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Abstract

Argumentation problems are concerned with determining the acceptability of a set of argu-
ments from their relational structure. When the available information is uncertain, probabilistic
argumentation frameworks provide modeling tools to account for it. The first contribution of
this paper is a novel interpretation of probabilistic argumentation frameworks as probabilis-
tic logic programs. Probabilistic logic programs are logic programs in which some of the facts
are annotated with probabilities. We show that the programs representing probabilistic argu-
mentation frameworks do not satisfy a common assumption in probabilistic logic programming
(PLP) semantics, which is, that probabilistic facts fully capture the uncertainty in the domain
under investigation. The second contribution of this paper is then a novel PLP semantics for
programs where a choice of probabilistic facts does not uniquely determine the truth assign-
ment of the logical atoms. The third contribution of this paper is the implementation of a PLP
system supporting this semantics: smProbLog. smProbLog is a novel PLP framework based on
the PLP language ProbLog. smProbLog supports many inference and learning tasks typical of
PLP, which, together with our first contribution, provide novel reasoning tools for probabilistic
argumentation. We evaluate our approach with experiments analyzing the computational cost
of the proposed algorithms and their application to a dataset of argumentation problems.

KEYWORDS: probabilistic logic programming, ProbLog, distribution semantics, stable model
semantics, probabilistic argumentation

1 Introduction

Designing systems that are able to argue and persuade is a very relevant and challenging

task in artificial intelligence. In real-world scenarios the information available is often

incomplete or questionable, therefore the ability to take into account uncertainty is fun-

damental in such situations. Probabilistic logic programming (PLP) frameworks and lan-

guages, such as PRISM (Sato and Kameya 2008), ICL (Poole 2008), ProbLog (De Raedt

et al. 2007), or LPAD/CP-logic (Vennekens et al. 2009), are designed to provide powerful
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Table 1. Argumentation frameworks overview

Framework Epistemic PLP EM learning

MetaProblog (Mantadelis and Bistarelli 2020) � � �
Epistemic graphs (Hunter et al. 2020) � � �
smProbLog � � �

general-purpose tools for modeling and reasoning about structured, uncertain domains.

On the other hand, abstract argumentation frameworks (Dung 1995) aim specifically

at describing argumentation processes and reasoning about the set of acceptable argu-

ments. Consider, for instance, the following example of argumentative microtext adapted

from (Stede et al. 2016):

Example 1

Yes, it is annoying and cumbersome to separate your rubbish properly all the time (a1),

but small gestures become natural by daily repetition (a2). Three different bin bags

stink away in the kitchen and have to be sorted into different wheelie bins (a3). But still

Germany produces way too much rubbish (a4) and too many resources are lost when

what actually should be separated and recycled is burnt (a5). We Berliners should take

the chance and become pioneers in waste separation! (a6)

An argumentation problem defines arguments, for example, a1, a2, . . . and their relations,

for example a1 attacks a2, a3 supports a1. . . from which a set of acceptable arguments is

derived according to a given semantics.

When uncertainty is part of the argumentation problem, we want to reason about it in

order to answer queries like “What is the likelihood of accepting argument a6?”. Inferring

the probability of one variable taking a particular value is a typical PLP task. PLP frame-

works offer a wide range of tools and algorithms for probabilistic inference and learning

on probabilistic logic programs. Probabilistic argumentation systems, on the other hand,

propose different combinations of argumentation frameworks, probability interpretations

and reasoning systems, tailored to manipulating probabilities in argumentation. When

considering PLP and argumentation systems, the question is natural: can PLP effectively

model argumentation processes and reason over its intrinsic uncertainty?

This question has been only partially investigated so far: of the two main interpre-

tations of probabilities in argument graphs (Hunter 2013), namely the constellations

approach and the epistemic approach, only the former has been studied in the context

of PLP (Mantadelis and Bistarelli 2020). This paper fills this gap and shows how PLP

can be used to reason about a probabilistic argumentation graph with an epistemic view

of its probabilities. Table 1 summarizes the differences in the approaches.

In the constellations approach, probabilities describe a probability distribution over

argument (sub)graphs. Such a distribution is used to define the probability of an argu-

ment being in the set of accepted arguments according to the argumentation semantics

of choice. On the contrary, in the epistemic approach probabilities are a direct measure

of the belief of an agent in an argument, and therefore of its acceptability. Previous

work on probabilistic argument graphs under the epistemic approach focuses on model-
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Table 2. PLP frameworks overview

Framework Model semantics Distribution semantics

PLP frameworks (ProbLog, PRISM, . . . ) Least or 2-valued
Well-founded model

�

Probabilistic ASP (P-Log, LPMLN) Stable model �
smProbLog Stable model �

ing a family of probability distributions that are compatible with the graph and given

constraints (Hunter et al. 2020).

Instead of considering a probabilistic argument graph as a model for a family of prob-

ability distributions over fixed beliefs that have to satisfy constraints, we regard a prob-

abilistic argument graph as a model for a single joint probability distribution over argu-

ments. We view nodes as random variables associated to the arguments, whose prior is

the epistemic arbitrary assignment of probabilities to arguments. We then interpret their

relations as the conditional (in)dependencies influencing the posterior joint probability

(belief) distribution of the random variables. Given a set of independent beliefs regarding

arguments and relations, modeled by means of PLP, we thus define the joint probability

(belief) of the arguments by means of probabilistic inference.

The joint distribution defines marginal and conditional beliefs that are coherent with

the given priors and argumentative (logic) structure. The advantage of this method is

that the joint belief distribution allows us to answer a broad range of questions that

are of interest in the argumentation setting. For example, the marginal probability of

(belief in) an argument (“What is the belief in a1 considering the influence of the other

arguments?”), relating the beliefs of two arguments (“How does my belief in a1 change if

a5 is accepted?”), or perform typical PLP tasks such as learning the beliefs of an agent

given a set of observations of accepted arguments.

We propose a new PLP framework where this is possible, since we argue that existing

PLP systems are limited in what problems they can model and reason about. In fact,

traditional PLP frameworks do not allow modeling cyclic relations involving negations.

This is a pattern often found in argument graphs, where reciprocal attacks are com-

mon. For example, we will encode this pattern, that is, accepting a1 inhibits my belief

in a2 and vice versa, with the logic rules ¬a1 ← a2. ¬a2 ← a1. A model containing

such rules would not be valid in traditional PLP frameworks, because they assume that

each (deterministic) logic program induced by the probabilistic model has exactly one

two-valued well-founded model (Gelder et al. 1991). Programs containing cyclic depen-

dencies involving negation usually do not satisfy this assumption. Probabilistic answer

set programming (ASP) frameworks, for example, Baral et al. (2009) or Lee and Wang

(2016), do not make this assumption, however the definition of the probability distribu-

tion is not based on distribution semantics (Sato 1995), hence there are differences that

we will analyze throughout the paper. Table 2 summarizes the main characteristics of

PLP frameworks.

In Section 3, we introduce a framework modeling probabilistic argumentation problems

by means of typical PLP modeling techniques. In Section 5, we analyze the properties
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of this approach. In Sections 4 and 6, we propose a PLP system, smProbLog, based on

a new semantics, where it is possible to reason over such models. The advantages of

reasoning over probabilistic argument graphs by means of PLP are:

• Succinctness and expressivity : expressing complex interactions between random

variables with the simplicity of (first-order) logic programming rules.

• Flexibility and modularity : improving a model for a specific application domain

without having to modify neither the language nor the reasoning algorithms.

• PLP tools : applying to argumentation problems a general suite of PLP inference

and learning algorithms to any model within a broad class.

To summarize, the key contributions of the paper are:

1. We define a novel semantics for PLP based on stable model semantics (Gelfond

and Lifschitz 1988) (Section 4).

2. We develop an implementation of a PLP framework, smProbLog2, derived from

ProbLog2 (Dries et al. 2015) that supports inference and learning tasks under the

new semantics (Section 6).

3. We show an application of smProbLog to encode and solve probabilistic argumenta-

tion problems in a novel reasoning framework based on an epistemic interpretation

of probability (Sections 3 and 5).

2 Background

In this paper we present a PLP framework, smProbLog based on ProbLog2: we describe

the relevant background about syntax, the semantics for the probabilistic component

of ProbLog programs, and the semantics for the models of a logic program we will

consider throughout the paper. We also describe the corresponding inference and learning

tasks under the new semantics. Finally, we also consider the application of smProbLog

to probabilistic argumentation problems, hence we discuss the required background in

argumentation.

2.1 Probabilistic logic programming

ProbLog. ProbLog (De Raedt et al. 2007) is a probabilistic language extending Prolog,

where facts and clauses are annotated with (mutually independent) probabilities. Prob-

abilistic logic programs based on distribution semantics, such as ProbLog, can be viewed

as a “programming language” generalization of Bayesian networks (Sato 1995). A nor-

mal logic program L is a finite set of normal rules of the form h ← b1, . . . , bn. We use

the standard terminology about atoms, terms, predicates, and literals. The head h is an

atom and the body b1, . . . , bn is a logical conjunction of literals. Rules with empty body

are called facts. We denote with ∼a the negation as failure of an atom a, used to make

literals, and with ¬a the classical logical negation of an atom a.

We model uncertainty in logic programs by annotating facts with probabilities: the

probabilities of facts are mutually independent and each probabilistic fact, that is, p :: f.,

2 https://github.com/PietroTotis/smProblog
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corresponds to an atomic choice, that is, a choice between including f in the program

(with probability p) or discarding it (1 − p). A probabilistic normal logic program L =

F ∪ R is thus a set F of facts annotated with probabilities plus a set of logic rules R.

The set of facts F is disjoint from the heads of the rules R, nonetheless rule heads can

be annotated as syntactic sugar: p :: h ← b1, . . . , bn. is equivalent to a new fact p :: f.

plus h← f, b1, . . . , bn.

Example 2

The well-known alarm Bayesian network (Pearl 1989) can be encoded as a ProbLog pro-

gram. An alarm is triggered by either an earthquake or a burglary: if the neighbor is at

home you will receive a call. The neighbor at home, the earthquake, and the burglary are

independent events occurring with a certain probability, thus encoded as probabilistic

facts. Probabilistic facts are marginally independent and therefore correspond to nodes

of the Bayesian network that do not have common parents or ancestors. The logic rules

determine whether you get a call or not, and thus correspond to the conditional depen-

dencies of the Bayesian network.

0.1 :: burglary.

0.2 :: earthquake.

0.5 :: neighbor at home.

alarm← earthquake.

alarm← burglary.

neighbor calls← alarm, neighbor at home.

query(alarm).

query(neighbor calls).

Distribution semantics. A probabilistic logic program L = F ∪ R is queried for the

likelihood of atoms. The probability of an atom is commonly defined by the distribution

semantics (Sato 1995). A total choice ω is a combination of atomic choices over all

probabilistic facts, that is, a subset of the set of all ground facts F , that is, ω ⊆ F .

We denote the set of all total choices of L, that is, the power set of F , with ΩL. The
probabilities of the facts define a probability distribution over the 2|F | total choices. The
possible non-probabilistic subprograms ω ∪R,ω ∈ ΩL, which we call possible worlds, are

obtained from L by including or discarding a fact according to the corresponding atomic

choice. An interpretation is an assignment of a truth value to all atoms in the Herbrand

base of a program. An interpretation is called a model of the theory if it satisfies all

formulas in the theory.

Example 3

Consider the alarm example (Example 2), there are 23=8 possible worlds (listed

in Example 4), corresponding to the combinations of choices for the probabilistic

facts earthquake, burglary , neighbor at home. Consider the possible world where

we discard earthquake and include the other two: then the alarm will be triggered,

that is, alarm is inferred from burglary , and thus the neighbor calls, because both

alarm and neighbor at home are true. The model for the possible world denoted by
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{burglary ,neighbor at home} is thus {burglary ,neighbor at home, alarm,neighbor

calls}.
The distribution semantics relies on a one-to-one mapping between possible worlds and

models: many PLP frameworks, for example, ProbLog, PRISM, and CP-Logic, restrict

the class of valid inputs to programs where each total choice corresponds to a two-valued

well-founded model (Gelder et al. 1991). The underlying assumption is that choices are

modeled exclusively by means of probabilistic facts, and that they are independent. Under

this assumption many algorithms and reasoning techniques have been developed to per-

form inference and parameter learning tasks, which we present in the rest of this section.

Inference. The MARG inference task is the task of computing the probability of success

of a query, that is, the sum of the probability of each possible world where the query is

true, under the (possibly empty) given evidence. Evidence is a set of atoms whose truth

value is known. In particular:

Definition 1 (The MARG Inference task)

Given

– A program L: let G be the set of all ground (probabilistic and derived) atoms of L.
– A set E ⊆ G of observed atoms (evidence), along with a vector e of corresponding

observed truth values (E = e).

– A set Q ⊆ G of atoms of interest (queries).

Find the marginal distribution of every query atom given the evidence, that is, computing

P (q |E = e) for each q ∈ Q.

In the ProbLog2 system the probabilistic inference task is reduced to a weighted model

counting problem (WMC ) (Cadoli and Donini 1997). WMC is the problem of computing

the weight of a propositional logic formula ϕ, given a weight function w that assigns a

positive (real) weight value to each literal v and ¬v (v ∈ G). Let MOD(L) be the set of

valid interpretations for L, the WMC of ϕ is:

WMCL(ϕ) =
∑

M∈MOD(L),M |=ϕ

∏
l∈M

w(l).

The probability P (q|E = e) is computed as WMCL(ϕ) where ϕ is the propositional

representation of q∧E = e. The weight function is defined as follows: for all probabilistic

facts (p : f), w(f) = p and w(¬f) = 1 − p; for all atoms a ∈ E if a is true (false)

w(a) = 1, w(¬a) = 0 (resp. w(a) = 0, w(¬a) = 1); for all remaining (logical) atoms a,

w(a) = w(¬a) = 1.

