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Connections on a Parabolic Principal
Bundle Over a Curve

Indranil Biswas

Abstract. The aim here is to define connections on a parabolic principal bundle. Some applications
are given.

1 Introduction

The notion of a parabolic vector bundle was introduced in [MS]. Let X be a con-
nected Riemann surface and D C X a finite subset. A parabolic vector bundle over
X with parabolic structure over D is a usual vector bundle E over X together with an
extra structure over D. For each point p € D, the extra structure over p is a strictly
decreasing filtration of linear subspaces of the fiber E, together with a nonnegative
rational number associated with each term of the filtration. The sequence of num-
bers is strictly increasing and is strictly bounded by 1. See Section 2 or [MS, MY] for
the details.

In [BBN1, BBN2], the notion of a parabolic vector bundle was extended to the
more general context of where the structure group is a general connected linear alge-
braic group defined over the field of complex numbers (as opposed to GL(r, C) which
corresponds to parabolic vector bundles of rank r).

Let G be a complex connected linear algebraic group. A parabolic G-bundle over
X is given by the following data: a connected complex manifold E¢ with a projection
1: Eg — X and an action of G on the right of Eg such that

(1) X = Eg/G;

(2) the projection 1 and the action of G make )~ (X \ D) a principal G-bundle over
the complement X \ D;

(3) for any point z € ¥»~1(D) the isotropy subgroup, for the action of G on Eg, is a
finite cyclic group.

(See Section 2 for the details.)

The aim here is to extend the notion of a connection on a principal bundle to the
context of parabolic G-bundles. It turns out that one of the descriptions of usual
connections, namely as a g-valued one-form on the total space, where g is the Lie
algebra of G, is well suited for parabolic G-bundles. It may be pointed out that the
more standard description (see [At]) of a connection on a usual principal bundle as
a splitting of the Atiyah exact sequence is not suited for parabolic G-bundles.
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A theorem due to Atiyah and Weil says that a holomorphic vector bundle E over
a compact Riemann surface admits a holomorphic connection if and only if each
indecomposable component of E is of degree zero (see [At, We]). In [AB] this was
generalized to give a criterion for a holomorphic principal G-bundle over a compact
Riemann surface to admit a holomorphic connection, where G is a complex reductive
group.

In Theorem 4.1 we give a criterion for a parabolic G-bundle to admit a holomor-
phic connection, where G as before is a complex reductive group.

Let G be a complex semisimple group. In Theorem 5.2 we prove that a parabolic
G-bundle E; admits a flat unitary connection if and only if Eg is polystable.

2 Preliminaries

Let X be a connected smooth projective curve defined over the field of complex num-
bers, or equivalently, a connected compact Riemann surface. Let

D=A{py,...,ptCX

be a reduced effective divisor on X; so { p;}._, are distinct points.
Let E be an algebraic vector bundle over X. A quasiparabolic structure on E over
D is a filtration of subspaces

(2.1) Elpy=FDF,>F,>--DF, DF, , =0

of the fiber of E over p;, where i € [1,I]. For a quasiparabolic structure as above,
parabolic weights are a collection of rational numbers

22) 0< A <A < AP <D <1

where i € [1,1]. The parabolic weight A corresponds to F; in (2.1). A parabolic
structure on E is a quasiparabolic structure with parabolic weights. A vector bundle
equipped with a parabolic structure on it is also called a parabolic vector bundle. See
[MS, MY] for the details.

For notational convenience, a parabolic vector bundle defined as above will be
denoted by E... The divisor D is called the parabolic divisor for E,. We recall that

1 m;
(2.3) par-deg(E.) := degree(E) + Z Z )\g»i) dim(F?/F;:H)

i=1 j=1

is called the parabolic degree of the above defined parabolic vector bundle E, (see
[MS, Definition 1.11] and [MY]).

Let G be a connected complex linear algebraic group. We will recall the definition
of a parabolic G-bundle over X (see [BBN2] for the details).

A parabolic G-bundle over X with parabolic structure over D is a connected smooth
complex variety Eg on which G acts algebraically on the right, that is, the map

f:EGXG—>EG
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defining the action of G on Eg is an algebraic morphism, together with a surjective
algebraic map

satisfying the following conditions:

(1) ¥ o f = 1 o py, where p; is the natural projection of Eg X G to Eg, that is, the
map 1 is equivariant for the actions of G with G acting trivially on X;

(2) for each point x € X, the action of G on the reduced fiber 1) ~!(x)cq is transitive;

(3) the restriction of ¢ to 1~ (X \ D) makes 1)~ !'(X \ D) a principal G-bundle over
X \ D, that is, the map v is smooth over 1y~ !(X \ D) and the map to the fiber
product

Y X\D)x G— ¢~ (X\D) xxnpyp (X \D)

defined by (z,g) — (z, f(z,g)) is an isomorphism.
(4) for any closed point z € 1)~!(D), the isotropy group G, C G, for the action of G
on Eg, is a finite cyclic group that acts faithfully on the line T,Eg/ T, ™' (D)req.

