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Abstract
The Horikawa index and the local signature are introduced for relatively minimal fibered surfaces whose general
fiber is a non-hyperelliptic curve of genus 4 with unique trigonal structure.

1. Introduction

Let S (resp. B) be a non-singular projective surface (resp. curve) defined overC and f : S → B a relatively
minimal fibration whose general fiber F is a non-hyperelliptic curve of genus 4. According to [2], we
say that f is Eisenbud–Harris special or E-H special for short (resp. Eisenbud–Harris general) if F has
a unique g1

3 (resp. two distinct g1
3’s), or equivalently, the canonical image of F lies on a quadric surface

of rank 3 (resp. rank 4) in P3.
For E-H general fibrations of genus 4, two important local invariants, the local signature and the

Horikawa index, are introduced in the appendix in [2]. The purpose of this short note is to show that an
analogous result also holds for E-H special fibrations of genus 4, that is, to show the following:

Theorem 1.1. Let A be the set of fiber germs of relatively minimal E-H special fibrations of genus 4.
Then, the Horikawa index Ind : A→Q≥0 and the local signature σ : A→Q are defined so that for any
relatively minimal E-H special fibration f : S → B of genus 4, the slope equality

K2
f = 24

7
χf +

∑
p∈B

Ind
(
f −1(p)

)
,

and the localization of the signature

Sign(S) =
∑
p∈B

σ
(
f −1(p)

)
,

hold.

Note that the above slope equality was established in [7] under the assumption that the multiplica-
tive map Sym2f∗ωf → f∗ω

⊗2
f is surjective, and that for non-hyperelliptic fibrations of genus 4, the slope

inequality

K2
f ≥ 24

7
χf ,

was shown independently in [3] and [6].
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2. Proof of theorem

In this section, we prove Theorem 1.1. Let f : S → B be a relatively minimal E-H special fibration of
genus 4. Since the general fiber F of f is non-hyperelliptic, the multiplicative map Sym2f∗ωf → f∗ω

⊗2
f is

generically surjective from Noether’s theorem. Thus, we have the following exact sequences of sheaves
of OB-modules:

0 →L→ Sym2f∗ωf → f∗ω
⊗2
f → T → 0, (2.1)

where the kernel L is a line bundle on B and the cokernel T is a torsion sheaf on B. Then, the first
injection defines a section q ∈ H0(B, Sym2f∗ωf ⊗L−1) = H0(PB(f∗ωf ), 2T − π ∗L), where π : PB(f∗ωf ) →
B is the projection and T =OPB(f∗ωf )(1) is the tautological line bundle on PB(f∗ωf ). The section q
can be regarded as a relative quadratic form q : (f∗ωf )∗ → f∗ωf ⊗L−1, which defines the determinant
det(q) : det(f∗ωf )−1 → det(f∗ωf ) ⊗L−4. Note that for a non-hyperelliptic fibration f of genus 4, det(q) = 0
if and only if f is E-H special. On the other hand, Q = (q) ∈ |2T − π ∗L| is regarded as the unique relative
quadric on PB(f∗ωf ) containing the image of the relative canonical map �f : S ��� PB(f∗ωf ). Since f is
E-H special, the general fiber of π |Q : Q → B is a quadric of rank 3 on P(H0(F, KF)) = P3. The closure
of the set of vertexes of general fibers of π |Q defines a section v : B → Q, which corresponds to some
quotient line bundle F of f∗ωf . Let E be the kernel of the surjection f∗ωf →F and put P = PB(f∗ωf )
and P′ = PB(E). Let τ : P̃ → P be the blow-up of P along the section v(B). Then, the relative projection
P ��� P′ from the section v(B) extends to the morphism τ ′ : P̃ → P′ with

τ ′∗T ′ = τ ∗T − E,

where T ′ =OPB(E)(1) is the tautological line bundle of PB(E) and E is the exceptional divisor of τ . Let
Q̃ denote the proper transform of Q on P̃. It follows that in Pic(̃P),

Q̃ = τ ∗Q − 2E = τ ′∗(2T ′ − π ′∗L),

where π ′ : P′ → B is the projection. Let Q′ = τ ′(Q̃) be the image of Q̃ via τ ′. It follows that Q′ ∈
|2T ′ − π ′∗L| and Q̃ = τ ′∗Q′. The general fiber of π ′|Q′ : Q′ → B is a conic on P(H0(F, E |F)) = P2 of rank
3, which is isomorphic to P1. Note that the composite τ ′ ◦ �f : S ��� Q′ ⊂ P′ of the relative canonical
map �f : S ��� P and the projection τ ′ : P ��� P′ determines the unique trigonal structure of the general
fiber F of f . Let q′ ∈ H0(P′, 2T ′ − π ′∗L) = H0

(
B, Sym2E ⊗L−1

)
be a section which defines Q′ = (q′).