Example 4

The possible world of Example 2 corresponding to {burglary ,neighbor at home} has

probability 0.1 · (1 − 0.2) · 0.5 = 0.04. To find the probability of being called we

sum the probabilities of all other possible worlds whose model contains neighbor calls,

namely {earthquake,neighbor at home} and {burglary , earthquake,neighbor at home},
which are respectively (1 − 0.1) · 0.2 · 0.5 = 0.09 and 0.1 · 0.2 · 0.5 = 0.01. Therefore,

P (neighbor calls) = WMC (neighbor calls) = 0.04 + 0.09 + 0.01 = 0.14.
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Possible world’s choices ω Model P (ω)

{} ω 0.36

{neighbor at home} ω 0.36

{burglary} ω ∪ {alarm} 0.04

{earthquake} ω ∪ {alarm} 0.09

{neighbor at home, burglary} ω ∪ {alarm,neighbor calls} 0.04

{burglary , earthquake} ω ∪ {alarm} 0.01

{earthquake,neighbor at home} ω ∪ {alarm,neighbor calls} 0.09

{burglary , earthquake,neighbor at home} ω ∪ {alarm,neighbor calls} 0.01

The task of model counting is #P-complete in general, therefore the logic program

is transformed into a representation where this task becomes tractable (Fierens et al.

2011). L is in fact transformed by means of knowledge compilation into a smooth d-DNNF

formula (deterministic decomposable negation normal form) (Darwiche 2004) or a senten-

tial decision diagram (Choi et al. 2013). In this paper we focus on d-DNNFs because we

base our approach on a knowledge compiler to d-DNNFs for stable model counting (Aziz

et al. 2015).

Definition 2

An NNF is a rooted directed acyclic graph in which each leaf node is labeled with a

literal and each internal node is labeled with a disjunction or conjunction. A smooth

d-DNNF is an NNF with the following properties:

• Deterministic: for all disjunctive nodes the children represent formulas pairwise

inconsistent.

• Decomposable: the subtrees rooted in two children of a conjunction node do not

have atoms in common.

• Smooth: all children of a disjunction node use the same set of atoms.

On d-DNNFs the task of model counting becomes tractable. The d-DNNF is further

transformed into an equivalent arithmetic circuit, by replacing conjunctions and disjunc-

tions respectively with multiplication and summation nodes, and by replacing leaves with

the weight of the corresponding literals. Arithmetic circuits allow us to efficiently perform

the task of WMC .

Example 5

Consider the rule neighbor calls ← alarm,neighbor at home. The corresponding smooth

d-DNNF and arithmetic circuit are represented in Figure 1. The root of the circuit

represents all possible assignments to the variables. The leftmost and-node corresponding

to the assignment calls corresponds in the arithmetic circuit to the weight 0.14, the

probability of it being true. Vice versa, the top and-node, corresponding to the assignment

¬calls, represents in the arithmetic circuit the weight 0.86. We simplified Example 2 by

considering alarm a probabilistic fact with probability 0.28, which is the probability that

can be inferred from burglary and earthquake (cfr. Example 4).
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Fig. 1. Smooth d-DNNF for the implication neighbor calls ← alarm,neighbor at home (left)
and the corresponding arithmetic circuit (right).

Learning. Learning from interpretations of parameters in a ProbLog program is imple-

mented in a likelihood maximization setting (Gutmann et al. 2011). In the learning from

interpretations task the input is a program L where some probabilities are unknown (pa-

rameters), and a set of interpretations for L. Interpretations can be partial, that is, the

observation of truth values contains only a subset of all atoms. The goal is to estimate

the value of the parameters such that the predicted values maximize the likelihood of

the given interpretations:

Definition 3 (Max-Likelihood Parameter Estimation)

Given

– A program L(p) = F∪R where F is a set of probabilistic facts and R contains the

rules describing the background knowledge. p = 〈p1, ..., pN 〉 is a set of unknown

parameters attached to probabilistic facts.

– A set I of (partial) interpretations {I1, ..., IM} as training examples.

Find the maximum likelihood probabilities p̂ = 〈p̂1, ..., p̂N 〉 for the interpretations in I.

Formally,

p̂ = argmax
p

P (I|L(p)) = argmax
p

M∏
m=1

P (Im|L(p)).

Parameters are iteratively updated by an alternation of an expectation step (E step)

which computes the expected value of the learnable parameters under the current model,

and the maximization step (M step) which updates the parameters estimates to maximize

the likelihood of the observed data.

Example 6

Consider Example 5 but now the probability of alarm is a learnable parameter. In

ProbLog the expression t(0 .4 ) :: alarm. denotes a learnable probability which is ini-

tialized at 0.4 in the expectation-maximization (EM) algorithm:

https://doi.org/10.1017/S147106842300008X Published online by Cambridge University Press
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t(0.4) :: alarm.

0.5 :: at home.

calls← alarm, at home.

Given a set of interpretations reflecting the original probability distribution we can learn

the probability of 0 .28 :: alarm. even if the observation of alarm is not given. In fact, we

provide three types of partial interpretations:

I1: {¬calls,¬at home} (50 examples)

I2: {calls , at home} (14 examples)

I3: {¬call , at home} (36 examples)

The first corresponds to the possible worlds where at home prevents the call regardless

of alarm (50% of the examples corresponding to the probability of at home = false).

The second is the case where both are true and the third where alarm is false. The first

iteration of the EM algorithm considers the frequency of each example and the probability

according to the model with the probability of alarm initialized at 0.4. The iteration 0

then associates to I1 the current probability of alarm being either true or false, that is, 0.4.

On the other hand, in I2 (resp. I3) alarm has probability 1 (resp. 0) of being true (E step).

The updated probability that maximizes the probability of the set of training examples is

thus 50·0.4+14·1+36·0
100 = 0.34 (M step). Iteration 1 then repeats the E step with the updated

probability 0.34 :: alarm. The probabilities of alarm in I1, I2, and I3 are, respectively,

0.34, 1.0, and 0 (E step) and the new updated probability is 50·0.34+14·1+36·0
100 = 0.31 (M

step). Further iterations converge to the true probability of 0.28 :: alarm.

Causal effects. An alternative view of ProbLog that we exploit in this paper is in terms of

CP-logic, a logical language for representing probabilistic causal laws. Probabilistic causal

laws model the probability distribution of a set of random variables that are related by a

causal process, that is, the variables interact through a sequence of non-deterministic or

probabilistic events. ProbLog and CP-logic are closely related as the syntax of a ProbLog

program is similar to that of a CP-theory in which each rule has precisely one head

atom. Moreover, the semantics of a ground ProbLog program coincides completely with

the semantics of CP-Logic. This close relation makes available in ProbLog a modeling

technique from CP-logic that we exploit in this paper: the inhibition effect (Meert and

Vennekens 2014) and negations in the head (Vennekens 2013).

Negation in the head gives an interpretation of the negation of heads from ASP in

the context of epistemic reasoning and logic theories defining causal mechanisms. In the

rest of the paper we adopt this interpretation for negated heads, where the goal is to

describe epistemic causal effects and not to obtain classical negation from negation as

failure. Vennekens (2013) discusses in detail the differences with classic negation in ASP.

In the context of PLP, each rule ¬h← b1, . . . , bn. is interpreted by replacing all heads h

in the program with a new atom hpos and all heads ¬h with a new atom hneg, and the

rule h ← hpos,∼hneg. is added. This last rule thus defines that h can be inferred from

any of the causes of h (making hpos true) only if there is no cause for believing in hneg,

the opposite of h. The inhibition effect is the resulting decrease in the probability of h

when the probability of ¬h (hneg) increases.

https://doi.org/10.1017/S147106842300008X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300008X


smProbLog 1207

The noisy-or effect (Meert and Vennekens 2014) describes the aggregation of the causal

probabilities for an atom which appears as the head of multiple (causal) rules.

Example 7

We adapt the travel example from Meert and Vennekens (2014) to describe the inhibition

effect in ProbLog. Alice is traveling during a pandemic and therefore there is a chance

of getting infected. This probability is influenced by two factors: first, if Alice travels

with public means of transport there is some probability of being infected there. Second,

if Alice is vaccinated then there is a chance that she will not be infected. We encode

this last rule with the inhibition effect, which describes a decrease in the probability of

infection when vaccinated.

0.2 :: riskyTravel(alice).

0.7 :: vaccinated(alice).

0.4 :: infected(alice)← riskyTravel(alice).

0.33 :: ¬infected(alice)← vaccinated(alice).

The two rules correspond to the following rewriting:

0.4 :: infected pos(alice)← riskyTravel(alice).

0.33 :: infected neg(alice)← vaccinated(alice).

infected(alice)← infected pos(alice),∼infected neg(alice).

Stable models. In this paper we will extend ProbLog’s semantics, based on two-valued

unique well-founded models, with stable model semantics (Gelfond and Lifschitz 1988),

where models are two-valued, but a logic program can have more than one stable model.

Given a normal logic program L and a set S of atoms interpreted as true, called candidate

model, stable model semantics is defined in terms of the reduct of a program L w.r.t. S.

The reduct of L w.r.t. S, LS , is defined as follows: (1) for all r ∈ L remove r from L if

a ∈ S is negated in the body of r; (2) for all r ∈ L remove from the body of r all ¬a if

a /∈ S. If S is a minimal model for LS then S is a stable model (answer set) for L.

2.2 Probabilistic argumentation

We will consider the application of PLP and smProbLog to probabilistic argumen-

tation problems (Hunter et al. 2021). An abstract argumentation framework (or ar-

gument graph) (Dung 1995) is a pair (A,R) where A is a set of arguments and

R ⊆ A × A is a binary (attack) relation over A. Figure 2 represents an example

from Hunter et al. (2020) of argument graph (A,R) where A = {a1, a2, a3, a4} and

R = {(a1, a2), (a2, a1), (a3, a1), (a4, a2)}.
In recent years several extensions and modifications of this formulation have been

proposed in order to encode more complex argumentation reasoning systems. Among

the most relevant, we find bipolar argument frameworks (Amgoud et al. 2004), weighted
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Fig. 2. Abstract argumentation framework. Edges represent attacks, nodes are arguments.

Fig. 3. Probabilistic abstract argumentation framework. Edges represent attacks, nodes are
arguments (cfr. Figure 2).

argumentation frameworks (Amgoud et al. 2017), and probabilistic argumentation frame-

works (Li et al. 2011).

Bipolar argumentation frameworks introduce a support relation R+ along with the

attack relation R−. A bipolar argument graph is thus a triple (A,R−, R+), where A is

a set of arguments and R− ⊆ A × A (resp. R+ ⊆ A × A) is a binary attack (support)

relation over A.

Weighted argumentation frameworks (A,R,w) augment the traditional argument

graph (A,R) with a weighting function w : A → [0, 1] and belong to a general class

of gradual argumentation frameworks (Cayrol and Lagasquie-Schiex 2005), where argu-

ments’ acceptability is evaluated on a fine-grained numerical scale or ranking.

Gradual and bipolar frameworks are combined into quantitative bipolar argumentation

frameworks (QBAFs) (Baroni et al. 2019), where each argument has a (possibly empty)

set of attackers, a (possibly empty) set of supporters, and an initial evaluation (possibly

the same for all arguments) on a chosen scale. These elements contribute to a final

argument evaluation, provided by a strength function on the chosen scale. A QBAF

is thus a quadruple (A,R−, R+, τ) consisting of a finite set A of arguments, a binary

(attack) relation R− on A, a binary (support) relation R+ on A, and a total function

τ : A→ I, where I is the chosen scale. τ(a) is thus the base score of a, for any a ∈ A.

Finally, a probabilistic argument graph (Li et al. 2011) is a tuple (A,R, PA, PR) where:

(A,R) is an argument graph and PA and PR are functions: PA : A → [0, 1] and

PR : A × A → [0, 1]. Figure 3 describes a probabilistic argument graph derived from

the example in Figure 2. The values assigned by the functions PA and PR are usually

interpreted with two different approaches: the constellations approach and the epistemic

approach (Hunter 2013). The constellations approach interprets the probabilities as un-

certainty over the structure of the graph and models a probability distribution over

subgraphs. Each subgraph is evaluated according to the traditional extension-based se-

mantics (Dung 1995). An extension is a subset of the arguments that is acceptable w.r.t.

a given criterion, therefore a distribution over acceptable arguments is derived from (1)
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the probability distribution over the possible subgraphs, and (2) the subset of acceptable

arguments in each subgraph. The epistemic approach on the other hand interprets the

probabilities as a direct measure of an agent’s belief in the arguments. The accepted ar-

guments are those having probability higher than 0.5, and the argument graph is used to

reason about the consistency of the agent’s beliefs with respect to the relations encoded

in the graph.

3 Modeling probabilistic argumentation

Let us now answer the question as to whether PLP can effectively model argumentation

processes and reason over their intrinsic uncertainty. Our answer takes the form of en-

coding argumentation problems and their uncertainty in probabilistic logic programs. By

encoding arguments and uncertainty using PLP, we embed argumentation in probabilis-

tic approaches to automated reasoning under uncertainty. More specifically, probabilistic

logic programs represent the joint probability distribution. Modeling the joint probabil-

ity distribution is central to the success of probabilistic graphical models (Koller and

Friedman 2011), which are the most popular tools for learning and reasoning about

uncertainty in AI. Naively specifying joint probability distribution however requires

a number of parameters exponential in the number of random variables (Pearl 1989;

Charniak 1991). The success of probabilistic graphical models and Bayesian net-

works (Pearl 1989) is based on the use of a graphical structure that represents a

set of conditional independence assumptions, which allow to compactly encode the

joint probability distributions in a factorized form. In Bayesian networks, for instance,

the key assumption is that each variable is conditionally independent of its non-

descendants, given its parents. Two random variables X and Y are said to be con-

ditionally independent given Z, a third variable, if in a joint probability distribu-

tion P including the three variables P (X|Y, Z) = P (X|Z) whenever P (Y, Z) > 0,

that is, Y does not provide extra information X, if we already know Z. In argu-

mentation, conditional probabilities such as P (X|Z) can be used to update the be-

lief in X in the light of the argument Z, while conditional independencies can be

used to reason about the (ir)relevance of a certain argument Y in the context of

P (X|Z).