Note that since v is equivariant for the action of G, the isotropy subgroup G,
preserves the subspace T,1) ! (D)q C T,Eg. Therefore, there is an induced action
of G, on the fiber T,Eg/T,%)~1(D);eq of the normal bundle. For any p; € D the
subvariety 9! (p;)rea C Eg is clearly a smooth divisor.

Consider the special case of G = GL(n,C). There is a bijective correspondence
between the parabolic GL(#n, C)-bundles and the parabolic vector bundles of rank n
defined earlier (see [BBN1, BBN2]). Let Egy. be a parabolic GL(n, C)-bundle over X.
So Egy, restricts to a usual GL(#, C)-bundle over X \ D. Therefore, using the standard
action of GL(#, C) on C", the GL(n, C)-bundle Egy |x\p gives a vector bundle of rank
n over X \ D. This vector bundle has a natural extension to X, constructed using Egp,
that carries the parabolic structure of the parabolic vector bundle corresponding to
EgL. Take a point x € D. Take a point z € Egp over x (that is, ¢)(z) = x), and
let G, C GL(n, C) be the isotropy subgroup for z for the action of GL(#, C) on Egy.
Since the finite cyclic group G, acts faithfully on the line T,Eq /T,%~ (D), the group
G, has a natural (unique) generator v, € G, defined by the following condition: the
action of vy, on T,Egy / T,1~!(D) is multiplication by exp(27v/—1/(#G,)), where #G,
is the order of G,. The parabolic structure, of the parabolic vector bundle associated
to EgL, over the parabolic point x is constructed as follows:

Consider the standard action of 7, € GL(#, C) on C". Note that all the eigenvalues
of it are of the form exp(27v/—1k/(#G,)), where k € [0, #G, — 1]. If exp(2m\/—1k/
(#G,)) is an eigenvalue, where k € [0, #G, — 1], then k/#G, is a parabolic weight at x
for the parabolic vector bundle associated to Egy,, and the multiplicity of a parabolic
weight k/#G, coincides with the multiplicity of the eigenvalue exp(27\/—1k/(#G,))
for the action of v, on C". The details are given in [BBN2].

We now return to the case of general G. Let V be a finite dimensional complex
left G-module, where G is a connected complex linear algebraic group. Let Eg be a
parabolic G-bundle over X. Consider the quotient space

Eg x GL(V)

(2.5) Eq := — G
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where the quotient is for the “twisted” diagonal action of G; the action of any g € G
sends any (z, T) € Eg X GL(V) to (zg,g 7' T). It s easy to see that Egy, is a parabolic
GL(V)-bundle. Hence Eg| gives a parabolic vector bundle EY .

Let Rep(G) denote the category of finite dimensional complex left G-modules,
and let PVect(X) be the category of parabolic vector bundles over X with parabolic
structure over D. Both these categories are equipped with the direct sum, tensor
product and dualization operations.

The parabolic G-bundle E; defines a functor from Rep(G) to PVect(X) by send-
ing any G-module V to the parabolic vector bundle E! constructed as above from
V. This way, Eg defines a parabolic G-bundle in the sense of [BBN1]; in [BBN1],
following [Nol, No2], parabolic G-bundles were defined as a functor from Rep(G)
to PVect(X) satisfying certain conditions. Such a functor is in particular compatible
with the three operations of taking dual, direct sum and tensor product.

Let G, be a connected complex linear algebraic group and

(2.6) p: G— G

a homomorphism of algebraic groups. Let Eg be a parabolic G-bundle over X. Con-
sider the quotient

Ecx G
(2.7) Eg(G1) = %

for the twisted diagonal action of G on Eg x G;. The action of any g € G sends
any (z,g1) € Eg x G to (zg, p(g~")g1). It is easy to see that Eg(G;) is a parabolic
G;-bundle over X.

We will call Eg(Gy) as the parabolic G;-bundle obtained by extending the structure
group of Eg to G using the homomorphism p.

Therefore, Egp in (2.5) is the extension of structure of Eg to GL(V') using the
homomorphism G — GL(V') defined by the G-module V.

