definitions of G(M) and G(F ), for the latter using the defining functions of M that are
non-zero on F . 2

For the simplicity of the notation, let us denote by G1 :=G(M)|F 'G(F )× Rk. The analytic
indices defined in (7) and (8) for this restriction groupoid are then identified by the following
lemma.
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Lemma 5. For any face F ⊂M of codimension k we have a commutative diagram

K∗+k(A∗(G1))
ind
G1
a // K∗+k(C∗(G1))

K∗(A∗F )
indF

a //

OO

K∗(C∗(F ))

OO

where the vertical arrows are the periodicity isomorphisms.

Proof. Recall first that the periodicity isomorphism K∗(A)'K∗+k(A⊗ C0(Rk)) is natural in A,
for any C∗-algebra A. The result then follows from this observation combined with Lemma 4
above and Corollary 3. 2

The following proposition is one of the main steps in the proof of our topological index
Theorem 13.

Proposition 2. Let X be a manifold with embedded faces such that each open face of X is
diffeomorphic to a Euclidean space. Then the analytic index

indXa :K∗(A∗X)→K∗(C∗(X))

(defined in (8)) is an isomorphism.

Proof. We shall proceed by induction on the number of faces of X. Let G(X) be the groupoid
of X, as before. Let F ⊂X be a face of minimal dimension. Then F is an invariant subset of X.
Denote as above by G1 the restriction of G(X) to F . In particular, F will be a smooth manifold
without corners.

Note that our assumptions imply that F ' Rn−k, where n is the dimension of M and k is the
codimension of F . Therefore the analytic index indFa is an isomorphism. In particular, our result
is valid if X has exactly one face. Lemma 5 then shows that indG1a is an isomorphism as well.

We shall complete the proof using Proposition 1 with N = F and X =M as follows. Let
us consider the six-term, exact sequence in K-theory associated to the pair (A∗X , A

∗(G1)),
where A∗(G1) = π−1(F ), with π :A∗X →X the canonical projection. Also, let us consider the
six-term, exact sequence in K-theory associated to the pair C∗(F c)⊂ C∗(X), F c =X r F .
Proposition 1 states that the analytic index defines a morphism of these two exact sequences.
The analytic index for the quotient (i.e., indG1a ) has just been proved to be an isomorphism. The
analytic index for F c is an isomorphism by the induction hypothesis. The ‘Five Lemma’ then
shows that the remaining two analytic index morphisms are also isomorphisms. The proof is now
complete. 2

Remark 8. The above proposition can be regarded as a Baum–Connes isomorphism for
manifolds with corners.

Another important step in the proof of our topological index theorem for manifolds with
corners is the proof of the following proposition. We first need a lemma.

Lemma 6. Let ι :M →X be an embedding of manifolds with corners. Then ι defines a natural
morphism

ιK :K∗(C∗(M))→K∗(C∗(X)). (11)

654

https://doi.org/10.1112/S0010437X11005458 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005458


A topological index theorem for manifolds with corners

Proof. The morphism ιK will be defined by a Kasparov C∗(M)− C∗(X) bimodule H. Let us first
identify M with a closed submanifold with corners of X. Let X ′ ⊂X be a small neighborhood of
M in X ′ such that every face of X ′ intersects M and the map F → F ∩M establishes a bijection
between the faces of X ′ and those of M . For instance, X ′ could be a tubular neighborhood of
M in X. Since X ′ ⊂X is open, there exists a natural inclusion C∗(X ′)→ C∗(X) of C∗-algebras,
by Corollary 2. It is enough then to construct a natural morphism K∗(C∗(M))→K∗(C∗(X ′)).
We can therefore replace X with X ′ and assume that there exists a bijection between the faces
of M and those of X.

Let us introduce
Ω := r−1(M)⊂G(X),

that is, Ω is the set of elements of G(X) whose range is in M . We endow Ω with the two maps
r : Ω→M and d : Ω→X induced by the range and domain maps of the groupoid G(X). These
are continuous and open since G(X) is a Lie groupoid. The groupoid G(X) acts on the right on
Ω by multiplication. We shall define H as a Hilbert module completion of C0(Ω) as in [MRW87].