By approaching probabilistic argumentation problems from a PLP perspective, we

apply the principles in modeling uncertainty in AI formulated by Pearl (1989):

We will also stress that probability theory is unique in its ability to process context-sensitive
beliefs, and what makes the processing computationally feasible is that the information needed
for specifying context dependencies can be represented by graphs and manipulated by local
propagation.

This suggests an interpretation of the argument graph as a probabilistic graphical model,

that is, a graph modeling the conditional independencies between random variables (ar-

guments). However, Bayesian networks are directed acyclic graphs, and with argument

graphs we are concerned with more complex relations involving cycles and negations (at-

tacks). This motivates the need for a richer framework, PLP, and semantics (Section 4)

to derive the joint probability distribution. The argument graph thus expresses how con-

ditional independencies and context dependencies shape a joint belief distribution across
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the arguments. We thus follow the epistemic interpretation of probabilities where prob-

abilities measure the degree of belief in the arguments. As Hunter (2013) remarks, the

emphasis in the epistemic approach is to find a probability distribution that is rational

with respect to the argument graph. With PLP, the derivation of the joint probability

distribution from the argument graph mirrors the process of evaluating personal beliefs

described by Nilsson (2014):

If we were to examine the relationships among all of our beliefs carefully, an impossible task
in practice but one that is interesting to think about, we would see that some of them should
make others more credible and some less. They would even compete among themselves with
conflicting influences. We can imagine all of the beliefs in our large network of beliefs “fighting
it out” to agree finally on the strength of each belief in the network. When they do finally agree,
we say that the beliefs cohere.

We begin by defining the type of models that describe a probabilistic argumentation

problem, that is, we encode the problem in a probabilistic logic program. Following

the epistemic interpretation of probabilities we map arguments to logical atoms whose

probability (belief) can be queried in the traditional PLP style, that is, querying marginal

and conditional probabilities (beliefs) given evidence. Therefore, we do not define an

additional layer of logic rules specifying argumentation semantics over a (probabilistic)

graph, as in the constellations approach. Mapping a probabilistic argument graph to a

probabilistic logic program means defining its semantics, because the PLP semantics of

choice for the program in turn defines the graph’s semantics. For this reason, we first

discuss the informal semantics of the mapping, and then characterize its formal semantics

by means of PLP (Section 4). In the following sections we describe in detail a PLP system

that is capable of reasoning over such semantics.

Mapping. Given a probabilistic argument graph G = (A,R−, PA, PR−), we associate each

argument a ∈ A to a random variable arg(a) representing the belief in a. This belief is

described by means of the two probability functions: PA and PR− . We interpret PA(a) as

the prior belief for a, that is, a bias independent of the other arguments, similar to a base

score in a QBAF. The independence assumption of the prior beliefs in the arguments does

not mean that arguments are assumed to be independent, but only the degree to which

the agent is biased towards them. The posterior belief in an argument is determined by

a combination of the bias and the attacks received. We interpret an attack PR−(a, b) as

the belief that accepting a causes the rejection of b. Since we measure beliefs by means

of random variables, the natural interpretation of attacks is that the belief in the target

is (negatively) conditioned by the belief in the attacker, therefore believing in a causes

a decrease in the belief of b. Therefore, the belief in an argument depends on the belief

in the attacking arguments: a strong belief in any of the attackers can cause the agent

to not believe the attacked argument. In Section 2 we showed how in PLP such causal

relation is expressed by means of the inhibition effect, therefore we model attacks with

negation in the heads.

Definition 4

Given a probabilistic argument graph G = (A,R−, PA, PR−) the corresponding proba-

bilistic logic program L is a program where:
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• for each a ∈ A and PA(a) = p:

• p :: bias(a). ∈ L
• arg(a)← bias(a). ∈ L

• for each (a, b) ∈ R− and PR−((a, b)) = p:

• p :: ¬arg(b)← arg(a). ∈ L

Example 8

Consider the example in Figure 3: the corresponding program is:

0.6 :: bias(a1). 0.7 :: bias(a2).

0.4 :: bias(a3). 0.2 :: bias(a4).

arg(a1)← bias(a1). arg(a2)← bias(a2).

arg(a3)← bias(a3). arg(a4)← bias(a4).

0.9 :: ¬arg(a1)← arg(a3). 0.8 :: ¬arg(a2)← arg(a4).

0.4 :: ¬arg(a1)← arg(a2). 0.7 :: ¬arg(a2)← arg(a1).

A rule ¬arg(b)← arg(a) therefore says that believing argument a causes not believing

in b. In Section 2 we showed how the negation in the head is interpreted in PLP by

rewriting the rule as: argneg(b) ← arg(a). arg(b) ← argpos(b),∼argneg(b). expresses

“believing a causes believing in a counterargument for b and b cannot be believed when

a counterargument is believed.” The probability p = PR−((a, b)) measures the belief in

the effectiveness of the attack, that is, how likely it is to conclude that argument b is

rejected given that a is believed.

Example 9

The rules in Example 8 are internally rewritten as follows.

0.6 :: bias(a1). 0.7 :: bias(a2).

0.4 :: bias(a3). 0.2 :: bias(a4).

argpos(a1)← bias(a1). argpos(a2)← bias(a2).

argpos(a3)← bias(a3). argpos(a4)← bias(a4).

0.9 :: f1. 0.4 :: f2
0.8 :: f3 0.7 :: f4
arg(a1)← argpos(a1),∼argneg(a1). argnot(a1)← arg(a3), f1.

arg(a2)← argpos(a2),∼argneg(a2). argnot(a1)← arg(a2), f2.

arg(a3)← argpos(a3),∼argneg(a3). argnot(a2)← arg(a4), f3.

arg(a4)← argpos(a4),∼argneg(a4). argnot(a2)← arg(a1), f4.

We started by considering basic probabilistic argument graphs, but PLP can encode

much more complex relations over random variables, hence we exploit the flexibility and

expressivity of PLP to effortlessly extend this modeling technique to incorporate many

relevant aspects of argumentation in a framework capable of encoding:
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Fig. 4. Example 10 representation. Dashed (resp. solid) edges represent supports (resp.
attacks) R+ (resp. R−). Nodes (resp. edges) are labeled with the corresponding bias (belief).

• Quantitative evaluations of relations.

• Support relations.

• Attack (and supports) from sets of arguments.

• Distinctions between proponents of arguments.

We showed in Example 8 how annotated rules express a fine-grained quantification of

how strong the causal relation between the arguments (random variables) is.

Support. Support relations are symmetric to attacks: we consider the (bipolar) extension

of a probabilistic argument graph with a relation support R+ (R+ ⊆ A×A,R+∩R− = ∅)
and the corresponding probability PR+ : R+ → [0, 1]. Believing in a supporter a causes

believing in b with probability p: this corresponds to an increase of the belief in the

supported argument b. This relation is encoded as a simple inference rule:

Definition 5

Given a bipolar probabilistic argument graph G = (A,R−, R+, PA, PR− , PR+) the corre-

sponding probabilistic logic program L is a program where:

• for each a ∈ A and PA(a) = p:

• p :: bias(a). ∈ L,
• arg(a)← bias(a). ∈ L;

• for each (a, b) ∈ R− and PR−((a, b)) = p:

• p :: ¬arg(b)← arg(a). ∈ L;
• for each (a, b) ∈ R+ and PR+((a, b)) = p:

• p :: arg(b)← arg(a). ∈ L.
We have thus introduced all the elements required to describe Example 1:

Example 10

Consider Example 1: we model G = (A,R−, R+, PR− , PR+) (see Figure 4) with ar-

guments ai ∈ A, attacks R = {(a1, a6), (a4, a1)},(a1, a2), (a2, a1)}, and supports S =

{(a5, a4), (a3, a1)}. We also define the following probability functions to derive an exam-

ple of a probabilistic argumentation problem: PA(a1) = 0.4, PA(a2) = 0.8, PA(a3) = 0.3,

PA(a4) = 0.7, PA(a5) = 0.6, PA(a6) = 0.7, PR−(a1, a6) = 0.6, PR−(a2, a1) = 0.8,

PR−(a1, a2) = 0.7, PR−(a4, a1) = 0.3, PR+(a5, a4) = 0.6, PR+(a3, a1) = 0.5.

Which we can thus encode as:
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Example 11

Example 10 is encoded in the following probabilistic logic program:

0.4 :: bias(a1). 0.8 :: bias(a2).

0.3 :: bias(a3). 0.7 :: bias(a4).

0.6 :: bias(a5). 0.7 :: bias(a6).

arg(A)← bias(A).

0.6 :: ¬arg(a6)← arg(a1). 0.6 :: arg(a4)← arg(a5).

0.3 :: ¬arg(a1)← arg(a4). 0.5 :: arg(a1)← arg(a3).

0.8 :: ¬arg(a1)← arg(a2). 0.7 :: ¬arg(a2)← arg(a1).

Sets. In this context, it is immediate to generalize relations between pairs of arguments

to relations involving multiple arguments. This is the case of argument systems (Nielsen

and Parsons 2006), where the attack between two arguments is generalized to an attack

relation from a set of arguments toward a single argument (set-attacks). We can model

this in PLP by conjoining attackers (resp. supporters) in the body of rules.

Example 12

¬arg(a1) ← arg(a4), arg(a5). is a causal relation effective only when all the arguments

in the set of attackers (body) are believed.

Also in this case we can easily combine different argumentative features with each other,

for example:

Example 13

Examples of gradual joint relations in the setting of Example 1:

• gradual set attacks: 0.6 :: ¬arg(a1)← arg(a4), arg(a5).

• gradual set supports: 0.3 :: arg(a3)← arg(a4), arg(a5).

PLP tools. Note that in Example 11 we use first-order predicates to compactly define the

relation between arguments and their bias. This is a modeling advantage offered by PLP,

whose flexibility can also be exploited to model less standard scenarios. For instance, in

the following example we distinguish between different proponents of the arguments and

define the bias in terms of a measure of the trust in them:

Example 14

Consider Example 11 and the distinction between arguments coming from a proponent

({a2, a4, a5, a6}) and those introduced by an opponent ({a1, a3}). We can model bias

based on the source of the argument as follows:

0.4 :: proponent . 0.7 :: opponent .

arg(a1)← opponent . arg(a2)← proponent .

arg(a3)← opponent . arg(a4)← proponent .

arg(a5)← proponent . arg(a6)← proponent .
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First-order logic allows for example expressing compactly that the more agents propose

the same argument, the higher its bias is. Assume we express proponents and trust as

p1 :: prop(1). · · · pn :: prop(n). and proposes(i, a) denotes that argument a is backed by

proponent i, then a rule bias(A) ← proposes(P,A), prop(P ). defines a contribution to

the bias of each argument from all its proponents, denoted by each belief pi.

We thus showed how PLP offers an expressive language that is capable to encode

complex relations between arguments and their beliefs. Ideally, we would like to be able

to perform the inference and learning tasks over such programs, and apply the traditional

PLP algorithms and tools to models of argumentation problems. This means answering

marginal probability queries of the kind: “what is the inferred belief in an argument

given its bias and the relationships with the other arguments?” or answering conditional

queries by reasoning over evidence, that is, “how does the belief in an argument change

if the validity or falsehood of a set of arguments is determined?”. The natural question

arising at this point is whether the syntax is paired with semantics and reasoning systems

that support this type of models. Unfortunately, the answer is negative: the assumptions

that PLP semantics impose on the input program are too restrictive for a broad class

of argumentation problems. In particular, the presence of cycles through negation in a

probabilistic program L = F ∪R usually results in a violation of the requirement of the

existence of a single two-valued well-founded model for all the possible (deterministic)

logic programs ω ∪ R, ω ⊆ F . This situation is often present in the case of reciprocal

(or, in general, cyclic) attacks in argument graphs. Example 15 shows how arguments

attacking each other results in a cyclic relation where negation is involved:

Example 15

In Example 11 rules 0.8 :: ¬arg(a1) ← arg(a2). and 0.7 :: ¬arg(a2) ← arg(a1). corre-

spond to the following rewriting of the negated heads:

0.7 :: f. argneg(a2)← f, arg(a1). arg(a1)← argpos(a1),∼argneg(a1).
0.8 :: g. argneg(a1)← g, arg(a2). arg(a2)← argpos(a2),∼argneg(a2).

The negation in the head thus leads to a cyclic dependency, we use
∼−→ to denote a

dependency through negation, → otherwise:

arg(a1)
∼−→ argneg(a1)→ arg(a2)

∼−→ argneg(a2)→ arg(a1),

which causes the program to not satisfy the requirement of a unique two-valued well-

founded model in the possible worlds where f , g, and the probabilistic facts corresponding

to the supports of the two arguments are included.

In the Section 4 we discuss why such programs are not captured by traditional PLP

semantics, and we propose a new semantics that, on the contrary, allows us to reason

over this particular class of programs.

4 Probabilistic semantics

In this section we present a novel PLP semantics to reason over the programs obtained

from the mapping of probabilistic argumentation frameworks described in Section 3.

In fact, traditional PLP frameworks cannot reason over these programs because they

may define cyclic dependencies through negation (Example 15). In PLP, in particular
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ProbLog (Fierens et al. 2011), the requirement of a single two-valued well-founded model

is always satisfied when the program does not define cyclic relations through negation

(a sufficient but not necessary condition). In fact, in the case of well-founded semantics

for normal logic programs, cycles through negation can result in a unique model where

some atoms are labeled with a third value “undefined” (Gelder et al. 1991). At the same

time, in stable model semantics, which is two-valued, cycles through negation can lead

to one, many, or zero stable models (Gelfond and Lifschitz 1988).

Example 16

Gelder et al. (1991) shows that the program a ← ∼b.b ← ∼a. has no two-valued well-

founded model, hence the three-valued well-founded model considers both a and b as

undefined. On the other hand, the program has two stable models, namely {a,¬b} and
{¬a, b}.