Let E¢ be a parabolic G-bundle over X. Let H C G be a connected closed algebraic
subgroup. Consider the quotient

(2.8) qu: Ec — Eg/H

for the action of G on Eg. Let

(2.9) fu:Ec/H — X

be the natural projection. Take any (closed) point z € Eg/H. Take any (closed) point

Z € Eg such that gy (2) = z, where gy is defined in (2.8). It is easy to see that the
following two conditions are equivalent:

(1) the projection fy in (2.9) is smooth at z, that is, the differential
de(Z): TZEG/H — TfH(z)X

is surjective.
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(2) The isotropy subgroup G; C G is contained in H.

Since H acts transitively on gj;' (2), if the condition G, C G holds for one point
z' € q5;'(2), then we have G,.» C G for every point 2’/ € q5;'(z).

By a section of fi; we will mean a morphism o: X — Eg/H such that f; o o is the
identity map of X.

Definition 2.1 A reduction of structure group of Eg to H is a section
o: X — Eg/H

of fy (defined in (2.9)) such that fy is smooth on the image of ¢ (in other words, for
each point x € X the differential

de(a(x)): TU(X)EG/H — TxX

is surjective).

A section o: X — Eg/H of the projection f; defines a reduction of structure
group of E¢ to H if and only if

a1 (0(X)) C Eg

(where gy is the projection in (2.8)) is a parabolic H-bundle over X (the action of
H on q;l(o(X)) is induced by the action of G on Eg) satisfying the condition that
G, C H for each point z € qgl(a(X)) (recall that G, C G is the isotropy subgroup
at z for the action of G on Eg).

We noted earlier that for any p; € D, if G, C H for one point z € qﬁl(a(pi)),
then G,» C H for each point z’ € gq5;' (o(p;)).

Let Ey C Eg be a reduction of structure group of a parabolic G-bundle Eg to a
subgroup H C G, defined by a section o as in Definition 2.1. Let E(. be the parabolic
G-bundle obtained by extending the structure group of the parabolic H-bundle Ey
using the inclusion homomorphism H — G. It is easy to see that the two parabolic
G-bundles E¢ and E(, are canonically identified. Indeed, consider the morphism Ep; x
G — Eg defined by the action of G on Eg (recall that Ey C Eg). This morphism
factors through the quotient (Ey x G)/H and defines an isomorphism of Ej, with Eg.

Consider E¢(Gj) constructed in (2.7). Note that there is a natural morphism

(210) r: EG — EG(Gl)

that sends any z € Eg to the equivalence class for (z,e) € Eg x G;, wheree € G
is the identity element. It is easy to see that r is G-equivariant; the action of G on
Es(Gy) is through p(G), where p is the homomorphism on (2.6).

If Gis a closed subgroup of G; and p (in (2.6)) the inclusion map, then the image
of the map r, constructed in (2.10), defines a reduction of structure group to G of the
parabolic G;-bundle Eg(G;). Indeed, this is an immediate consequence of the above
definition of a reduction of structure group.
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3 Holomorphic Connections

Let¢: Eg — X be a parabolic G-bundle over X. So for any closed point x € X, the
reduced fiber

(Bo)x := 7' (x)

is an orbit for the action of G on Eg.
Let g be the Lie algebra of G. The action of G on (Eg), gives a homomorphism of
vector bundles
Wy g — T(Eg)x

over (Eg)y, where g denotes the trivial vector bundle over (Eg)x with fiber g and
T(Eg)y is the tangent bundle. The given condition that the isotropy G, of any point
z € (Eg)y Is a finite subgroup of G immediately implies that the above defined ho-
momorphism w! is in fact an isomorphism. Consequently, the inverse (w/) ™! exists
and it defines an algebraic one-form

(3.1) we € H'((Eg)x, Yy, ©c 9)
with values in g. This form wy is also known as the Maurer—Cartan form.

Definition 3.1 A holomorphic connection on the parabolic G-bundle E is an alge-
braic one-form 6 on Eg with values in g

6 € H°(Eg, Q]l:"G ®c 9)

such that

(1) for each point x € X the restriction 6|, coincides with the Maurer—Cartan
form wy defined in (3.1), and

(2) 6 intertwines the action of G on Eg and the adjoint action of G on g, or in other
words, 6 is equivariant for the actions of G.

When Eg is a usual principal G-bundle, the above definition of a holomorphic
connection coincides with one given in [At].