Next, we need to define the action of C∗(G(M)). This action will be by compact operators
(‘compact’ here is used in the sense of Hilbert modules) and will come from an action of G(M)
on Ω. To define this action, we first prove that

G(M) = r−1(M) ∩ d−1(M). (12)

Indeed, our assumptions imply that, for any hyperface H of X with defining function ρ= ρH ,
the function ρ|M is a defining function of M . (We are, of course, using the fact that M and H
intersect transversely.) In fact, our assumptions imply more: they imply that every defining
function of M is obtained in this way. We can therefore establish a bijection between the
defining functions ρ of (the hyperfaces of) X and the defining functions of (the hyperfaces of) M .
Let us use these functions in the definition of G(M), namely in (4). This, together with the fact
that there is a bijection between the open faces of M and the open faces of X, then proves (12).

Equation (12) then allows us to define the action of G(M) on Ω by left composition. Indeed, if
γ ∈G(M) and γ′ ∈ Ω with r(γ′) = d(γ), then r(γγ′) = r(γ) ∈M so that γγ′ ∈ Ω. Also G(X) acts
on Ω by right composition: if γ ∈G(X) and γ′ ∈ Ω with d(γ′) = r(γ), then r(γ′γ) = r(γ′) ∈M so
that γ′γ ∈ Ω.

Then H defines an element in Θ ∈KK0(C∗(M), C∗(X)) (even, in fact, an imprimitivity
module) and hence the Kasparov product with Θ defines the desired morphism ιK :
K∗(C∗(M))→K∗(C∗(X)). 2

Remark 9. Let us spell out explicitly a conclusion of the above proof. If M ⊂X is an open
subset and ι denotes the inclusion then C∗(M)⊂ C∗(X), by Corollary 2, and ιK is simply the
morphism associated to this inclusion of C∗-algebras.

Proposition 3. Let ι :M →X be a closed embedding of manifold with corners. Assume that,
for each open face F of X, the intersection F ∩M is a non-empty open face of M and that every
open face of M is obtained in this way. Then ιK :K∗(C∗(M))→K∗(C∗(X)) is an isomorphism.

Proof. Recall from [MRW87] that two locally compact groupoids G and H are equivalent
provided there exists a topological space Ω and two continuous, surjective open maps r : Ω→G(0)

and d : Ω→H(0) together with a left (respectively right) action of G (respectively H) on Ω with
respect to r (respectively d), such that r (respectively d) is a principal fibration of structural
groupoid H (respectively G).
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An important theorem of Muhly et al. states that if G and H are equivalent, then
K∗(C∗(G))'K∗(C∗(H)) (see [MRW87]). More precisely, C0(Ω) has a completion to an Hilbert
module that establishes a strong Morita equivalence between C∗(G) and C∗(H) (this is the
imprimitivity module defining Θ in the proof of Lemma 6). This strong Morita equivalence is
then known to imply the stated isomorphism K∗(C∗(G))'K∗(C∗(H)) (see [Rie82]).

To prove our result, it is therefore enough to show that the space Ω := r−1(M) (considered
also in the proof of Lemma 6) establishes an equivalence between G(M) and G(X).

Proving that r is a principal fibration of structural groupoid G(X) amounts, by definition,
to proving that, for any x in M , if ω and ω′ are in r−1(x) in Ω, there exists γ ∈G(X) such
that ωγ = ω′, and that the action of G(X) is free and proper. The first condition is clear:
r(ω) = r(ω′) = x so that γ = ω−1ω′ ∈G(X) exists. Besides, the action is free. Indeed, if ωγ = ω,
then r(γ) = d(ω) (so they are composable) and d(γ) = d(ωγ) = d(ω), so that γ is a unit. The
action is proper. Indeed, the map

φ :G(X) ∗ Ω→ Ω× Ω, (γ, ω) 7→ (ωγ, ω)

(where G(X) ∗ Ω is the set of composable arrows) is a homeomorphism onto its image, which is
the fibered product Ω×M Ω with respect to r.

Similarly, let us check that s is a principal fibration with structural groupoid G(M).
Assume that d(ω) = d(ω′) ∈M ; then ω′ = γω, with γ = ω′ω−1. Let us recall from the proof of
Lemma 6 that G(M) = d−1(M) ∩ r−1(M). Hence γ ∈G(M). The proof is now complete. 2

Let M be a smooth compact manifold (without corners). Then the inclusion of a point
k : pt ↪→M satisfies the assumptions of the above proposition. The imprimitivity module in
this case establishes the isomorphism C∗(pt)⊗K ' C∗(M) and hence also the isomorphisms
K∗(C∗(M))'K∗(C∗(pt)) =K∗(C)' Z.