Then q′ can be regarded as a relative quadratic form q′ : E∗ → E ⊗L−1, which has non-zero determinant
det(q′) : det(E)−1 → det(E) ⊗L−3 since Q′ is of rank 3. Thus, det(q′) ∈ H0(B, det(E)⊗2 ⊗L−3) defines an
effective divisor �Q′ = (det(q′)) on B. The degree of �Q′ is

deg�Q′ = 2degE − 3degL. (2.2)

Let ρ : S̃ → S be the minimal desingularization of the rational map τ−1 ◦ �f : S ��� P̃ and �̃ : S̃ → P̃
the induced morphism. Put � = τ ◦ �̃ : S̃ → P, �′ = τ ′ ◦ �̃ : S̃ → P′, M = �∗T and M′ = �′∗T ′. Then
we can write ρ∗Kf = M + Z for some effective vertical divisor Z on S̃. Since M′ = M − �̃∗E, we can
also write ρ∗Kf = M′ + Z ′, where Z ′ = Z + �̃∗E is also an effective vertical divisor on S̃. Since �′ is of
degree 3 onto the image Q′, we have �′

∗̃S = 3Q′ as cycles. It follows that

M′2 = (�′∗T ′)2̃S = T ′2�′
∗̃S

= 3T ′2Q′ = 3T ′2(2T ′ − π ′∗L)

= 6degE − 3degL,

while we have

M′2 = (
ρ∗Kf − Z ′)2 = K2

f − (
ρ∗Kf + M′)Z ′.

Hence, we get

K2
f = 6degE − 3degL+ (

ρ∗Kf + M′)Z ′. (2.3)
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From (2.2) and (2.3), we can delete the term degE and then we have

degL= 1

6
K2

f − 1

6

(
ρ∗Kf + M′)Z ′ − 1

2
deg�Q′ . (2.4)

On the other hand, taking the degree of (2.1), we get

K2
f = 4χf − degL+ lengthT . (2.5)

Substituting (2.4) in the equation (2.5), we get

K2
f = 24

7
χf + 1

7

(
ρ∗Kf + M′) Z ′ + 3

7
deg�Q′ + 6

7
lengthT .

For a fiber germ f −1(p), we define Ind
(
f −1(p)

)
by

Ind
(
f −1(p)

) = 1

7

(
ρ∗Kf + M′) Z ′

p + 3

7
multp�Q′ + 6

7
lengthpT ,

where Z = ∑
p∈B Zp is the natural decomposition with (f ◦ ρ)(Zp) = {p} for any p ∈ B. For the definitions

of M ′, Z ′, etc., we do not use the completeness of the base B. Thus, we can modify the definition of
Ind for any fiber germ of relatively minimal E-H special fibrations of genus 4 which is invariant under
holomorphically equivalence. Thus, we can define the Horikawa index Ind : A→Q≥0 such that

K2
f = 24

7
χf +

∑
p∈B

Ind
(
f −1(p)

)
.

The non-negativity of Ind
(
f −1(p)

)
is as follows. From the nefness of Kf , we have ρ∗Kf Z ′

p ≥ 0. For a
sufficiently ample divisor a on B, the linear system |M′ + (f ◦ ρ)∗a| is free from base points. Thus, by
Bertini’s theorem, there is a smooth horizontal member C ∈ |M′ + (f ◦ ρ)∗a| and then M′Z ′

p = (M′ + (f ◦
ρ)∗a)Z ′

p = CZ ′
p ≥ 0.

Once the Horikawa index is introduced, we can define the local signature since Sign(S) = K2
f −

8χf and ef = 12χf − K2
f is localized by using the topological Euler numbers of the singular fibers

(cf. [1, Section 2]). Indeed, we put

σ
(
f −1(p)

) = 7

15
Ind

(
f −1(p)

) − 8

15
ef

(
f −1(p)

)
,

where ef

(
f −1(p)

) = etop
(
f −1(p)

) + 6 is the Euler contribution at p ∈ B. Then we have Sign(S) =∑
p∈B σ

(
f −1(p)

)
.

Remark 2.1. In [5], we define a Horikawa index Indg,n for fibered surfaces of genus g admitting a cyclic
covering of degree n over a ruled surface (called primitive cyclic covering fibrations of type (g, 0, n)).
For g = 4 and n = 3, these fibrations are non-hyperelliptic E-H special fibrations of genus 4. One can
check the Horikawa index Ind4,3

(
f −1(p)

)
in [5, (4.5)] and Ind

(
f −1(p)

)
in Theorem 1.1 are coincide by

using the technique of [4, Appendix] which we left to the reader.
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