Proposition 3.2 Let Eg be a parabolic G-bundle equipped with a holomorphic con-
nection 6 (as defined in Definition 3.1).

Let p: G — Gy be a homomorphism of connected algebraic groups. Then 6 induces a
holomorphic connection on the parabolic G,-bundle EG(G;) obtained by extending the
structure group of Eg using p.

Let H C G be a closed connected algebraic subgroup and Ey C Eg a reduction of
structure group of Eg to H. Let

B:g—D

be an H-equivariant splitting of H-modules, where g (respectively, 1)) is the Lie algebra
of G (respectively, H); both g and by are considered as H-modules for the adjoint action.
Then (3 o 0 gives a holomorphic connection on the parabolic H-bundle Ey.
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Proof Let dp: g — g; be the differential of p, where g; is the Lie algebra of G.
Consider the map r defined in (2.10). From the definition of a form defining a holo-
morphic connection it follows immediately that

dpof: Tr(Eg) — &

is a G-equivariant g,-valued one-form on the image of the map r. Now, this form
extends uniquely to a G;-equivariant g;-valued one-form on the total space of the
parabolic G;-bundle Eg(G;). It is easy to check that this extended form defines a
connection on the parabolic G;-bundle E¢(G).

Take any 3 as in the statement of the proposition. So 3 o ¢ is the identity map of
b, where ¢: b — g is the inclusion map. Consider the }-valued one-form (3 o 6 on
the subvariety Ey C Eg. Since the form 6 is G-equivariant and [ is H-equivariant,
it follows immediately that 3 o 6 is H-equivariant. The restriction of 3 o 8 to a
reduced fiber of the projection Ey — X clearly coincides with the Maurer—Cartan
form (recall that (3 is a splitting of the inclusion of b in g). Therefore, 8 o 6 defines
a holomorphic connection on the parabolic H-bundle Eg. This completes the proof
of the proposition. ]

Let Y be a connected smooth projective curve defined over € and
I' C Aut(Y)

a finite subgroup of the automorphism group of Y. So I' acts naturally on the right
of Y.
A T'-linearized principal G-bundle over Y is a (usual) principal G-bundle

(3.2) ' E,—Y

over Y together with an algebraic right action of the finite group I' on the total space

E(, such that

(1) the action of G on the principal G-bundle E/, commutes with the action of I' on
E[f, and

(2) the projection ¢’ in (3.2) commutes with the actions of I' on E; and Y.

Let Yr denote the quotient Y /T'. So Yr is also a connected smooth projective
curve over C. Consider the quotient E(./T', where E(. is a I'-linearized principal G-
bundle over Y. Since the projection of E/ to Y commutes with the actions of T’
(condition (2)), we have an induced projection

’Lﬂ: EG = Eé/r — Yr

induced by 9’.
Since the actions of G and I' on E/ commute, the quotient E; has an induced
action of G
fl Eg X G — E;.
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It is easy to see that the triple (Eg, v, f) defines a parabolic G-bundle over Y. The
parabolic divisor is the divisor of Yr over which the quotient map Y — Yr is ram-
ified. All parabolic G-bundles arise as quotients of the above type [BBN2, Theorem
3.7]. It should be clarified that given a parabolic G-bundle E; over X the Galois
covering Y of X (such that Eg is the quotient of a principal G-bundle over Y) de-
pends on Eg. The content of the above mentioned theorem of [BBN2] is that given
a parabolic G-bundle E; over X, there exists a Galois (ramified) covering of Y of X
and a I'-linearized principal G-bundle E/; over Y, where I" = Gal(Y /X) is the Galois
group, such that Eg = E/,/T".

Let E(; be a principal G-bundle over Y. We recall that a holomorphic connection
on E(, is a G-equivariant algebraic one-form

(3.3) 6" € HY(E(, O, ®c 9)

whose restriction to each fiber coincides with the Maurer—Cartan form. Equivalently,
a holomorphic connection on E, is a holomorphic splitting of the Atiyah exact se-
quence

(3.4) 0 — ad(E;) — At(E;) — TY — 0

over Y, where ad(E() is the adjoint bundle and At(E(;) the Atiyah bundle (see [At]
for the details).
Now assume that Ef; is I'-linearized, where I' C Aut(Y) is a finite subgroup.

Definition 3.3 A holomorphic connection 6’ (as in (3.3)) on the G-bundle E/, will
be called a I'-connection if the action of I' on E(, leaves the form 6’ invariant (the
action of I on g is the trivial action).