For this reason in ASP non-deterministic choices between atoms can be expressed by

recursive dependencies through negation. The answer sets of a program are possible sets

of beliefs that a rational agent may hold on the basis of the information expressed by the

logic rules (Gelfond and Lifschitz 1991). For this reason, we will consider stable model

semantics in order to handle non-probabilistic choices introduced by the logic component.

The case with multiple stable models corresponds to the expression of non-

deterministic aspects of the problem modeled by the logic rules (Saccà and Zaniolo 1990).

Example 17

Consider Example 2: if we think that Diane will find Hotel X too expensive with proba-

bility 0.6 and that Hotel Y will be noisy with probability 0.7, we can write the following

program, with the equivalent rewriting on the right:

program: internal rewriting:

0.6 :: too expensive X . 0.6 :: too expensive X .

0.7 :: too noisy Y . 0.7 :: too noisy Y .

stay at Y ← too expensive X . stay at Y pos ← too expensive X .

stay at X ← too noisy Y . stay at X pos ← too noisy Y .

¬stay at Y ← stay at X . stay at Y neg ← stay at X .

¬stay at X ← stay at Y . stay at X neg ← stay at Y .

stay at X ← stay at X pos,∼stay at X neg

stay at Y ← stay at Y pos,∼stay at Y neg

Intuitively, if the counterarguments for both hotels are considered, that is, the possible

world where too expensive X and too noisy Y are included, then we are left with a choice

between hotel X and hotel Y. In fact, while the first two rules of the program suggest

that Diane should stay at both hotels, the last two rules state that this is logically not

possible and only one of the two should be chosen. Therefore, in this possible world logic

defines a non-deterministic choice that was not modeled by probabilistic facts.

This case is not compatible with PLP frameworks because the underlying assumption

is that uncertainty is fully captured by each total choice and therefore that a user exactly

knows the causes and effects of all relevant non-deterministic events that might happen,
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for example, “believing in argument a determines a choice between arguments b and c”.

However, we showed in Section 3 (for instance Example 8 and 11) that this is not always

the case and obtaining such complete information over the choices may require inference

itself. For instance, in argumentation some choices are induced by the relations between

arguments (Example 15) and may be required only if some particular conditions apply, for

example, not accepting an argument, which may depend in turn on other probabilistic

aspects of the problem. Stable model semantics provides a solution to handling non-

probabilistic choices introduced by the logic component of a program. At the same time,

the absence of a stable model signals that a given selection of probabilistic facts F (total

choice) is inconsistent with the knowledge encoded in the rules R of the program.

A program with zero stable models reflects the case where it is not possible to define

an interpretation of the atoms that satisfies all logic rules, therefore a program that has

at least one stable model is called “consistent” (Gelfond 2008).

Example 18

Consider a program modeling the famous barber paradox: in a village the barber shaves

all men, and those only, who do not shave themselves, does the barber shave himself?

0.5 :: barber(bob). 0.5 :: villager(bob).

shaves(X ,Y )← barber(X ), villager(Y ),∼shaves(Y ,Y ).

In the possible world where bob is both a villager and the barber (with probability

0.25), we have an inconsistency: there is neither a two-valued well-founded model nor a

stable model. Therefore, we will say that the program is inconsistent with probability

0.25 and the atoms for the inconsistent possible worlds are interpreted with a third value

“inconsistent.” This requires us to point out a relevant consideration about the semantics

of total choices.

In the past total choices have been defined in two different ways, as an interpretation

or a selection of facts. They are equivalent under the assumption of a one-to-one cor-

respondence between a total choice and the least model or the two-valued well-founded

model, but this is not the case when considering a more general semantics for models.

In the original definition by Sato (1995) a total choice is an interpretation (an assign-

ment of truth values) of the set of probabilistic facts, whose probability distribution is

extended to a distribution over least models. Fierens et al. (2011), on the other hand,

define in ProbLog an atomic choice (p : f) as the choice of selecting f for being included

with probability p or discarded with probability 1 − p. A total choice for a ProbLog

program L = F ∪ R (probabilistic facts F plus rules R) is thus any subset ω ⊆ F of

the facts, which defines a logic program ω ∪R. These two definitions are equivalent un-

der two-valued well-founded semantics because facts are always interpreted as true. This

holds also when considering programs with at least one stable model. However, if there

is no stable model, it is not possible to consider a total choice an interpretation of the

(probabilistic) facts.

Example 19

In Example 18 defining the total choice as an interpretation assigning true to both

probabilistic facts does not generalize to a normal logic program without (two-valued)
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models, because such interpretation is no longer a subset of any (two-valued) model. The

total choice {barber(bob), villager(bob)} cannot be regarded as a partial interpretation

where both are true because there is no model that extends such interpretation. On the

contrary, considering the total choice as a selection of facts does not make any assumption

on the eventual interpretation. {barber(bob), villager(bob)} can be thus regarded as an

inconsistent choice for the given program and the logical atoms can be interpreted as

inconsistent instead of true.

Therefore, in this paper we adopt the definition of total choices as subsets of (proba-

bilistic) facts, which thus makes no assumption about their interpretation in the corre-

sponding model(s). More specifically, our semantics uses the following principles to deal

with the novel setting.

Zero models. Inconsistent programs correspond to a loss of probability mass in the in-

terpretations of probabilistic facts, because such probability mass can no longer be asso-

ciated to a two-valued model. For instance:

Example 20

An alarm goes off when a burglary or earthquake happen. The owner however thinks

that the alarm was not properly installed and should not go off because of a valid reason.

If the alarm does not activate then the owner is right. We can model this situation with

the following (probabilistic) normal logic program:

0.5 :: burglary . 0.5 :: earthquake.

alarm ← burglary . alarm ← earthquake.

defective ← alarm,∼defective. right ← ∼alarm.

There are four total choices: ω1 = {burglary , earthquake}, ω2 = {burglary}, ω3 =

{earthquake}, ω4 = {}. The logic part of the program is inconsistent when alarm is

true, therefore when either burglary or earthquake are true. This means that for three

total choices, ω1, ω2, and ω3, the corresponding possible world has neither a two-valued

well-founded model nor stable models. In these cases the program is inconsistent with

probability P (ω1) + P (ω2) + P (ω3) = 0.75 and the only total choice corresponding to a

consistent possible world is ω4 which corresponds to the stable model {right}.
We thus assign the probability mass associated to inconsistencies to an “inconsistent”

state, whose probability thus quantifies how likely it is to consider an inconsistent possible

world among those defined by the program. We define this in terms of a model where all

atoms are labeled with a third value “inconsistent.” This solution has the advantage of

preserving the probability mass of total choices by assigning it to the model representing

an inconsistent possible world. The semantics is thus informative as to the degree of

inconsistency of the logical part of the program. Note that this is different from three-

valued well-founded semantics, where the atoms involved in the cycles responsible for

multiple stable models are labeled with the third value (“undefined”) as well, and not

all atoms are interpreted undefined at the same time.
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Example 21

When arguing about getting vaccinated or not there are different media we can choose

to believe in: virologists, newspapers, and Facebook. Virologists endorse vaccines and

their safety, newspapers argue that there is some degree of risk involved, Facebook posts

reject the acceptability of such degree of risk. We can model this reasoning pattern and

the level of trust in the different media with the following program:

0.9 :: trust virologists. 0.7 :: trust newspapers. 0.3 :: trust facebook.

safe ← trust virologists ,∼dangerous.
reasonable risk ← trust newspapers ,∼safe.
dangerous ← trust facebook ,∼reasonable risk .

The three rules determine a cyclic dependency (of odd length) with negation involved

between safe, reasonable risk , and dangerous and therefore trusting all media is an

inconsistency, because there is no possible truth assignment to safe, reasonable risk ,

and dangerous . We will then say that this program is inconsistent with probability

0.9 · 0.7 · 0.3 = 0.189. The remaining probability mass of (1 − 0.189) = 0.811 is divided

over the other possible words where the total choice of probabilistic facts is a consistent

choice according to the logic of the program. These choices thus induce a two-valued

assignment to the atoms of the program.

At least one model. In order to give a probabilistic interpretation of logical choices, we

follow the principle of maximum entropy. The maximum-entropy principle is a widely

adopted principle in Bayesian reasoning and statistical relational learning. It states that

the probability distribution which best represents the current state of knowledge about

a system is the one with the largest entropy (Jaynes 1988). In this setting this principle

translates to considering a uniform distribution for the (multiple) stable models of a total

choice.

Example 22

Consider the following (probabilistic) normal logic program:

0.5 :: burglary . 0.5 :: earthquake.

alarm ← burglary . defective ← earthquake.

alarm ← ∼defective. defective ← ∼alarm.

There are four total choices: ω1 = {burglary , earthquake}, ω2 = {burglary},
ω3 = {earthquake}, ω4 = {}. While the first three correspond to one stable

model, that is, MOD(ω1) = {{burglary , earthquake, alarm, defective}}, MOD(ω2) =

{{burglary , alarm}}, MOD(ω3) = {{earthquake, defective}}, ω4 has two stable models:

MOD(ω4) = {{alarm}, {defective}}. Since this choice is not related to beliefs but rather

to logical consistency, we assume that all stable models are equally probable for the given

total choice ω4. In this case we will choose alarm half of the times and defective the other
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half. Since P (ω4) = 0.25 the probability of the model {alarm} is equal to the probability

of the model {defective}, namely 0.125.

Example 23

The program of Example 17 has four consistent possible worlds, one of which with two

stable models:

Possible world’s choices P (ω) Model Mω P̂ (Mω)

ω1 = {} 0.12 Mω1
= ω1 0.12

ω2 = {too expensive X } 0.18 Mω2
= ω2 ∪ {stay at Y } 0.18

ω3 = {too noisy Y } 0.28 Mω3
= ω3 ∪ {stay at X } 0.28

ω4 = {too expensive X , too noisy Y } 0.42
M1

ω4
= ω4 ∪ {stay at Y } 0.21

M2
ω4

= ω4 ∪ {stay at X } 0.21

Consider ω4: when both probabilistic facts too expensive X and too noisy Y are con-

joined with the rules, there is no probabilistic justification for choosing one hotel over

the other, but rules impose a choice. In this case, we consider the probability of stay at X

and stay at Y to be equivalent, because in a possible world where both counterarguments

are true, a choice of a hotel is still necessary. The probabilistic part of the program which

is quantified by the user is fixed in the total choice ω4, therefore in determining the

models of ω4 there is no probabilistic justification for assigning one model a probability

higher than another. In the definition of the probability distribution of the models P̂ ,

we thus divide equally the probability of the possible world determined by ω4 between

its two models: P̂ (M1
ω4
) = P̂ (M2

ω4
) = 0.42

2 = 0.21. The probability of an atom a remains

the sum of the probability of the models where a is true, for example the probability of

stay at X is P̂ (Mω3
) + P̂ (M2

ω4
) = 0.28 + 0.21 = 0.49.

4.1 Formal semantics

We define the models for each total choice and the corresponding probability in order

to extend a probability distribution over total choices to a probability distribution over

models. Each total choice ω corresponds to: (1) a probability P (ω) as defined by distri-

bution semantics and (2) a set SM(ω) of stable models, over which the probability gets

distributed if it is non-empty. For this distribution to be well-defined, we only consider

programs with finite Herbrand base, and thus a finite number of interpretations.

Definition 6

A valid smProbLog program is a probabilistic normal logic program without function

symbols.

Definition 7

Given a valid smProbLog program L, the probability P (ω) of a total choice ω is:

P (ω) =
∏

(f :p)∈L,f∈ω

p ·
∏

(f :p)∈L,f �∈ω

1− p.
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that is, the product of the probabilities of the facts for being included/excluded from ω.

Example 24

The probability of the total choices in Examples 20 and 22 is P (ω1) = P (ω2) = P (ω3) =

P (ω4) = 0.5 · 0.5 = 0.25

Definition 8

Given a probabilistic normal logic program L = F ∪R and a corresponding total choice

ω ⊆ F , SM(ω) is the set of stable models of the (deterministic) program ω ∪R.

We distinguish two cases: SM(ω) = ∅ and |SM(ω)| > 0, and we define accordingly a

set of models for a possible world.

A model is a three-valued interpretation (T, F ) where T is the set of true atoms and

F is the set of false atoms. The remaining atoms are interpreted as being part of an

inconsistent possible world.

Definition 9

Given a probabilistic logic program L and let HB(L) be its Herbrand base. For each

total choice ω ∈ ΩL, the corresponding set of models MOD(L, ω) is:

MOD(L, ω) =
{
{(∅, ∅)} if |SM(ω)| = 0.

{(Mω, HB(L)\Mω) |Mω ∈ SM(ω)} if |SM(ω)| > 0.

Each total choice thus has at least one model: either the “inconsistent” model or one

or more stable models. We extend the probability of the total choices to a distribution

over the corresponding models by applying the maximum-entropy principle.

The probability of a model Mω ∈ MOD(L, ω) is the probability of the corresponding

total choice ω normalized w.r.t. the number of the models for that possible world:

Definition 10

Given a probabilistic normal logic program L and a total choice ω, ∀Mω ∈ MOD(L, ω):

P̂ (Mω) =
P (ω)

|MOD(L, ω)| .

We thus derive a distribution over models P̂ from the probability distribution over

total choices P . We can now define the probability of the program of being inconsistent

and of a query of an atom. The degree of inconsistency of the program L, P(L � ⊥) is the
sum of the probabilities of interpreting the atoms as inconsistent in each possible world:

P(L � ⊥) =
∑

ω∈ΩL,MOD(L,ω)={(∅,∅)}
P̂ ((∅, ∅)).

As for the consistent possible worlds, we can query the program for the probability of an

atom being interpreted as true (or false):

Definition 11

Given a probabilistic normal logic program L, the probability of success of querying a is

the probability of interpreting a true in a consistent possible world:

P(a) =
∑

a∈Mω,(Mω,HB(L)\Mω)∈MOD(L,ω),ω∈ΩL

P̂ (Mω).
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Note that we can derive the probability of an atom being false from the probability of

the inconsistent possible worlds and the probability of success:

P(¬a) = 1− P(L � ⊥)− P(a),

because the probability mass of the non-inconsistent models is divided over the two-

valued stable models, therefore if an atom is in a consistent possible world, then it is

interpreted either true or false.