More generally, let M be a compact manifold with corners and π :X →M be a smooth fiber
bundle. Recall then that the fiberwise product groupoid G :=X ×M X was defined in the first
section. The Lie algebroid of G is TπX, the vertical tangent bundle to π :X →M . A simple
calculation shows that C∗(G) is a continuous field of C∗-algebras over M with fibers compact
operators on L2 of the fibers of π. Therefore C∗(G) is canonically Morita equivalent to C(M). If
X →M has a cross-section (as in the cases when we shall use this construction in our paper),
we can also obtain this Morita equivalence from the inclusion M ⊂X ×M X given by this cross-
section, which is an equivalence of groupoids. In any case, we obtain an isomorphism

K∗(C∗(G))'K∗(C(M)) =K∗(M), G :=X ×M X, (13)

which we shall often use to identify these groups. For instance, the analytic index associated
to G =X ×M X becomes a map indGa :K∗(T ∗πX)→K∗(M) =K∗(C(M)). Then we have the
following well-known result, whose proof we sketch for the benefit of the reader.

Proposition 4. Let π :X →M be a smooth fiber bundle with X compact and G :=X ×M X
be the fiberwise product groupoid. Let [a] ∈K0(T ∗πX) be a K-theory class represented by an
endomorphism a : E→ F of vector bundles over T ∗πX that are pull-backs of vector bundles on X
and are such that a is an isomorphism outside a compact set. Assume that a is homogeneous
of some positive order and let Pa be a family of (elliptic) pseudodifferential operators along the
fibers of π with principal symbol a. Then indGa ([a]) ∈K0(M) coincides with the family index
of Pa.
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Proof. Let B be a C∗-algebra. We shall denote by B+ the algebra with an adjoint unit. For any
b ∈B, we shall denote by pb ∈M2(B+) the graph projection associated to b, that is

pb =
[
1− e−B∗B τ(B∗B)B∗

τ(BB∗)B e−BB
∗

]
, (14)

where τ is a smooth, even function on R satisfying τ(x2)2x2 = e−x
2
(1− e−x2

).
Let D be an elliptic differential operator of order m. Then (1 +D∗D)s establishes

isomorphisms Hr→Hr−ms of Sobolev spaces. This fact and the homotopy invariance of
the index show that we can assume that a is polynomial, homogeneous of degree one, given
by the principal symbol of a family D of first-order differential operators (the same argument
was used in [AS68]). Let pa be the graph projection associated to a, pa ∈MN (C0(T ∗πX)+). Then
we can extend the family a to the family ptD ∈MN (C∗(TG)). Therefore, the analytic index of [a]
is the class of pD ∈K0(C∗(G)). We can furthermore perturb tD with a regularizing family that
vanishes in a neighborhood of t= 0 without changing the class of pD. We can hence assume
that D has a kernel of constant dimension [AS68]. Then it is known that the class of pD is
[kerD]− [kerD∗], that is, the family index of D. 2

We now prove a corollary that will be needed in the proof of Proposition 5. Let π : U →X
be a vector bundle over a compact manifold with corners. Consider the fibered product
groupoid G := U ×X U as above. Then T ∗πU = U ⊕ U∗ as vector bundles over X, and hence
i! :K∗(X)→K∗(T ∗πU) is defined.

Corollary 5. We have that indGa ◦ i! is the inverse of the isomorphism of (13) (which can be
identified with the identity map of K∗(X)).

Proof. Both indGa and i! are K∗(X)-linear. The same argument as in the proof of Proposition 4
(or by compactifying U fiberwise to a sphere bundle and then using Proposition 4), we obtain
that indGa ◦ i!(1) is the index of the family of Dirac operators on the fibers of U coupled with the
potential given by Clifford multiplication with the independent variable. Since the equivariant
index of the coupled Dirac operator is 1, we obtain that indGa ◦ i!(1) = 1 as in [AS68]. See [Hor85]
for a simple proof of the facts needed about the coupled Dirac operator. 2

Remark 10. Let us take X = pt, to be reduced to a point, and let us identify U with RN , for
some N . Then the above Corollary states, in particular, that i! : Z =K∗(pt)→K∗(TRn) and
indRn

a :K∗(TRn)→ Z =K∗(pt) are inverse to each other.

4. Commutativity of the diagram

In this section we shall prove a part of our topological index theorem, Theorem 13, involving an
embedding ι :M →X of our manifold with corners M into another manifold with corners X.
This theorem amounts to the fact that the diagram (2) is commutative. In order to prove this,
we shall first consider a tubular neighborhood

M
k
↪→ U

j
↪→X (15)

of M in X. The diagram (2) is then decomposed into the two diagrams below, and hence the
proof of the commutativity of (2) reduces to the proof of the commutativity of the two diagrams
below, whose morphisms are as follows: the morphisms kK and jK are defined by Lemma 6, the
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morphism k! is the push-forward morphism, and j∗ is the morphism in K-theory defined by an
open embedding. Recall that AM =A(G(M)) and C∗(M) := C∗(G(M)).