Note that the actions of I" on X and E(, induce actions of I" on all the three vec-
tor bundles in the Atiyah exact sequence (3.4), and the homomorphisms in (3.4)
commute with the actions of I'. If the connection 6’ in (3.3) corresponds to the
holomorphic splitting

D: TY — At(E})

of (3.4), then 0’ is a I'-connection if and only if the splitting homomorphism D
commutes with the actions of I' on TY and At(E(,).

Let: Eg — X be a parabolic G-bundle over X (as in (2.4)). We noted earlier that
by [BBN2, Theorem 3.7] there is an irreducible smooth projective curve Y, a finite
subgroup I' C Aut(Y) and a I'-linearized principal G-bundle E( over Y such that
X=Y/Tand Eg = E;/T.

Proposition 3.4  There is a natural bijective correspondence between the holomor-
phic connections on the parabolic G-bundle Eg and the I'-connections on the principal
G-bundle E[.
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Proof Let
(3.5) q: E, — E,)T = Eg
be the quotient map. Given a g-valued one-form 6 on Eg, the pullback
(3.6) 0" :=q*0

is a g-valued one-form on Ef.. Assume that § satisfies the two conditions in Defini-
tion 3.1; in other words, 6 is a holomorphic connection on Es. Then, as the pro-
jection q commutes with the actions of G on E(, and Eg, the second condition in
Definition 3.1 that 0 is G-equivariant implies that 6’ is G-equivariant.

Let g’: Y — Y/T' = X be the quotient map. For any closed point y € Y the
restriction

dley,: (EG)y — (Ec)g'(y)

is a finite unramified covering map, where (E(;), is the fiber Eg over y and (Eg)q/(y)
as before is the reduced inverse image 1~ '(q’(y)). Since q|(E(/;)y is a finite unramified
covering map, the given condition that the restriction of 6 to (Eg),/(;) coincides with
the Maurer—Cartan form implies that the restriction of 6" to (Ef;), coincides with
the Maurer—Cartan form on (E(;),. Therefore, the form 6’ defines a holomorphic
connection on the G-bundle E.

Since 6’ is a pullback of a form from E(/T, we conclude that the action of I' on
E( leaves 6’ invariant. Consequently, 6’ defines a I'-connection on Ef.

For the converse direction, let 8’ be a I'-invariant g-valued one-form on the total
space of E/; defining a I"-connection on the principal G-bundle E[.. Since 6’ is I'-in-
variant, it descends to a g-valued one-form on the quotient E; = E//T'. In other
words, there is a g-valued one-form 6 on Eg such that g*0 = 6’, where g is the
projection defined in (3.5). To prove the existence of such a form 6, note that for any
point y € E[, the map g around z is holomorphically isomorphic to a map of the
form

(Zla ce aznflazn) - (Zl, s ;anlazﬁ)

where k is a positive integer. Therefore, it suffices to show that any holomorphic one-
form w defined on the unit disk D C € and invariant under the multiplication action
(on D) of py, the cyclic group defined by the k-th roots of unity, is a pullback of a
form on the quotient space ID/p,,. But this is clear as w must vanish at 0 € D of order
at least k — 1.

Now it is easy to check that the descended g-valued one-form 6 on Eg satisfies the
two conditions in Definition 3.1. Therefore, any form on E/, defining a I'-connection
is the pullback of a form on E¢ defining a holomorphic connection on the parabolic
G-bundle Eg. This completes the proof of the proposition. ]

Let 1): Ec — X be a parabolic G-bundle over X. Recall from the definition of a
parabolic G-bundle that )~ (X \ D) is a principal G-bundle over the complement
X\ D. Let

0 € H°(Eg, Q, ®c 9)
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be a holomorphic connection on Eg. So the restriction 6,-1(x\p) is a holomorphic
connection on the principal G-bundle ¢»~'(X \ D) over X \ D. Any holomorphic
connection on a curve is flat as there are no nonzero holomorphic two-forms on a
Riemann surface.

Therefore, 6|,-1(x\p) is a flat connection on the principal G-bundle (X \ D)
over X \ D. Take any point p; € D. Since 6’ in (3.6) is a flat connection on E(
over Y, it follows immediately that the monodromy of the connection on 1)~ ! (X \ D)
(defined by 6|1 (x\p)) along a loop in X \ D around p; and contractible in X is of
finite order.