Example 25

We complete Example 20: the probability of the program being inconsistent is P (ω1) +

P (ω2)+P (ω3) = 0.75. The only consistent possible world is ω4, whose only model is {e}:
P̂ (right) = 0.25, therefore P(right) = 0.25 and P(¬right) = 0, vice versa, P(burglary) =

P(earthquake) = P(alarm) = P(defective) = 0 and P(¬a) = P(¬b) = P(¬c) = P(¬d) =

0.25.

Example 26

We complete Example 22: models {burglary , earthquake, alarm, defective},
{burglary , alarm}, {earthquake, defective} are the unique model for, respectively,

ω1, ω2, ω3 hence P̂ ({burglary , earthquake, alarm, defective}) = P̂ ({burglary , alarm}) =

P̂ ({earthquake, defective}) = P (ω1) = P (ω2) = P (ω3) = 0.25. The likelihood of ω4 is

uniformly distributed over the two stable models {alarm} and {defective}, whose proba-
bility is thus P (ω4)

|MOD(L,ω4)| =
0.25
2 = 0.125. Therefore, P(burglary) = P(earthquake) = 0.5,

P(alarm) = P(defective) = 0.625.

5 The joint distribution of beliefs

By defining the semantics of smProbLog programs we also define the semantics of the

mapping from probabilistic argumentation problems to PLP (Section 3). Under these

semantics a probabilistic argument graph thus represents a joint probability distribution

of the arguments’ beliefs by means of the corresponding probabilistic logic program.

As we argued in Section 3, the joint probability distribution represents the marginal and

conditional strengths of the beliefs in the arguments from their biases and relations. That

is, we are concerned with determining the probabilities of logically related propositions.

Example 27

In Example 10 the marginal probabilities of each argument in the inferred joint prob-

ability distribution are: P(arg(a1)) = 0.29, P(arg(a2)) = 0.63, P(arg(a3)) = 0.3,

P(arg(a4)) = 0.81, P(arg(a5)) = 0.6, P(arg(a6)) = 0.58.

These marginal distributions are thus coherent with the initial biases and relations

in the sense of Nilsson (2014). Polberg et al. (2017) define several properties for epis-

temic argument graphs, among which coherency, to evaluate arbitrary assignments of

values in [0, 1] under the principle that a probability higher than 0.5 defines an argu-

ment as accepted. In the epistemic approach literature, acceptance is thus a function of

the arbitrary probability values with respect to an arbitrary threshold. Marginal prob-

abilities, representing the agent’s beliefs, are thus directly assigned to arguments, and

they are evaluated with respect to local properties. Hunter et al. (2018) generalize this
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approach with epistemic graphs, where, instead of considering a single assignment, a

set of belief assignments is associated to the argument graph such that they satisfy a

set of constraints. This does not narrow down the belief distribution to a single joint

probability distribution, but admits a set of possible assignments compatible with the

constraints.

Therefore, past work evaluates arbitrary belief assignments with respect to an arbitrary

threshold: considering a belief absolute value of 0.5 the discriminant between accepted

and rejected arguments. This poses a well-known question in the PLP literature, “Where

do the numbers come from?” (Charniak 1991), in regard of evaluating subjective beliefs

with a fixed value of reference. The main difference with our approach is that in our frame-

work acceptance is a function of logic and its (joint) probability is the associated (joint)

belief measure. The joint belief (probability) distribution represents how the prior beliefs

(biases) interact with each other (arguments’ logical relations) to define the unique joint

belief distribution that is coherent with the given argumentative structure (argument

graph). The joint belief distribution defines how the relative strength of the arguments

changes when their logical relations are considered, regardless of an acceptance threshold.

This expresses two principles of modeling uncertainty in AI. First, as de Finetti (1931)

remarks in his discussion on subjective beliefs, rather than evaluating the absolute degree

of beliefs, an agent is coherent when the relative differences between such degrees do not

contradict probability axioms. Second, we apply the approach of probabilistic graphical

models to probability and reasoning: “Probability is not really about numbers; it is about

the structure of reasoning” (Glenn Shafer, cited in Pearl (1989)).

This method allows us to learn probabilities (beliefs) from data (Sections 6.2 and 7)

and thus ground their nature in the observation of accepted or rejected arguments. More-

over, to study the properties of the joint probability distribution of arguments we can

rely on the traditional inference tasks of PLP frameworks. Interestingly, Nilsson (2014)

remarks that considering the consequences and the explanations for beliefs is fundamen-

tal for critical thinking, and we can do precisely this by means of two typical PLP tasks:

conditional queries and most probable explanation (MPE) queries.

Conditionals. We can perform conditional reasoning on the joint probability distribution

by querying the probability of atoms given some evidence. We can thus analyze the conse-

quences of beliefs by answering conditional queries such as: “What are the consequences

of accepting a1?”. Note that a6 is conditionally independent of the other arguments given

a1, because when a1 is known to be accepted (or rejected) the belief in a6 depends only

on the corresponding attack and bias.

Example 28

By querying the model from Example 15 with the addition of the evidence arg(a1) = true,

usually simply denoted with arg(a1), we infer the following conditional probabili-

ties: P(arg(a1)|arg(a1)) = 1, P(arg(a2)|arg(a1)) = 0.08, P(arg(a3)|arg(a1)) = 0.36,

P(arg(a4)|arg(a1)) = 0.75, P(arg(a5)|arg(a1)) = 0.58, P(arg(a6)|arg(a1)) = 0.28. We

can also condition the distribution on the relations, for instance by adding the evidence

that accepting arg(a1) always excludes arg(a6). In this case, if we make explicit the

belief in the attack with a probabilistic fact att we obtain the same distribution except

for P(arg(a6)|arg(a1), att) = 0.
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The conditional independence assumption materializes also when we introduce a belief

update to an argument which is conditionally independent of another, given the evidence

for an argument that represents the connection of the two beliefs.

Example 29

Consider again Example 28 with evidence arg(a1) = true. If we add the evidence

arg(a5) = false, let ev = (arg(a1) = true ∧ arg(a5) = false), then we obtain the

following marginals: P(arg(a1)|ev) = 1, P(arg(a2)|ev) = 0.08, P(arg(a3)|ev) = 0.36,

P(arg(a4)|ev) = 0.62, P(arg(a5)|ev) = 0, P(arg(a6)|ev) = 0.28. The only beliefs affected

by the new information about a5 are those for a5 and a4, because a3 is independent of

a5, a1 is known, and a6 and a2 are conditionally independent given a1.

Conditional independence can also be exploited in argumentation to select arguments

that provide new information with respect to an argument or claim. If these arguments’

uncertainty can be eliminated by means of experiments or observations, the conditional

independence assumption allows us to select only those strictly necessary to influence

the belief in the argument of interest.

Example 30

Bayesian statistical methods are suited for designing medical clinical trials to find an

optimal design which minimizes the empirical results required and at the same time

maximizes the information provided regarding the quality of the trial (Berry 2006). Given

an argumentative graph with respect to some treatment hypothesis, if some experimental

results are unknown then they are associated with a probability (degree of belief). The

uncertainty can be removed by collecting empirical evidence, but this comes at a cost of

time and resources. In this case, the conditional independence of the claim with respect

to some experiments given other empirical results can be exploited to select only those

experiments that truly affect the belief in the claim.

In smProbLog it is also possible to condition the theory to be consistent, by pro-

viding the evidence that an atom is not interpreted as inconsistent. This allows us to

reason about how beliefs change if they are conditioned to be consistent with the logical

structure.

Example 31

Consider Example 18: if we add the evidence villager(bob) = ¬inconsistent then we

consider only the consistent possible worlds. Therefore, the probability of each possible

world is normalized w.r.t. the probability mass of the consistent total choices. Hence,

the probability that bob is both a villager and a barber becomes 0, because there are

no models for consistent worlds where this is true. Each consistent possible world then

increases its probability from 0.25 to 1
3 . For instance P(villager(bob)|villager(bob) =

¬inconsistent) = 1
3 .

Most probable explanation. MPE is a typical PLP task that allows us to address the

other point of critical thinking, reasoning on explanations for beliefs. The MPE task is

to compute the most likely possible world where some given evidence holds.

Example 32

If we compute a MPE query for arg(a1) = true, we are asking which set of beliefs

compatible with accepting a1 is the most probable. This means finding the most likely set
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of probabilistic facts representing a choice of biases and relations with the consequence

of accepting a1. In the MPE world the biases believed to support the corresponding

argument are {bias(a1). bias(a2). bias(a4). bias(a5). bias(a6).}. All relations are believed

to hold, except for the attack of a4 to a1. a1 is thus independent of a4 and a5 and its

acceptance is supported by its bias and the non-deterministic choice with a2 (following

the evidence). These choices, that is, the MPE, have probability 0.0093. Their model is

{arg(a1),¬arg(a2),¬arg(a3), arg(a4), arg(a5),¬arg(a6)} which is thus compatible with

the evidence of accepting arg(a1). The two arguments attacked by a1, a2, and a6 are

rejected, along with a3 because of the choice of not considering a bias toward it.

5.1 Epistemic properties

The joint probability distribution describes the subjective assignment of beliefs to ar-

guments coherent with all possible belief choices of prior bias and relations, regardless

of arbitrary thresholds. This means that the joint beliefs are globally coherent with the

argumentative structure and therefore the marginal beliefs are also locally coherent with

the parents and children’s beliefs. The properties for epistemic probabilistic argumenta-

tion by Polberg et al. (2017) can thus be used to evaluate the bias of the agent, which

is indeed an arbitrary assignment of values, but in evaluating the joint probability dis-

tribution, having probability higher than 0.5 has no special meaning. We clarify this by

considering some of these properties and show that the marginal belief of the arguments

defined by the joint distribution is compatible with the given argumentative structure

even if they may not satisfy such properties.

Coherency. Polberg et al. (2017) define coherency in epistemic probabilistic argumen-

tation as the property that for all attacks (a, b) believed with probability > 0.5,

PA(a) ≤ 1 − PA(b). In the joint probability distribution the marginal probability of

arguments P(arg( )) is coherent not just locally, considering pairwise marginals, but

globally, where the structure of all relations and biases is taken into account.

Example 33

Consider the case where two arguments a and b are such that a attacks b with probability

0.6 and both arguments have bias (prior) 1. a is not attacked so PA(a) = P(arg(a)) = 1.

We can say that the initial assignment, the priors, is not coherent in the sense of Polberg

et al. (2017) because PA(a) = 1 �≤ 1−1. However, the joint probability distribution defines

posterior marginals that are coherent in the sense of Nilsson (2014): P(arg(b)) = 0.4

because the uncertainty about the attack leaves room for possible worlds where the

attack is not believed to hold (probability 1− 0.6 = 0.4) and thus it is possible to accept

both a and b. Here 1 = P(arg(a)) �≤ 1 − P(arg(b)) = 0.6, but P(arg(a)) should not be

less or equal than 0.6 because it is independent of b, while accepting b is influenced by

accepting a and its attack, and thus its prior bias, not the attacker, is inhibited to 0.6.

Rational. A rational (resp. strict) assignment resembles the conflict-free principle that if

an attacker a is accepted than the target b should not: PR((a, b)) > 0.5 and PA(a) > 0.5

implies PA(b) ≤ 0.5 (resp. PA(b) < 0.5). In our framework, when choosing a set of prior

beliefs (probabilistic facts) the conflict-freeness of the accepted (true) arguments is always

guaranteed by the logic rules. This does not exclude the possibility that both a and b in
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the joint probability distribution are believed with probability > 0.5. In fact, when an

argument has high bias, for example, we think it is almost certain, only a combination

of strong attackers with strong relations can lower its inferred probability under 0.5.

Example 34

For example, a prior probability of 0.6 of believing in a and 0.6 in the attack, yields an

inhibition by a factor of 0.36, which is not guaranteed to lower the marginal probability

of b under 0.5. In 36% of the possible worlds b is rejected because of the presence of a

and the attack, but if PA(b) = 1 then P(arg(b)) = 0.64, together with P(arg(a)) = 0.6

and PR((a, b)) = 0.6. P(arg(b)) ≤ 0.5 only when P(a) · PR((a, b)) ≥ 0.5 (in the case of

inhibition from a single attack). This does not mean that the joint probability distribution

is not rational in the sense that it defines a set of accepted arguments not conflict-free.

The joint probability distribution reflects the relative strength of the arguments and

simply defines a (coherent) probability ≥ 0.5 to be in a possible world where either a or

b are accepted, but there is no possible world where the attack is believed and both are

accepted.

Protective. A (restricted) protective assignment is such that PR((a, b)) ≥ 0.5 (resp.

PR((a, b)) > 0.5) and PA(b) > 0.5 implies PA(a) ≤ 0.5. Similarly to the rational property,

in epistemic probabilistic argumentation this is the principle of rejecting the attacker if

the target is accepted. Again, this principle in the joint belief distribution is not enforced

by means of the probability (belief) values, but by means of the logical structure of the

attack relation.

Example 35

Our previous example also describes a belief distribution that is not protective: while

P(b) = 0.64 and PR((a, b)) = 0.6, P(a) remains equal to its original prior PA(a) = 0.6,

thus P(arg(a)) > 0.5. This does not mean that both arguments are accepted because their

probability is higher than 0.5, but it means that a joint belief induced by the argumenta-

tive structure coherent with the prior bias assigns a subjective marginal belief P(arg(a))

and P(arg(b)) higher than 0.5 to the arguments. The difference in strength is still coherent

with the respective biases and belief in the attack relation and probability axioms.

Similar arguments can be constructed for the other properties from Polberg et al.