K∗(C∗(M))
kK // K∗(C∗(U))

jK // K∗(C∗(X))

K∗(A∗M )
k! //

indM
a

OO

K∗(A∗U )
j∗ //

indU
a

OO

K∗(A∗X)

indX
a

OO
(16)

The commutativity of the left diagram is part of the following proposition.

Proposition 5. Let π : U →M be a vector bundle over a manifold with corners M and let
k :M → U be the ‘zero section’ embedding. Then the following diagram commutes.

K∗(C∗(M))
kK

'
// K∗(C∗(U))

K∗(A∗M ) '
k!

//

indM
a

OO

K∗(A∗U )

indU
a

OO

(17)

Proof. We shall prove this result using a double deformation groupoid G, which is a Lie groupoid
with units U × [0, 1]2. This groupoid is such that the projection U × [0, 1]2→ [0, 1]2 extends to a
groupoid morphism G → [0, 1]2 the latter being considered as a space, i.e., a groupoid equal to
its units. In other words, if d and r are the domain and range of G, then d(g) and r(g) have the
same projection in [0, 1]2.

In order to define G, we give two different approaches: one based on a gluing of subgroupoids,
using the Lie algebroid integration result, and one more direct. As a set, G := G1 t G2 t G3

(t denotes the disjoint union), where

G1 :=AU × {0} × [0, 1], G2 :=AM ×M U ×M U × (0, 1]× {0},
G3 :=G(U)× (0, 1]× (0, 1].

Lemma 7. The groupoid G is a Lie groupoid.

Proof. We prove this by applying Theorem 3 which states that there exists at most one
differentiable structure on G compatible with the groupoid structure (that is, making it a Lie
groupoid). We define a Lie algebroid structure, and Lie groupoid structures for each of the
subgroupoids G1, G2, G3, and finally we show how to get a Lie groupoid structure compatible
with these data.

Let us first describe A(G), the Lie algebroid of the Lie groupoid that we want to construct.
Recall that the Lie algebroid associated to U , AU , or ‘compressed tangent bundle’, is such that
Γ(AU ) consists of the smooth vector fields on U that are tangent to all faces of U . Then π : U →M
induces a map π∗ :AU →AM .

Let AU =Av ⊕Ah be a decomposition of AU into vertical and horizontal components, so that
Av is the kernel of π∗ :AU →AM and Ah ' π∗(AM ). Then we obtain the decomposition

Γ(U × [0, 1]2;AU ) = Γ(U × [0, 1]2;Av)⊕ Γ(U × [0, 1]2;Ah).

Let us regard the above spaces of smooth sections X as families of sections X(s, t) ∈ Γ(AU )
parameterized by (s, t) ∈ [0, 1]2. Then A(G), the Lie algebroid of the Lie groupoid that we want
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Figure 1. The groupoid G.

to construct, is defined, as a set, by

Γ(A(G)) = sΓ(U × [0, 1]2;Av)⊕ stΓ(U × [0, 1]2;Ah).

Then we define the Lie bracket to be the pointwise Lie bracket coming from the Lie bracket on
sections of Γ(AU ) : [X, Y ](s, t) = [X(s, t), Y (s, t)].

Let us now define the Lie groupoid structure of each subgroupoid as follows. First, G1 is
a commutative Lie groupoid, with operations defined by the vector bundle structure on AU . It
integrates the restriction of A(G) to {s= 0}= {0} × [0, 1]. The groupoid G2 is the fibered product
of AM →M and of the fiberwise pair groupoid U ×M U considered in Proposition 4 (in the case
at hand, X = U). More precisely, let πM :AM →M be the canonical projection, then

AM ×M U ×M U × (0, 1]× {0}

= {(ξ, u1, u2, s, 0) ∈AM × U × U × (0, 1]× {0}, πM (ξ) = π(u1) = π(u2)},

with the product (ξ, u1, u2, s, 0)(ξ′, u2, u3, s, 0) = (ξ + ξ′, u1, u3, s, 0). The factor (0, 1]× {0}
therefore plays just the role of a space of parameters. The last groupoid, G3 is the product
of the groupoid G(U) associated to the manifold with corners U (Definition 2) with the space
(0, 1]× (0, 1], which again plays just the role of a space of parameters. It integrates the restriction
of A(G) to (0, 1]× (0, 1].