Let E/, be a I'-linearized principal G-bundle over Y. Let Eg = E[/T" be the corre-
sponding parabolic G-bundle over X = Y /T". Asin (3.5), the quotient map E; — Eg
will be denoted by gq. Let Ey C Eg be a reduction of structure group to a subgroup
H C G. The inverse image

q~'(En) C E

is clearly a reduction of structure group of the principal G-bundle E(, to H which is
left invariant by the action of I" on E[.. It is also straightforward to check that if

Ej, C E,

is a reduction of structure group of E}; to H C G with the property that the action of
I" on E/; leaves the subvariety E;; C E(; invariant, then

E;/T C E;)T

is a reduction of structure group to H of the parabolic G-bundle E; = E//T..

Let 6 be a holomorphic connection on the parabolic G-bundle Eg. Let 6’ be the
corresponding I'-connection on E/;, constructed in Proposition 3.4. Let H and /3 be as
in Proposition 3.2. So using Proposition 3.2, the holomorphic connection 6 induces
a holomorphic connection

9H = ﬂ (¢] 9|EH

on the parabolic H-bundle Ey (we are using the notation of Proposition 3.2). On
the other hand, using /3, the I'-connection 6’ on E(, induces a I'-connection on the
'-linearized principal H-bundle E}; := g~ !'(Ep), where q is the projection defined in
(3.5); the construction of this connection is identical to the construction of the con-
nection in the second part of Proposition 3.2. It is easy to see that the holomorphic
connection on E; = Ej;/T" corresponding to this I'-connection on Ej; coincides,
by the correspondence in Proposition 3.4, to the holomorphic connection 6y on Ey
constructed above.

Let p: G — G) beahomomorphismasin (2.6). Let E;(G;) = (E; X G;)/Gbe the
I-linearized principal G;-bundle over Y obtained by extending the structure group
of the G-bundle E/, using p. Clearly we have

E(G)/T = Eg(Gy),

where Eg(G) is the parabolic G-bundle defined in (2.7). Using this it is straight-
forward to check that the correspondence of connections given by Proposition 3.4 is
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compatible with the construction given in Proposition 3.2 of induced connection on
an extension of structure group. In other words, if 6 is a holomorphic connection on
Eg and 6’ the corresponding I'-connection on E(, then the holomorphic connection
on Eg(G)) induced by 0 corresponds to the I'-connection on E5(G;) induced by 0’.

In the next section we will give a criterion for a parabolic G-bundle, where G is
reductive, to admit a holomorphic connection.

4 Criterion for Existence of a Connection

Leto: X — Eg/H, as in Definition 2.1, be a reduction of structure group to H of the
parabolic G-bundle Eg over X. Let

Ey = q5'(0(X)) C Eg

be the corresponding parabolic H-bundle, where gy is the projection in (2.8). Take a
character
x:H— G, =C"

of H. Let Ey(C*) be the parabolic C*-bundle obtained by extending the structure
group of Ey using the homomorphism . We noted earlier that there is a natural
bijective correspondence between parabolic GL(#, C)-bundles and parabolic vector
bundles of rank 7. Let

(4.1) E} = En(C)(O).

be the parabolic line bundle associated to the parabolic C*-bundle Eg (C*).

Henceforth, G will be assumed to be a reductive group.

A closed connected subgroup P of G is called a parabolic subgroup if G/P is com-
plete. Note that we allow G to be a parabolic subgroup of itself. The unipotent radical
of P will be denoted by R,,(P). A Levi subgroup of G is a connected reductive subgroup
H C G such that

(1) H is contained in some parabolic subgroup P of G, and
(2) H projects isomorphically onto the Levi quotient P/R,,(P) of the above parabolic
subgroup P.

So Levi subgroups are precisely the centralizers of tori contained in G.

Theorem 4.1  Let EG be a parabolic G-bundle over the curve X, where G is a complex
reductive group. The parabolic G-bundle Eg admits a holomorphic connection if and
only if for every Levi subgroup H C G, for every holomorphic reduction of structure
group Ey C Eg to H, and for every character x of H the following holds:

par-deg(EY) = 0,

where the parabolic line bundle EY is defined in (4.1) and the parabolic degree is defined
in (2.3).
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Proof Let 6 be a holomorphic connection on the parabolic G-bundle E¢. Take a I'-
linearized principal G-bundle E/, on Y, as in Proposition 3.4, that corresponds to Eg.
Let 6 be the I'-connection on E(, corresponding to 6 by Proposition 3.4.

Take a Levi subgroup H C G and a reduction of structure group Ey C Eg as in
the statement of the theorem. Let

Ef; =q '(En) C E;

be the corresponding reduction of structure group of E/; to H, where q is the projec-
tion defined in (3.5).