(2017): past epistemic argumentation approaches consider the probabilities of the argu-

ment graph as the marginal beliefs of the agent and check if those are (locally) rational,

coherent, . . . Our approach uses this arbitrary assignment as the prior set of beliefs, and

the argumentative structure, to infer a joint belief distribution that is compatible with

the initial arbitrary assignment according to the probability postulates and the logical

relations of the arguments. The joint belief (probability) distribution thus represents

how the prior beliefs (biases) interact with each other to define marginal and conditional

beliefs that are coherent with the given priors and argumentative (logic) structure.

6 Inference and learning

In this section we describe the inference and learning algorithms for smProbLog seman-

tics. We consider the inference and learning algorithms implemented in ProbLog2 and
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Fig. 5. ProbLog2 inference schema.

adapt them to the semantics defined in Section 4. This allows us to study the advantages

and shortcomings of traditional PLP inference and learning techniques when a more gen-

eral semantics is concerned, and indirectly examine their application to argumentation

problems.

6.1 Inference task

The state-of-the-art inference technique for probabilistic logic programs is reducing the

inference task to a WMC problem (cfr. Section 2), therefore we consider its applicability

in the context of our semantics. In ProbLog2 inference is implemented by means of a

transformation of the ground program to conjunctive normal form (CNF), which is the

input for a knowledge compiler (under well-founded semantics) that returns the logical

circuit (e.g., a d-DNNF) such that on the corresponding arithmetic circuit the WMC

task can be solved in polynomial time (Figure 5). In the rest of the section we describe

the adaptations required to this inference technique required for smProbLog’s semantics.

The normalization of the weight of the models entails considering a variant of theWMC

problem where models are weighted with the corresponding normalization constant. We

denote such constant with ŵ(Mω), where Mω is a model for a total choice ω, hence

ŵ(Mω) =
1

|MOD(L,ω)| . The WMC problem (WMCL(ϕ) =
∑

M∈MOD(L),M |=ϕ

∏
l∈M w(l))

thus becomes:

ŴMCL(ϕ) =
∑

M∈MOD(L),M |=ϕ

ŵ(M) ·
∏
l∈M

w(l).

This formulation of the problem requires us to determine the weights ŵ(Mω), which,

contrary to the weights of the literals, are not known from L. In order to determine

the weighting function ŵ we thus need to solve an additional counting problem, namely

the task of counting how many models agree on a subset of atoms in L, that is, the

probabilistic facts. We now describe the reduction pipeline in smProbLog to a ŴMC

problem. The reduction can be broadly divided into four components, represented in

Figure 6: (1) grounding the program L, (2) compiling the logic theory L into a d-DNNF,

(3) deriving a circuit for retrieving the number of models corresponding to a total choice

and an arithmetic circuit for the WMCL problem, and (4) the evaluation of the two

circuits to define the solution of the ŴMCL problem (Algorithm 2).

(1) Grounding. In smProbLog we adopt a standard bottom-up grounding technique. In

ProbLog2, the detection of cycles through negations during the grounding step is used

as a sufficient condition to reject invalid programs. On the contrary, we use the absence

of cycles through negations as a condition to reduce to ProbLog’s evaluation algorithm,
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Fig. 6. smProbLog inference schema. (*) denotes a different version of dsharp from
ProbLog2, specific for stable model counting.

where smProbLog’s semantics is equivalent, as discussed in Section 8.1. In fact, when

this is the case, we skip the enumeration step (Step 3) because ŵ(M) = 1 for all stable

(and well-founded) models M . Therefore, the ŴMCL problem becomes equivalent to a

WMCL problem.

(2) Compilation. The goal of the compilation step is to transform the ground proposi-

tional theory in a representation that allows us to answer efficiently queries about the

probability of atoms. Knowledge compilation produces a logical circuit describing the

possible worlds’ models of the input propositional theory. Therefore, this step regards

exclusively the logical part of the program, while the following inference steps concern

the computation of probabilities. As in Problog2, the knowledge compiler is a black

box with respect to the probabilistic inference system. Therefore, in smProbLog we are

only concerned with transforming the propositional ground theory to the suitable input

format. The input format and the implementation details of the knowledge compiler in

smProbLog can be found in Aziz et al. (2015), which extends the dsharp compiler (Muise

et al. 2012) with stable model semantics. In ProbLog2 the input format is a theory in

CNF, Aziz et al. (2015) replace it with an encoding in CNF format of the rules, variables,

and the corresponding strongly connected components. The output is a logical circuit,

a d-DNNF, describing the stable models of the input propositional theory. The circuit

therefore expresses only the models corresponding to the consistent total choices. This

representation, with a standard transformation in an arithmetic circuit, allows efficient

stable model counting, that is, solving the WMC problem. Figure 7 shows the output

of the knowledge compilers from the representations of Example 20 and 22. Contrary to

ProbLog2, however, the transformation of the logical circuit into an arithmetic circuit

is not sufficient to solve the ŴMC problem. This because the arithmetic circuit allows

us to efficiently compute the solution to a WMC problem, but the normalization con-

stants ŵ are still unknown. Unless the weighting is determined by the absence of cycles

through negations, as defined in the previous paragraph, the enumeration step is required

to associate each model to the corresponding normalization constant.

(3) Enumeration. The purpose of the enumeration step is to count the number of stable

models corresponding to each (consistent) total choice, which defines ŵ. Unfortunately,

this operation cannot be performed efficiently on the representation obtained from the
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Fig. 7. Compilation step of Example 20 (top right) and Example 22 (left). Models for both
theories are compactly encoded as d-DNNF logical circuits. bg = burglary , eq = earthquake,

al = alarm, df = defective, rt = right .

knowledge compiler, because models corresponding to the same total choice may be

represented by different nodes and subtrees. Therefore, on this kind of representation

we are forced to traverse the circuit in order to retrieve the list of models and the

corresponding total choices.

We thus derive from the d-DNNF a circuit where each leaf for a literal l is re-

placed by a set of (partial) models {{l}}, disjunctions are replaced by the union of

the children and conjunctions correspond to the Cartesian product of the children

(Figure 8). Traversing bottom-up such circuit returns the list of models, from which

we build a map # : ΩL → N from total choices to the corresponding number of

models, that is, #(ω) = |MOD(L, ω)|. The reciprocal thus defines the normalization

constants ŵ. For instance, in Example 22 we obtain #(ω1) = #(ω2) = #(ω3) = 1,

#(ω4) = 2, hence ŵ({burglary , alarm, earthquake, right}) = ŵ({burglary , alarm}) =

ŵ({earthquake, defective}) = 1, and ŵ({alarm}) = ŵ({defective}) = 1
2 . Note that the to-

tal choices that do not appear in the enumeration of models are those that have zero mod-

els and thus are inconsistent. Because probabilistic facts are disjoint from the rules’ heads,

for each model described by the circuit the truth value of the literals corresponding to

probabilistic facts defines the corresponding total choice (they can be true iff chosen by ω).

The circuit traversal is a computationally expensive step since it entails enumerating

all possible models. Contrary to sums (logical ORs) and products (logical ANDs), the

Cartesian product is not a linear-time operation. Therefore, the computational cost of

the internal nodes raises with the length of the lists of partial models corresponding to

the children. For this reason, the study of novel knowledge compilation techniques that

produce a representation where the normalization constants can be obtained from linear

time operations is an interesting direction for improvement.
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Fig. 8. Enumeration step of Example 20 (top right) and Example 22 models (left). Each node
contains the corresponding (partial) models. Diamonds are union nodes, squares are Cartesian

products. M is the complete list of the 5 models of Example 22.

This is a novel problem because smProbLog semantics applies a different normalization

constant per total choice (2n with n facts), while in probabilistic ASP the normalization

constant is the same for all models, that is, the weight of all possible worlds. This can

be obtained with a single evaluation of the weight of the root of the circuit. Therefore,

obtaining the normalization constants from a circuit where node-level operations are

computable in linear time would remove this bottleneck, which is introduced because we

consider a fundamentally different inference task.

(4) Evaluation. As we previously mentioned, to evaluate P (q |E = e), with ϕ = q∧E = e,

on a program L we solve the problem ŴMCL(ϕ) =
∑

M∈MOD(L),M |=ϕ ŵ(M)
∏

l∈M w(l).

The weights of the leaves in the arithmetic circuit are instantiated according to the

query and the given evidence (Section 2). Fierens et al. (2011) show that the arithmetic

circuit derived from the d-DNNF computes WMCL(ϕ) =
∑

M∈MOD(L),M |=ϕ

∏
l∈M w(l).

Under a one-to-one correspondence between models and total choices, given ω ∈ ΩL and

its model Mω, WMC (Mω) = WMC (ω). Therefore, if the enumeration step is skipped,

that is, ŵ(Mω) = 1 for all stable (and well-founded) models Mω, then WMC (Mω) =

WMC (ω) = ŴMC (Mω).

On the contrary, if there are multiple models for some total choices, then WMC (Mω) =

WMC (ω) �= ŴMC (Mω), because WMC (Mω) overcounts the normalized weights of the

models corresponding to the same total choice. Figure 9 shows the weight calculation

of the root node of the circuit: the root corresponds to all consistent total choices (e.g.,

Figure 8). Example 22 shows that the original algorithm overcounts the weight when

multiple stable models correspond to the same total choice. This because, their weight

is not normalized (cfr. Example 36 for the explanation of the 1.25 weight). This raises
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Fig. 9. WMC of Example 20 (top right) and Example 22 (left) . Each node contains the
corresponding weight, logical variables do not influence the weights. Diamonds are sum nodes,

squares are product nodes.

the question as to how the evaluation algorithm has to account for the normalization

constants for smProbLog semantics.

As Figure 8 shows, multiple models can correspond to the same node, therefore it

is not possible to associate a normalization constant to a single node. Moreover, the

aggregation of the weights in one value per node, as in Figure 9, is no longer possible,

because two partial models (e.g., {{bg}, {¬bg}}) may be conjoined (multiplied) with

partial models (weights) that require different normalization constants. Once the weights

are aggregated it is not possible to normalize the different components of the weight with

different constants. We now describe two evaluation strategies to normalize weights in

the evaluation step.

The first is essentially a repetition of the enumeration step: we traverse again the circuit

bottom-up and along with each set of atoms we carry the corresponding weight: once a to-

tal choice is defined, the weights of each partial model are multiplied and normalized w.r.t.

the corresponding number of models obtained from the enumeration step. The drawback

of this strategy is that the complexity of the enumeration step is repeated at each query.

The second method is to exploit the efficiency of the WMC task on the circuit and

compute first the unnormalized weight of the root and then correct it (Algorithm 2).

For each total choice ω s.t. n = #(ω) > 1 and ω |= ϕ, the unnormalized evaluation

of the circuit overcounts the weight of its models, because they are not multiplied by

ŵ(Mω) =
1
n . Remember that the unnormalized weight of a model is the probability of the

corresponding total choice: WMC (Mω) = WMC (ω) = P (ω), therefore the unnormalized

weight is such that

WMC (Mω) = ŵ(Mω) ·WMC (ω) + (1− ŵ(Mω)) ·WMC (ω).

Since ŵ(Mω) =
1
n and WMC (ω) = P (ω), each weight the of models Mω ∈ MOD(L, ω)

is overcounted by

(1− ŵ(Mω)) ·WMC (ω) =
P (ω) · (n− 1)

n
.
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Removing such weight from the unnormalized one, gives the probability defined by

smProbLog’s semantics:

ŴMC (Mω) = WMC (Mω)− P (ω) · (n− 1)

n
= P (ω)− P (ω) · (n− 1)

n
=

P (ω)

n
= P̂ (Mω).

The overhead of this method per query lies in the iteration over the total choices

with multiple models to retrieve and apply the different normalization constants. On the

other hand, there is no additional cost in the operations performed at a node level while

traversing the circuit, in contrast to the Cartesian product operations in the first method.

Algorithm 2 describes the correction of the weight for any formula ϕ, where only the

models and total choices compatible with ϕ contribute to WMC (ϕ) with unnormalized

weights. In Section 7 we show experimentally that exploiting the efficiency of the WMC

task results in the evaluation step being significantly faster than the enumeration step,

whose complexity reflects on the first method.

Since the circuit describes only the stable models for consistent total choices, in

the case of inconsistent programs we derive the probability of an inconsistency by re-

moving from 1 the weight (probability) of the consistent total choices, as described in

Section 4.

Algorithm 2 Evaluation step schema

Require: ϕ = q ∧ E = e

Output: P (q |E = e)

w ←WMC (ϕ)

for ω in ΩL s.t. n = #(ω) > 1, ω |= E = e do

for Mω ∈ MOD(L, ω) s.t. Mω |= ϕ do

w = w − P (ω)·(n−1)
n

return w

6.2 Learning task

In this section we show that the EM learning algorithm implemented in ProbLog2

(Gutmann et al. 2011) is correct also for consistent smProbLog programs. With incon-

sistent programs, in fact, learning is not possible in a traditional EM setting, because

we cannot associate a selection of probabilistic facts to an interpretation of inconsistent

atoms. If one of the atoms is inconsistent then all other atoms are inconsistent. There-

fore, we can estimate P(L |= ⊥) by counting the proportion of inconsistent observations,

but we cannot learn how that estimate is distributed across the total choices causing an

inconsistency. This information is essential, in this learning setting, to estimate the prob-

ability that an atom is chosen. Cussens (2001) extends the EM framework in stochastic

logic programs (Muggleton et al. 1996) to account for failed derivation paths. In future

work, investigating the applicability of his failure adjusted maximization algorithm to in-

consistent probabilistic logic programs might offer a solution to overcome the limits of a

traditional EM framework on inconsistent smProbLog programs. On the other hand, we

show that in the case of consistent smProbLog programs we can learn the probabilities

of the program in both total and partial observability.
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Total observability. The correctness under total observability is guaranteed by the fact

that probabilistic facts are independent. In fact, in total observability each interpretation

Im ∈ I observes the truth value of each atom and probabilistic fact of L. This case

reduces to counting the number of true occurrences of each probabilistic fact in the

interpretations I. We clarify this by analyzing Equation (1) from Gutmann et al. (2011)

which is also implemented in smProbLog. Let p̂n be the estimate for pn :: fn. Let θ
m
n,j be

the j-th possible grounding substitution for fn in the interpretation Im. Interpretations Ij
thus represent a possible combination of ground substitutions for the probabilistic facts.