Theorem 3 states that there exists at most one differentiable structure on G compatible
with the groupoid structure (that is, making it a Lie groupoid). The union G1 t G3 has the
differentiable structure of the product of (0, 1] with the tangent groupoid of G(U). Due to the
local structure of the deformations involved, in order to prove that G does indeed have a smooth
structure, it is enough to assume that U →M is a trivial bundle, in which case the resulting G
is seen to be smooth as follows.

Let U =M × Rn. Then AU =AM × TRn and G2 =AM × (Rn × Rn)× (0, 1]× {0}, with
(Rn × Rn) being the pair groupoid. Deforming just in the fiberwise direction means, in this case,
that we deform the tangent space to Rn to its tangent groupoid. We then define the topology
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on G1 ∪ G2, which is a groupoid with units {0} × [0, 1] ∪ (0, 1]× {0} ⊃ [0, 1]× {0}, such that
the restriction to [0, 1]× {0} is AM × TG(Rn), with TG(Rn) denoting the tangent groupoid of the
smooth manifold Rn. This is possible since the tangent groupoid of Rn at t= 0 is TRn and
the restriction of G1 at t= 0 is AM × TRn.

On the other hand, since U =M × Rn, the groupoid G(U) is just the product of G(M) with
the pair groupoid Rn × Rn. The union G2 t G3 is TG(M)× (Rn × Rn)× (0, 1], with the factor
(0, 1] corresponding to the variable s. 2

Let us now give an alternative, more direct definition of the groupoid used in the above proof.
The groupoid G(U) is actually the pull-back of G(M), π∗(G(M)) = {(u, v, γ) ∈ U × U ×

G(M), r(γ) = π(u), s(γ) = π(v)}. Consider the tangent groupoid of G(M), TG(M), and then
take its pull-back π∗(TG(M)). This is a groupoid which is different from TG(U), but which is
also K-equivalent. Now consider the tangent groupoid of π∗(TG(M)), denoted by G̃.

We can show that G̃ is equal to G. First of all,

π∗(TG(M)) = {(u, v, x, ξ) ∈ U × U ×AM} ∪ π∗(G(M))× (0, 1]
= AM ×M U ×M U ∪G(U)× (0, 1].

The Lie algebroid of AM ×M U ×M U is π∗(AM )×M TπU , as explained before: this is thus AU .
This implies that the Lie algebroid of p∗(TG(M)) is AU × [0, 1]. As a consequence,

G̃ =AU × [0, 1]× {0} × {0} ∪AM ×M U ×M U × {0} × (0, 1] ∪G(U)× (0, 1]× (0, 1] = G.

With this definition of G, the Lie groupoid structure on G is straightforward.
Let us now denote by ei,j (for i, j = 0, 1) the various K-theory morphisms induced by the

restriction maps G → Gs=i,t=j , where, for instance, Gs=1,t=0 =AM ×M U ×M U is the lower right
corner of the figure above. Let C∗(M, U) = C∗(Gs=1,t=0).

Lemma 8. The evaluation maps e0,0 and e1,0 are isomorphisms, and the following properties
hold.

– The analytic index of U is indUa = e1,1 ◦ e−1
0,0.

– The maps

ind(1)
a := e1,0 ◦ e−1

0,0 :K∗(A∗U )→K∗(C∗(M, U))
and

ind(2)
a := e1,1 ◦ e−1

1,0 :K∗(C∗(M, U))→K∗(C∗(U))
are such that

indUa = ind(2)
a ◦ ind(1)

a . (18)

Proof. We shall define several successive decompositions (Figure 2). Let us notice that the above
construction of G is such that G′ := G1 ∪ G2 is a closed subgroupoid of G, with complement
G3 =G(U)× (0, 1]× (0, 1]. This induces an exact sequence

0→ C∗(G3)→ C∗(G)→ C∗(G1 ∪ G2)→ 0;

but K∗(C∗(G3)) = 0, so K∗(C∗(G))'K∗(C∗(G1 ∪ G2)). Now G2 is an open subgroupoid of
G1 ∪ G2, with vanishing K-theory groups. A similar exact sequence argument then shows
that K∗(C∗(G1 ∪ G2))'K∗(C∗(G1))'K∗(AU ). Thus e0,0 :K∗(C∗(G))→K∗(C0(A∗U )) is an
isomorphism. Since the restriction of G to the diagonal s= t of [0, 1]2 is the tangent groupoid
of U , we obtain that indUa = e1,1 ◦ e−1

0,0.
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Figure 2. Successive restrictions of G.