Since H is a complex reductive group, any exact sequence of finite dimensional
complex H-modules splits. Consider the inclusion of H-modules ) C g, where g
(respectively, b) is the Lie algebra of G (respectively, H), and ), g are considered as
H-modules using the adjoint action of H. Fix a splitting

B:g—D

of this inclusion of H-modules. The connection 8’ and 3 combine together to give
a I'-connection of Ej;; the connection on Ej; is constructed exactly as done in the
second part of Proposition 3.2. Let 6, denote this connection on Ej,.

As before, Ey(C*) denotes the parabolic C*-bundle obtained by extending the
structure group of Ey using the character x of H. Note that Ey(C*) corresponds to
the I'-linearized principal C*-bundle Ef,(C*) over Y obtained by extending the struc-
ture group of the principal H-bundle E}; using the character y of H. The parabolic
line bundle EY defined in (4.1) corresponds to the I'-linearized line bundle Ef,(C)
over Y associated to the principal C*-bundle E};(C*) for the standard action of C*
on C. (See [Bi] for the correspondence between parabolic vector bundles and the
I'-linearized vector bundles.)

The holomorphic connection 6}; on Ej; constructed above induces a connection
on Ejf;(C*) which in turn induces a holomorphic connection on the line bundle
E},(C) over Y. We conclude that

(4.2) degree(E;;(C)) =0

as E};(C) admits a holomorphic connection; see [At].
On the other hand, we have

#I" - par-deg(EX) = degree(Ej;(C))

[Bi, (3.12)], where #I is the order of the finite group I'. Therefore, (4.2) gives that
par-deg(EX) = 0.
To prove the converse, let E; be a parabolic G-bundle over X satisfying the condi-
tion that par-deg(EX) = 0 for all H, Ex and  as in the statement of the theorem.
Let E/, be a I'-linearized principal G-bundle over Y as in Proposition 3.4 such that
Eg = E(/T. Using Proposition 3.4 it suffices to show that E/, admits a I'-connection.
Assume that E(, admits a holomorphic connection. Let

0" € H'(Eg, Qp, ®c 9)
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be a form as in (3.3) defining a holomorphic connection on Ej;. Consider the
g-valued one-form
Z’)’EF 7*9

#I'

on the total space of Ef, where 7*0 is the pullback of § by the automorphism of E
defined by the action of v on E[. It is easy to see that the form "’ is left invariant by
the action of I" on E[.. Hence 6"’ defines a I'-connection on E(.

Therefore, to complete the proof of the theorem it suffices to prove the following
lemma.

9// —

Lemma 4.2 Let E[. be a I'-linearized principal G-bundle over Y such that for every
Levi subgroup H C G, for every I'-invariant holomorphic reduction of structure group
E}; C E(. to H, and for every character x of H the following holds:

degree(E};(C)) = 0,

where Ef;(C) = (Ef; x C)/H is the line bundle over Y associated to the principal
H-bundle Ej; for the character x. Then the principal G-bundle E[; admits a holomorphic
connection.

Proof To prove the lemma, we first recall that E/; admits a holomorphic connection
if and only if the Atiyah exact sequence (3.4) splits holomorphically. Let

(4.3) 7 € H'(Y,ad(E}) ® Ky)

be the obstruction class for holomorphic splitting of (3.4), where Ky is the holomor-
phic cotangent bundle of Y.

Since G is reductive, its Lie algebra g admits a nondegenerate symmetric bilinear
form which is left invariant by the adjoint action of G on g. In other words, g = g*
as G-modules. Fix such a G-invariant bilinear form. This gives an isomorphism of
vector bundles ad(E(;) = ad(E()*. Now using Serre duality, the cohomology class T
in (4.3) corresponds to an element

7' € H'(Y,ad(E}))*.
Since the G-bundle E, is I'-linearized, we conclude that
(4.4) 7€ (H(Y,ad(E))")" € H(Y,ad(EL))",

where (H°(Y,ad(E())*) " H°(Y,ad(E())* is the space of invariants for the in-
duced action of " on H(Y, ad (E}))*.
Note that for any finite dimensional complex I'-module V/, the restriction homo-
morphism
for (VHF = (v

is an isomorphism, where VI C V (respectively, (V*)I' C V*) is the space of all
I-invariants. Indeed, for any nontrivial irreducible I'-submodule V; C V we have
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w(Vy) = 0, where w € (V*)'s; hence fy is injective. To prove that fy is surjective,
extend any functional w € (V!)* to V by defining it to be zero on any nontrivial
irreducible I'-submodule of V.