Let Jm
n be the number of such substitutions, and Zn =

∑M
m=1 J

m
n is the total number of

ground instances of fn in all training examples:

p̂n =
1

Zn

M∑
m=1

Jm
n∑

j=1

δmn,j where δmn,j =

{
1 if fnθ

m
n,j ∈ Im;

0 else.
(1)

The outermost sum ranges over all observed interpretations and the innermost sum counts

each different observation of a ground instance of fn. Each number of ground substitu-

tions observed is then divided by the total number of ground substitutions. The estimate

p̂n is thus defined as the proportion of ground substitutions observed over all interpre-

tations observed. This is correct for smProbLog programs because the observation of a

probabilistic fact remains independent of the rest of the program for each interpretation.

Partial observability. The correctness under partial observability is guaranteed by the

fact that the parameter updates rely on probabilistic inference, which is performed under

smProbLog’s semantics and thus returns correct probability estimates. In the partially

observable case, where each interpretation Im observes the truth value of a subset of L, the
parameter update iteration relies on probabilistic inference to update the likelihood of a

fact given Im. At each iteration k the parameters from the previous iteration k−1 are used
in L to compute the conditional expectation of the parameter given the interpretations,

until convergence. The number of observations δmn,j in ((1)) is replaced by the conditional

expectation under the current model E[δmn,j |Im]:

p̂n =
1

Zn

M∑
m=1

Jm
n∑

j=1

E[δmn,j |Im]. (2)

To compute the conditional expectation values we query the model for P(fn) at each

step under the current parameters estimate. This means that the normalization w.r.t.

multiple stable models is incorporated in the conditional probabilities computed by the

inference task, therefore also the parameter estimate is normalized w.r.t. the different

stable models that may correspond to a given partial observation. Since the algorithmic

procedure for learning in smProbLog remains the same as ProbLog2, except from the

inference step, Example 6 is a valid example also for learning from a partial interpretation

in smProbLog.

7 Experiments

The goal of our experiments is to establish the feasibility of our approach, and to answer

the following questions:
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(Q1) What is the computational cost of the different steps in the pipeline for smProbLog

semantics on the inference task?

(Q2) Given a set of observations of accepted arguments generated from a known ProbLog

program, can we learn the degrees of belief of the agent that modeled the original

program?

(Q3) How does the inference computational cost reflect on learning?

Q1. Inference. We consider a variation of a typical PLP example where a set of people

has a certain probability of having asthma or being stressed, and stress leads with some

probability to smoking:

0.1 :: asthma(X)← person(X).

0.3 :: stress(X)← person(X).

0.4 :: smokes(X)← stress(X).

People are related by an influence relation: if a person smokes and influences to some

extent another one, then the other person will smoke, and if someone smokes there is a

probability to suffer from asthma. If someone suffers from asthma then the person does

not smoke (an example of a cycle with negation).

smokes(X)← influences(Y,X), smokes(Y ).

0.4 :: asthma(X)← smokes(X).

¬smokes(X)← asthma(X).

With this last rule we add a cycle through negation to a classical standard benchmark

used in the statistical relational learning community. This benchmark is often used to

study the scaling capabilities of frameworks by growing the size of the domain of people.

Let R be the aforementioned rules, we consider examples with an increasing number of

people and relationships:

• t1 = R ∪ {person(1). person(2). 0.3 :: influences(1, 2). 0.6 :: influences(2, 1).}
• t2 = t1 ∪ {person(3).}
• t3 = t2 ∪ {person(4).}
• t4 = t3 ∪ {0.2 :: influences(2, 3).}
• t5 = t4 ∪ {0.7 :: influences(3, 4).}
• t6 = t5 ∪ {0.9 :: influences(4, 1).}

Figure 10 shows the running time of smProbLog on the different benchmarks for the

queries query(smokes(X )). and query(asthma(X )). The cost of grounding (step 1) is

negligible, hence we omit it from the plot. This experiment answers question Q1: as

expected, the enumeration step dominates the running time of smProbLog and it is

directly related to the size of the circuit. A larger circuit is likely to present a higher

number of Cartesian products in the enumeration step, hence a higher computational

cost is expected. This experiment confirms empirically the expected exponential cost of

computing weights for the smProbLog semantics on a standard d-DNNF, in contrast

with the polynomial time required for the traditional WMC task. At the same time, it

provides an example of a problem where the optimization of the evaluation step presented

in Section 6.1 prevents the repetition of the cost of the enumeration step. The cost of the

evaluation step is in fact consistently lower than the enumeration step. Finally, we remark
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Fig. 10. Inference time on benchmarks.

that the approach based on knowledge compilation allows us to answer an increasing

number of (ground) queries: 4 for t1, 6 for t2, and 8 for the remaining benchmarks. This

affects the evaluation time, but the grounding, compilation, and enumeration steps are

executed once, regardless of the number of queries.

Q2. Learning. We answer question 2 by considering a dataset of 283 argument

graphs (Stede et al. 2016) and by deriving from each annotation of the dataset a bipolar

argument graph. We attach to arguments and relations random probabilities to reflect

an agent’s belief in each, as we did for the running example, Example 8. The graphs

contain from 4 to 11 nodes (average 5.3) with an average of 1.4 attacks and 3 supports

per graph.

Given this dataset of probabilistic argument graphs, we test learning as follows. For each

argumentation graph modeled in a program L we obtain the model to be learned L∗ by

replacing each probability with a (randomly initialized) learnable parameter t( ), simi-

larly to Example 6. The programs L∗ contain on average 10 learnable parameters divided

between probabilistic facts (arguments’ biases) and probabilistic rules (relations’ belief).

We use L to sample n observations of the argumentation graph by means of the sampling

tool from ProbLog2. Then, we use L∗ to learn the original probabilities from the samples.

We evaluate the accuracy of the learned parameter by considering the mean absolute error

(MAE) of the learned probabilities in L∗ compared to the original ones in L. We run the

learning test with increasing size of the samples, that is, n ∈ {50, 100, 150, 200, 250, 300},
and with an upper bound of 100 EM iterations.

Note that we are in the case of partial observability, as the parameters are attached to

the predicates bias, argpos, and argneg, but we observe only the outcome in the form of

the predicates arg. We evaluate the quality of the learned programs with the MAE, sum-

marized in Figure 11. From the experiments we observe that the MAE decreases with the

increase of the sample size, that is, the more observations from the original distribution

are provided, the higher is the accuracy in learning the original probabilities. At the same

time when at least 100 samples are provided, the MAE drops below 10%. Therefore, we

can answer positively to our question about learnability of beliefs in argument graphs

with smProbLog.
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Fig. 11. Mean absolute error by number of samples.

Fig. 12. Mean running time by number of parameters and size of circuit (dashed line) on
increasing number of observations (colored lines).

Q3. Learning vs. inference. Under the same experimental setup ofQ2, we now analyze the

time required to learn the parameters with respect to the cost of inference, which is part

of the EM learning algorithm (Equation (2)). There are two dimensions that influence the

time required for learning with respect to inference, which we represent in Figure 12. The

first is the cost of updating the probabilities for an increasing number of observations.

In Figure 12 we show the running time (left scale) of EM learning on increasing sample

sizes in 100, 150, 200, 250, 300. The second is the intrinsic cost of inference with respect

to the complexity of the program. We measure the complexity of the program by mea-

suring the size of the compiled circuit, represented in Figure 12 with a dashed line (right

scale).
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The experiment shows that the second dimension is the main factor in determining the

time required for learning, which follows the same trend of inference shown in Figure 10.

Since we replace all probabilistic facts with learnable parameters, the x-axis of the two

figures are comparable. The dashed line represents the average size of the circuit for a

set of programs with a given number of learnable parameters (x-axis). As expected from

Equation (2), the experiment shows a strong correlation between the inference cost on

an increasingly large circuit and the learning time. In particular, we observe that the

average learning time with 17 parameters decreases from 15, because in the dataset the

average size of the circuits with 17 parameters is also smaller. The first dimension of

the experiment shows that on smaller models the difference between the sample sizes

(colored lines) is negligible, while on more complex models the differences spread out.

This is plausible because on more complex models the cost of inference is higher and

thus the repetition of a larger cost over more examples becomes more evident. However,

the impact of a higher number of observation on the total time required for learning is

clearly inferior to a bigger (more complex) logical circuit.

8 Related work

In this section we discuss the related work with respect to PLP and probabilistic argu-

mentation.

8.1 Probabilistic logic programming.

Both three-valued well-founded model semantics and stable model semantics have been

considered to extend traditional PLP framework’s semantics: Hadjichristodoulou and

Warren (2012) present an extension of PRISM based on three-valued well-founded mod-

els. When considering general normal logic programs, well-founded semantics (Gelder

et al. 1991) is a three-valued semantics, that is, logical atoms can be true, false, or un-

defined. A three-valued interpretation is a pair I = (T, F ) where T and F are disjoint

subsets of the Herbrand baseHB(L) of the program L. The (ground) atoms in T (resp. F )

are interpreted as true (resp. false) in I. The remaining atoms in HB(L)\(T ∪ F ) are

said to be undefined. A three-valued model is thus a three-valued interpretation which

satisfies all the rules of the program. Our approach is different because with stable model

semantics we assign a truth value to the non-deterministic choices that well-founded se-

mantics would label as undefined. At the same time we use the third value to denote the

absence of stable models.

On the other hand, the application of stable model semantics in PLP is represented by

probabilistic answer set programming (ASP) (Cozman and Mauá 2017; 2020). Table 3

summarizes the differences between the frameworks, which emerge on the definition of

the probability distribution and the definition of model of a possible world.

Relation with probabilistic ASP. The key difference between smProbLog and probabilistic

ASP frameworks is that our semantics is based on the distribution semantics, that is,

we define a probability distribution over models from a probability distribution over

total choices. On the contrary, probabilistic ASP languages such as P-Log (Baral et al.

2009) and LPMLN Lee and Wang (2016) use the probability labels to directly define a
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Table 3. PLP frameworks comparison. n.a. = not applicable. 2∗= the logic semantics is

two-valued stable models, but we introduce a third value for total choices with 0 stable

models.

Framework Distribution
semantics

Model semantics Logic
values

Models per
total choice

ProbLog2 (Fierens et al. 2011) � Well-founded 2 1
WF-PRISM

� Well-founded 3 1
(Hadjichristodoulou and Warren 2012)
P-Log (Baral et al. 2009) � Stable models 2 n.a.
LPMLN (Lee and Wang 2016) � Stable models 2 n.a.
smProbLog � Stable models 2∗ ≥ 1

(globally normalized) probability distribution over the models of a (derived) program.

This difference allows us to preserve the marginal probability of independent facts in

the joint distribution in the presence of multiple stable models, and to measure the

probability of an inconsistency in a program. In fact, following the probabilistic ASP

approach can give counterintuitive results as we show in Example 36.

Example 36

In Example 22, if we associate to each stable model Mω the probability of the correspond-

ing total choice P (ω), the sum of the probabilities of the stable models is 5 · 0.25 = 1.25.

A normalization w.r.t. all answer sets, as P-Log does, leads to a probability distribution

over stable models P̂ ′(Mω) = 0.25/1.25 = 0.2 for all Mω. Then the probability of a

query burglary is P(burglary) = P̂ ′(Mω1
)+ P̂ ′(Mω2

) = 0.4. This means that the marginal

probability of burglary in the joint distribution is lower than the prior 0.5 despite no epis-

temic influence is defined on burglary . In our approach, the marginal probability of that

fact being true under the final distribution equals the fact’s label, and is thus directly

interpretable. Similarly, when some possible worlds are inconsistent, the corresponding

probability mass is not extended to a model, but rather a global normalization redis-

tributes uniformly such mass to the valid models. For this reason, in Example 20 a global

normalization would assign all the probability mass to ω4, that is, P̂ ′(ω4) = 0.25
0.25 = 1.

This because {right} is the only possible stable model hence its weight, 0.25, is also the

sum of all possible stable models. Therefore, all atoms but right would be interpreted

false and right would be interpreted true with probability 1, thus making the presence

of logical inconsistencies unclear.

Example 37

In Example 17 we have a similar situation: by weighing each stable model with the prob-

ability labels of the literals in the model we have that the sum of the weights of the

models is 1.42 and that P̂ ′(Mω1
) = 0.12

1.42 = 0.085, P̂ ′(Mω2
) = 0.18

1.42 = 0.1268, P̂ ′(Mω3
) =

0.28
1.42 = 0.1972, P̂ ′(M1

ω4
) = P̂ ′(M2

ω4
) = 0.42

1.42 = 0, 2958. Therefore, the probabilities of

too expensive X and too noisy Y are respectively P̂ ′(Mω2
) + P̂ ′(M1

ω4
) + P̂ ′(M2

ω4
) =

0.7183 and P̂ ′(Mω3
) + P̂ ′(M1

ω4
) + P̂ ′(M2

ω4
) = 0.7887. Therefore, the probability of prob-

abilistic facts in the inferred distribution increases w.r.t. the original declared value.

This happens with a globally normalized definition of the probability of the models and

multiple stable models per total choice.
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(a) (b) (c) (d)

Fig. 13. Possible colorings of Example 38.

.

In this paper we focus on computing exact probabilities as Baral et al. (2009) and Lee

and Wang (2016) rather than defining an interval of probabilities for each atom as in

credal semantics (Lukasiewicz 1998). Cozman and Mauá (2020) remarks the difference

between a credal semantics approach and a distribution semantics approach like ours.

They emphasize that in distribution semantics a probabilistic fact p :: f. the fact f is

imposed with probability p and discarded with probability 1 − p, while their approach

distinguishes between taking f with probability p and ¬f with probability 1−p. Moreover,

credal semantics are defined only for consistent logic programs, as in Azzolini et al. (2022).

Recent work (Rocha and Cozman 2022) extends credal semantics to L-Credal semantics

to handle inconsistencies. We illustrate the differences by means of the graph coloring

example from Cozman and Mauá (2016), other comparisons are also present in Rocha

and Cozman (2022).