Figure 3. Other successive restrictions of G.

We aim at factorizing the index map indUa in two maps defined along the lower and right
sides of the square. The first map is

ind(1)
a := e1,0 ◦ e−1

0,0 :K∗(A∗U )→K∗(C∗(M, U)).

For the second map, we shall define other successive decompositions (Figure 3).
For the second map, we consider the subgroupoid G′′ := GL where L := {s= 1} ∪ {t= 0}.

Using a short exact sequence argument as above, we obtain that G′′ ∪ G1 has the same K-theory
as G because its complement in G is GU × (0, 1)× (0, 1]. Then, similarly, G′′ ∪ G1 turns out to
have the same K-theory as G′′ since the complement of G′′ in G′′ ∪ G1 is TU × (0, 1]. Furthermore,
the decomposition G′′ = Gs<1,t=0 ∪ Gs=1 induces a K-isomorphism between G′′ and Gs=1. Indeed,
still considering that U =M × Rn, we showed previously that Gt=0 =AM × TG(Rn). However,
the K-theory of TG(Rn)s<1 is isomorphic to that of the adiabatic groupoid, which is zero since the
analytic index for a Euclidean space is an isomorphism.

The last step is that the evaluation at t= 0 in the groupoid Gs=1 is an isomorphism, using the
same arguments as before. In conclusion, e1,0 :K∗(C∗(G))→K∗(C∗(M, U)) is an isomorphism.

The map ind(2)
a is thus well defined, and the equality

indUa = ind(2)
a ◦ ind(1)

a

is straightforward. 2

Remark 11. In the proof above we used G′′ since we shall need later to consider the groupoid
H= G{s=1}. However, the proof could also have been handled considering the groupoid G′.

To end the proof of Proposition 5, let us consider now the commutative diagram, in which
the morphism Θ0 is the isomorphism of (13) (its definition will be recalled below as part of a
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more general construction).

K∗(A∗M ) = //

k!
��

K∗(A∗M )
indM

a //

Θ0 '
��

K∗(C∗(M))

kK '
��

K∗(A∗U )
ind

(1)
a // K∗(C∗(M, U))

ind
(2)
a // K∗(C∗(U))

(19)

Equation (18) shows that it is enough to prove that the above diagram is commutative.

Let X be the fiberwise one point compactification of A∗M . Then K∗(A∗M )⊂K∗(X), since
X rA∗M is a retract of X. The commutativity of the left diagram then follows from Corollary 5
(after we lift the bundle U to X).

We need to define the morphism Θ0. Let us consider the groupoid H defined as the
restriction of G to {1} × [0, 1] used also to define the morphism ind(2)

a . It has units U × [0, 1].
Let Ω = r−1(M × [0, 1]), as in the proof of Lemma 6. As in the proof of that lemma, Θ
defines an imprimitivity module between H and r−1(M) ∩ d−1(M) = TGM . This imprimitivity
module induces imprimitivity modules Θt for t ∈ [0, 1] (the parameter of the deformation). By
the proof of Proposition 3, the isomorphism kK is defined by Θ1. The isomorphism defined
by Θ0 was also denoted by Θ0. The commutativity of the right rectangle in the above
diagram then follows from the compatibility of the isomorphisms defined by Θ with restriction
morphisms. 2

The commutativity of the second square in the diagram (16) follows from the naturality of
the tangent groupoid construction. Here are the details.

Proposition 6. Let j : U →X be the inclusion of the open subset U . Then the diagram below
commutes.

K∗(C∗(U))
jK // K∗(C∗(X))

K∗(A∗U )
j∗

'
//

indU
a

OO

K∗(A∗X)

indX
a

OO

Proof. As U is open in X, the groupoid TG(U) identifies with the restriction of TG(X) to U . This
induces a map TC∗(G(U))→ C∗(TG(X)). Hence we get the following commutative diagram, in
which the vertical arrows are inclusions.

C∗(U) // C∗(X)

C∗(TG(U)) //

e1

OO

e0
��

C∗(TG(X))

e1

OO

e0
��

C0(A∗U ) // C0(A∗X)
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This commutative diagram, together with Lemma 6 and Remark 9, give the analogue
commutative diagram in K-theory.

K∗(C∗(G(U))) // K∗(C∗(G(X)))

K∗(C∗(TG(U))) //

e1

OO

e0

��

K∗(C∗(TG(X)))

e1

OO

e0

��
K∗(A∗(G(U))) // K∗(A∗(G(X)))

The commutativity of the above diagram proves our result. 2

We are ready now to prove one of our main results by putting together what he have proved
in the previous two propositions, as explained in the beginning of this section.