Example 38

Consider the following program:

coloredBy(V, red)← ∼coloredBy(V, yellow),∼coloredBy(V, green), vertex(V ).

coloredBy(V, yellow)← ∼coloredBy(V, red),∼coloredBy(V, green), vertex(V ).

coloredBy(V, green)← ∼coloredBy(V, red),∼coloredBy(V, yellow), vertex(V ).

noClash← ∼noClash, edge(V,U), coloredBy(V,C), coloredBy(U,C).

edge(1, 4). edge(2, 1). edge(2, 4). edge(3, 5). edge(4, 3).

edge(1, 3). 0.5 :: edge(4, 5). coloredBy(2, red). coloredBy(5, green).

Credal semantics here define probability intervals based on the stable models of the

two cases where edge(4, 5) is present (one model) or not (two models). The possible

colorings are represented in Figure 13. Credal semantics define a lower (P) and upper

(P) probability for each node: P(coloredBy(1, yellow)) = 0, P(coloredBy(1, yellow)) = 1
2 ,

P(coloredBy(4, yellow)) = 1
2 , P(coloredBy(4, yellow)) = 1, and P(coloredBy(3, red)) =

P(coloredBy(3, red)) = 1. On the contrary with our semantics we compute exact values:

P(coloredBy(1, yellow)) = 0.25, P(coloredBy(4, yellow)) = 0.75, P(coloredBy(3, red))=1.

These values derive from the probability of 0.5 of the coloring with edge(4, 5) and the

probability of 0.5
2 of each of the two possible coloring without edge(4, 5).

Relations with traditional PLP. Our approach generalizes traditional PLP frameworks on

programs without function symbols: when a program defines total choices corresponding

to exactly one two-valued well-founded model, then the semantics agree on both models
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and probability. As for the model, if a normal logic program has a total two-valued

well-founded model, then the model is the unique stable model (Gelder et al. 1991).

Thus, in this case |M(ω)| = 1 for each total choice ω, from which it follows that P̂ (Mω) =

P (ω) for the single stable model Mω ∈ MOD(L, ω) (MOD(L, ω) = {Mω}). This means

that the probability of the model is the probability of the corresponding total choice

as in (probabilistic) two-valued well-founded semantics. The one-to-one correspondence

between total choices and stable models also guarantees that P((∅, ∅)) = 0.

For this reason, our pipeline is also a generalization of ProbLog2’s pipeline.

ProbLog2 (Fierens et al. 2011) reduces the probabilistic inference task to a WMC prob-

lem (Cadoli and Donini 1997) in three steps:

1. Compute the relevant grounding, that is, ground only the part of the program

necessary to answer the query.

2. Convert the ground rules into an equivalent boolean formula (CNF).

3. Compile the boolean formula into an arithmetic circuit to efficiently compute the

weighted model count of the formula.

The grounding procedure in ProbLog2 computes the relevant ground program w.r.t. the

given queries Q and evidence E. The relevant ground program is obtained by applying

SLD resolution to prove all atoms in Q ∪ E. However, in smProbLog an atom can be

derived from a logical choice whose atoms are not directly justified by some (probabilistic)

fact, therefore in this case meaningful parts of the program would not be included in the

relevant ground program. This is why we use a standard bottom-up technique. Aziz et al.

(2015) apply stable model counting techniques in ProbLog (aspProbLog). In particular,

they replace the Dsharp compiler (Muise et al. 2012) used to implement step 3 with a

stable model knowledge compiler (an extension of Dsharp itself). Step 2 is also modified,

since the CNF conversion is skipped and a simple representation of the ground rules is

provided to the stable model knowledge compiler. However, aspProbLog does not change

the semantics of ProbLog, and invalid programs according to the original semantics

are still rejected. Moreover, aspProbLog does not implement the syntactical features of

ProbLog2 on which our approach to argumentation is based, such as negation in the

heads or annotated rules.

Distribution semantics has been proven by Sato (1995) to be well-defined for definite

programs with function symbols, and later Riguzzi (2015) proves this for the case

of normal programs with two-valued well-founded models. Studying the semantics of

smProbLog programs with function symbols is thus an interesting direction for future

work.

8.2 Probabilistic argumentation

Our approach is novel as previous work considers different semantics and reasoning tech-

niques for probabilistic argument graphs. Table 4 summarizes these differences: the choice

between interpreting probabilities as in the constellation approach or as in the epistemic

approach, approaching the problem from PLP modeling a single joint probability distri-

bution as in Bayesian networks, whether it can reason about marginal and conditional

queries about the probability of arguments, and the implementation in a framework

where the probabilities of the graph can be learned. Moreover, our framework is the
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Table 4. Argumentation frameworks comparison. ∼ denotes partial support

Framework Epistemic PLP Conditionals
and marginals

Implemen-
tation

QBAF (Baroni et al. 2019) � � � �
Prob. argument graphs (Li et al. 2011) � � � �
MetaProblog

� � � �
(Mantadelis and Bistarelli 2020)
Epistemic graphs (Hunter et al. 2020) � � � �
L-Credal (Rocha and Cozman 2022) � � ∼ �
smProbLog � � � �

only one providing an implementation that can learn from observations (of accepted

arguments).

Epistemic. We follow the epistemic interpretation of probabilities (Hunter et al. 2020;

Hunter 2013) as a direct measure of the belief of an agent in arguments. Section 5

already discussed the main differences with previous work. We use fine-grained (gradual)

evaluations of relations and base scores for arguments in a bipolar setting similarly to

quantified bipolar argument frameworks (QBAFs) (Baroni et al. 2019). Similarly to our

framework, in a QBAF a set of arguments contains both an attack and support relation,

and defines a base score τ , which corresponds in our case to the prior probability (belief)

PA, as Baroni et al. (2019) describes it: “. . . the nature and meaning of the base score

[. . .] corresponds to an assessment of arguments which precedes the consideration of the

relations of attack and support with other arguments.” In our case the joint probability

distribution is the result of this consideration. QBAF is a restricted setting compared

to our framework since we also define a score (following the terminology of Baroni et al.

(2019)) for the relations R+ and R−, besides considering set-attacks. Most importantly,

we do this with probabilistic semantics.

PLP. At the same time, we propose a mapping from probabilistic argument graphs to

probabilistic logic programs, which provides a novel semantics for probabilistic argument

graphs. We consider a single probability distribution in a Bayesian style rather than

families of distributions. Previous work in fact focused on reasoning about the properties

of families of probability distributions that are consistent with the argument graph and

additional constraints (epistemic graphs) (Hunter et al. 2020).

Despite following the epistemic approach, our framework has similarities with the

constellations approach. The definition of the distribution over subgraphs in the constel-

lations approach is similar to the distribution over subprograms F ∪ R of distribution

semantics. In fact, the distribution modeled by the probabilistic logic program is deter-

mined by the probability that an argument is included in a possible world, similar to the

inclusion or exclusion of nodes and edges in the subgraphs considered in the constella-

tions approach. However, in order to determine whether an argument is true or not, we

rely on the stable model semantics for logic programs. In the constellations approach,

on the other hand, the admissible arguments are defined by the classical extension-based
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semantics (Dung 1995). Stable models are equivalent to stable extensions for basic argu-

ments graphs (Dung 1995). We consider however more sophisticated relations between

arguments that cannot be encoded in a traditional (probabilistic) abstract argumenta-

tion framework, for example, support (Amgoud et al. 2004) or set-attacks (Nielsen and

Parsons 2006). For this reason, our approach does not fit any of the previous categoriza-

tions about the connections between logic (programming) and argumentation (Besnard

et al. 2020).

Modeling (deterministic) argumentation problems by means of logic programming

dates back to the foundational work of Dung (1995). Dung (1995) proposes a method

to define meta-interpreters for argument systems encoding the extension-based seman-

tics as logic rules. A change in argumentation semantics thus requires to encode in the

meta-interpreter a new reasoning technique. This is the approach taken in Mantadelis

and Bistarelli (2020), while we directly compute the stable models semantics for logic

programs on a mapping from argument graphs to probabilistic logic programs.

Wu et al. (2009) propose a mapping for Dung’s abstract argumentation frameworks to

logic programs, therefore they do not address the probabilistic settings as well as other

extensions to the original framework considered in this paper. Wu et al. (2009) focus

on complete labelings and propose a translation where given an argument graph (A,R),

given a set of attacks of the form (bi, a) ∈ (A,R), i ∈ {1, . . . , n} a logic rule of the form

a ← ∼b1, . . . ,∼bn. is added to the logic program translation. This is a similar principle

followed in our encoding, where attacks (bi, a) with PR((bi, a)) = pi are translated to

rules of the form pi :: ¬a ← bi. In fact, the rewriting of negation in the head produces

rules a← apos,∼anot plus pi :: anot ← bi. Therefore, in both cases all attackers bi must be

false in order to consider a acceptable. However, there is a difference between negation in

the head (and the corresponding translation) and negation in the body. Attacks directly

encoded with negation in the body do not exclude that the two choices can be true at the

same time because of external justification, but exclude that both are false. Vice versa,

an encoding with negation in the head excludes that both choices are true at the same

time, but not that both can be false (e.g., in Example 23).

Example 39

Consider the difference between a program with a loop with negation in the body (A)

and one with negation in the head (B).

A B

0.6 :: too expensive X . 0.6 :: too expensive X .

0.7 :: too noisy Y . 0.7 :: too noisy Y .

stay at Y ← too expensive X . stay at Y ← too expensive X .

stay at X ← too noisy Y . stay at X ← too noisy Y .

¬stay at X ← stay at X . stay at X ← ∼stay at Y .

¬stay at Y ← stay at X . stay at Y ← ∼stay at X .

Program A is the program of Example 23. Program B is a similar encoding with nega-

tion in the body. In this case the possible worlds ω2 and ω3 have the same models of A.

However, for ω1 = {} where program A has an empty model, program B has the models
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Table 5. Possible models comparison of Example 39

Total choice Model A Model B

ω1 = {} {} {{stay at Y }, {stay at X }}
ω2 = {too expensive X } {ω2 ∪ {stay at Y }} {ω2 ∪ {stay at Y }}
ω3 = {too noisy Y } {ω3 ∪ {stay at X }} {ω3 ∪ {stay at X }}

ω4 = {too expensive X ,

too noisy Y }
{ω4 ∪ {stay at Y },
ω4 ∪ {stay at X }}

{ω4 ∪ {stay at Y , stay at X }}

{{stay at Y }, {stay at X }}. While program B forces a choice when the counterargu-

ments are not accepted, program A allows no choice. At the same time, program B

allows on ω4 to infer a stay at both hotels from the counterarguments for each, that is,

the model {too expensive X , too noisy Y , stay at X , stay at Y }. Table 5 compares the

models for each total choice.

Past work on the connections with logic programming beyond basic abstract argumen-

tation frameworks are limited to the deterministic setting, except for the work by Rocha

and Cozman (2022). They adopt the translation by Wu et al. (2009) to encode assump-

tion based argumentation frameworks (Bondarenko et al. 1993) in a probabilistic logic

program. Caminada et al. (2015) explore equivalence relations for more expressive deter-

ministic argumentation frameworks, by framing logic programming semantics in terms of

argumentation semantics. Alfano et al. (2020) consider the opposite approach and follow

in a deterministic setting a similar approach to ours for probabilistic argumentation. In

fact, a simple but general logical framework is shown to be able to capture, in a system-

atic and succinct way, the different features of several argumentation frameworks under

different argumentation semantics. The authors remark how the flexibility of a logic pro-

gramming approach encourages the study of more extensions and can be used for better

understanding the semantics of extended argumentation frameworks.

Marginals and conditionals. With our methodology it is possible to apply general PLP

reasoning techniques to probabilistic argument graphs, such as marginal probability

computation (Example 27), conditioning over evidence (Example 28), and parameter

learning (Section 6.2). This results in a modular, expressive, extensible framework re-

flecting the dynamic nature of beliefs in an argumentation process. On the contrary,

argumentation systems like epistemic graphs require (ad-hoc) reasoning algorithms that

do not follow the traditional probabilistic reasoning techniques. In the framework by

Rocha and Cozman (2022) conditioning on atoms that appear negated in a body is de-

ferred to future work.

Implementation. In Section 6 we presented a system that computes smProbLog seman-

tics, while in the past the focus has been on developing new argumentation semantics

rather than tools to compute them. Moreover, we provide an implementation of the

EM learning algorithm for probabilistic parameters whose application to probabilistic

argumentation problems is novel.
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9 Conclusion

We proposed a novel approach to epistemic probabilistic argumentation in two points.

First, the interpretation of a probabilistic argument graph as a probabilistic graphical

model defining a joint probability distribution over arguments. Second, we presented a

novel syntactical translation of argument attacks to logic programming rules based on

negation in the head and the inhibition effect.

Our method regards probabilistic argument graphs as the description of how the prior

beliefs (biases) interact with each other to define marginal and conditional beliefs that are

coherent with the argumentative (logic) structure. This allows us to exploit the structure

of conditional (in)dependencies of arguments and apply the traditional PLP inference

methods to the argumentative representation of subjective beliefs, such as learning, con-

ditional queries, and MPEs.

Approaching probabilistic argumentation from a PLP perspective stresses the limiting

assumptions of PLP frameworks when (probabilistic) normal logic programs are con-

cerned. For this reason in this paper we proposed a new PLP system, smProbLog, based

on a combination of the classical distribution semantics for probabilistic logic programs

with stable model semantics.

smProbLog generalizes previous work on distribution semantics for programs without

function symbols, supporting inference and parameter learning tasks for a wider class

of (probabilistic) logic programs. The experiments in this regard show that the existing

PLP inference techniques can be used, but under the new semantics not all the necessary

information can be computed efficiently. Novel knowledge compilation techniques allow-

ing polynomial-time querying under smProbLog’s semantics would provide a significant

improvement for both the inference and learning tasks, therefore future research on this

topic represents an interesting and useful development of this work.
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