Theorem 12. Let M
ι→X be a closed embedding of manifolds with corners. Then the diagram

K∗(C∗(M))
ιK // K∗(C∗(X))

K∗(A∗M )
ι! //

indM
a

OO

K∗(A∗X)

indX
a

OO

(20)

is commutative.

Proof. As i(M) is a closed submanifold of X, there exists a tubular neighborhood U of i(M)
in X, along with a fibration π : U →M . Let k :M → U be the embedding of M into U as the
zero section and j : U →X be the embedding of U as an open subset of M . The result then
follows from the commutativity of the diagrams in Propositions 5 and 6 and from i! = j∗ ◦ k! and
iK = jK ◦ kK . (The diagram (16) explains this reasoning.) 2

5. An Atiyah–Singer type theorem

Motivated by Theorem 12 and by the results of § 3 (see Propositions 2 and 3) we introduce the
following definition.

Definition 4. A classifying manifold XM of M is a compact manifold with corners XM ,
together with a closed embedding ι :M →XM with the following properties.

(i) Each open face of XM is diffeomorphic to a Euclidean space.

(ii) The map F → F ∩M induces a bijection between the open faces of XM and M .

Note that if M ⊂XM are as in the above definition, then each face of M is the transverse
intersection of M with a face of XM . As a consequence we obtain the following result, which
generalizes the main theorem of [AS68].

Lemma 9. Let M be a manifold with embedded faces, and ι :M ↪→XM be a classifying space
of M . Then the maps ιK and indXa of Theorem 12 are isomorphisms.

Proof. This was proved in Propositions 2 and 3. 2
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Let ι :M →XM be a classifying space for M . The above lemma then allows us to define
(see (20))

indMt := ι−1
K ◦ indXa ◦ ι! :K∗(A∗M )→K∗(C∗(M)).

If M is a smooth compact manifold (so, in particular, ∂M = ∅), then C∗(M) =K, the algebra
of compact operators on L2(M) and hence K0(C∗(M)) = Z. Any embedding ι :M ↪→ RN will
then be a classifying space for M . Moreover, as explained in Remark 10, for X = Rn, the map
ι−1
K ◦ indXa :K∗(TX)→ Z is the inverse of j! :K0(pt)→K0(TRN ) and hence indRN

t = (j!)−1ι!,
which is the definition of the topological index from [AS68]. In view of this fact, we shall also
call the map indMt the topological index associated to M .

Theorem 13. The topological index map indMt depends only on M , that is, it is independent
of the classifying space XM , and we have

indMt = indMa :K∗(A∗M )→K∗(C∗(M)).

Proof. This follows immediately from Theorem 12. 2

If M is a smooth compact manifold (without boundary), this recovers the Atiyah–Singer
index theorem on the equality of the analytic and topological index [AS68].

Remark 14. Let us also mention that K∗(C∗(M))'K∗(XM ) provides us with a way of
determining K∗(C∗(M)), which is a non-trivial problem. The structure of C∗(M) has been
studied in [MN98, Mon03]. It is given through a composition series whose subquotients are easy
to compute. We shall use our results in order to determine K∗(C∗(M)) in a joint work with
Etienne Fieux.

6. Construction of the classifying space XM

We now show that a classifying manifold XM of M exists (Definition 4). The choice of XM is
not canonical, in general.

Let M be a compact manifold with embedded faces, and let (Hi)16i6r be the set of hyperfaces
of M . For each closed hyperface Hi, we shall fix a defining function ρi (these could be, for
example, the defining functions used in the definition of G(M), Definition 2). Also, let us choose
an embedding of φ of M into some RN . The map

ψ = (φ, ρ1, . . . , ρr) :M → RN × [0,∞)r

is thus an embedding of manifolds with corners, which, however, does not induce a bijection of
the faces. To fix this problem, we need to add extra coordinates which will disconnect the faces
of RN × [0,∞)r putting them in bijection with the faces of M . If J ⊂ {1, . . . , r}, define

FJ =
⋂
j∈J

Hj .

If nonempty, this is a disjoint union of closed faces of codimension |J |, the number of elements
of J . Assume FJ is not empty and let fJ be a continuous function on FJ with values in {1, . . . , nJ}
where nJ is the number of connected components of FJ . We chose fJ to take different values on
different connected components of FJ . This function can then be extended, thanks to Tietze’s
theorem, to a smooth function still denoted by fJ :M → R. Let us denote by J the set of
nonempty subsets of {1, . . . , r} for which FJ is not empty, and l = |J | the number of its elements.
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Then we obtain an embedding

Ψ := (φ, ρ1, . . . , ρr, fJ) :M →X0 := RN × [0,∞)r × Rl, J ∈ J .

We still need to disconnect the faces of X0 whose inverse image in M is disconnected. To this
end, for any J ∈ J , let YJ ⊂ RN × [0,∞)r × Rl be the closed subset defined by

YJ := {(z, x1, . . . , xr, yJ), yJ − 1
2 ∈ Z and xj = 0 for all j ∈ J}.

Then Ψ(M) ∩ YJ = ∅, by the construction of fJ . Let X1 :=X0 r
⋃
J∈J YJ . Finally, remove from

X1 all the faces that do not intersect M and call what is left XM :

XM :=X1

∖⋃
F, F ⊂X1 are faces such that F ∩M = ∅. (21)

Naturally this creates many more faces than we have in M , so the last step is to take X to
be the complement in X1 of the open faces which do not intersect Ψ(M).

Proposition 7. The manifold XM ⊃M of (21) is a classifying space for M .

Proof. We need to prove that the following properties are true.

(a) Each open face of XM is diffeomorphic to a Euclidean space.
(b) The map F → F ∩M defines a bijection between the set of open faces of M and the set of

open faces of XM .
(c) The set M is a closed, embedded submanifold of XM .

The open faces of X0 := RN × [0,∞)r × Rl are in one-to-one correspondence with the subsets
of {1, 2, . . . , r}. More precisely,

GI = {(z, x1, . . . , xr, yJ) ∈X0, xj = 0⇔ j ∈ I},

I ⊂ {1, 2, . . . , r}, are all the open faces of X0.
Fix I ⊂ {1, 2, . . . , r}. The open faces F1 ⊂X1 contained in GI are the connected components

of
GI

∖⋃
J

YJ =GI

∖⋃
J

(GI ∩ YJ), J ∈ J .

Since GI ∩ YJ = ∅ for any J ∈ J that is not contained in I, it is enough to consider only J ⊂ I,
J ∈ J . Fix a face F1 ⊂X1. Then yJ ∈ (mJ − 1/2, mJ + 1/2) on F1, for some mJ ∈ Z. This shows
that

F1 = {(z, . . . , yJ) ∈GI , mJ − 1/2< yJ <mJ + 1/2, J ⊂ I, J ∈ J }.

In particular, F1 ' RN × (0,∞)a × (−1/2, 1/2)b × Rl−b, a= r − |I|. This verifies condition (a)
above.

Let F1 be the face fixed above. Then F1 ∩M is the set of points x ∈M satisfying ρi(x) = 0,
for all i ∈ I, and fJ(x) ∈ (mJ − 1/2, mJ + 1/2), for all J ⊂ I such that J ∈ J ; therefore

F1 ∩M = {x ∈M, ρi(x) = 0 if i ∈ I, fI(x) ∈ (mI − 1/2, mI + 1/2)},

which is either empty or a connected component of FJ , by the construction of fJ . In other words,
for any open face F1 ⊂XM , the intersection F1 ∩M is either empty or an open face of M . This
verifies condition (b) above.

Finally, let us notice that each open face F of M is contained in exactly one face F1 of XM and
each open face F1 of X1 is contained in an open face GI of X0. This shows that M intersects F1
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transversely, because dxj , j ∈ J , are linearly independent on FJ :=
⋂
j∈J Hj . Also, M is a closed

submanifold of XM because φ :M → RN (the first component of Ψ) is an embedding. This verifies
condition (c) above and thus completes the proof. 2

Remark 15. In the case M is a smooth manifold, our construction is such that XM is a Euclidean
space.
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327 (2009), 201–287; MR 2642361.

Bun09 U. Bunke, Index theory, eta forms, and Deligne cohomology, Mem. Amer. Math. Soc. 198
(2009), vi+120; MR 2191484(2010d:58023).

Car06 C. Carvalho, A topological approach to the cobordism invariance of the index, K-Theory 36
(2006), 1–31.

Con94 A. Connes, Noncommutative geometry (Academic Press, New York, NY, 1994).
Dou64 A. Douady, Varits bords anguleux et voisinages tubulaires, in Topologie différentielle, Séminaire
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Erp10 E. van Erp, The Atiyah–Singer index formula for subelliptic operators on contact manifolds.

Part I, Ann. of Math. (2) 171 (2010), 1647–1681; MR 2680395.
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