Therefore, we have

@5 e (H(Y,ad(E)") " = (H(Y,ad(EL)")" € HO(Y,ad(EL))",

where 7/ is constructed in (4.4).
Take any invariant section

(4.6) ¢ € H°(Y,ad(EL)".

The fibers of the Lie algebra bundle ad (E[;) over Y are isomorphic to the Lie algebra
g of G. Consider the Jordan decomposition

(4.7) O =+ ¢,

of ¢ in (4.6). So
b5, b € H(Y, ad(EG)),

and for any closed point y € Y, the element

¢s(y) € ad(Ep),

(respectively, ¢,(y) € ad(E(;),) is semisimple (respectively, nilpotent) with

[¢s(y), ¢n(}’)] =0;

see [Bo, 4.4] for Jordan decomposition.
Note that from the uniqueness of the Jordan decomposition it follows immediately
that
Ony s € HO(Y, ad(Eé))F

(recall that ¢ € H(Y,ad(EL)Y).
Proposition 3.9 of [AB] says that
7'(¢u) =0,

where 7/ is constructed in (4.5).
So to prove the lemma it is enough to show that

(4.8) 7'(¢s) = 0.

If H C Gis a Levi subgroup and H; C H a Levi subgroup of the reductive group
H, then H, is a Levi subgroup of G. Indeed, this follows from the fact that if Z,(H,)
is the connected component of the center of H; containing the identity element, then
the centralizer of Zy(H;) in H coincides with the intersection of H and the centralizer
of Zy(H;) in G.
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Using this property, we may assume that the I'-linearized principal G-bundle E;,
does not admit any I"-invariant reduction of structure group to any proper Levi sub-
group of G. Indeed, if E/; admits a I'-invariant reduction of structure group Eg, C Eg
to a proper Levi subgroup G; C G, then we can replace G by G, and Eg by Eg, in
the lemma; note that a holomorphic connection on Eg, induces a holomorphic con-
nection on Eg. Repeating this inductively we finally obtain a I'-invariant reduction
of structure group to a Levi subgroup which does not admit any further I'-invariant
reduction to a proper Levi subgroup.

Therefore, we assume that the I'-linearized principal G-bundle E/, does not admit
any ['-invariant reduction of structure group to any proper Levi subgroup of G.

Let 3(g) C g be the center of the Lie algebra. Since G acts trivially on 3(g), the
adjoint vector bundle ad(E() has a trivial subbundle with fibers identified with 3(g).
Therefore, there is a natural injective homomorphism

(4.9) §: 3(9) — H'(Y,ad(Eg))".

We will show that the given condition that the I'-linearized principal G-bundle
E[. does not admit any I'-invariant reduction of structure group to any proper Levi
subgroup of G implies that the section ¢ (in (4.7)) is in the image of the homomor-
phism ¢ constructed in (4.9).

Let qq: E; x g — ad(E() be the natural quotient map. Let

p': EL x g — EL

be the projection to the first factor of the Cartesian product. For the section ¢; in
(4.7) consider

Z(¢s) == p'(q; " (#:(Y))) C EL,

where g, and p! are defined above. It is easy to see that this subvariety Z(¢;) C E( de-
fines a reduction of structure group of E/; to a Levi subgroup of G, and furthermore,
the Levi subgroup is proper if

o5 ¢ 0(3(9)),

where § is constructed in (4.9) (see [BP] for the details).
Therefore, there is w € 3(g) such that

(4.10) by = 6(w).
Let
(4.11) ¢ = H(Y,ad(E;)")"

be the section defined by ¢; using the isomorphism ad (E()* = ad(E() (recall that by
fixing a G-invariant bilinear form on g we obtained an isomorphism of ad(E(;) with
ad(EL)*).

For a character x': G — C* of G, let

(4.12) dy':g—C
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be the homomorphism of Lie algebras defined by the differential of x’ ate € G.
From (4.10) if follows that there are characters 1, x2, . - . , X% of G such that

k
(4.13) ¢r =" Nidxi,
i=1

where ¢} (respectively, dy;) is defined in (4.11) (respectively, (4.12)) and \; € C; the
above integer k can be taken to be dim¢ 3(g). Indeed, this follows immediately from
the fact that the Lie algebra g decomposes as

g =[g,8] D3(g).
Take any character x’: G — C* of G. Let

E.xC,/
Eg(X) = ===

be the line bundle over Y associated to the G-bundle E/; for the G-module C, (the
G-module defined by the action of G on C through x” is denoted by C,+). The Atiyah
obstruction class 7 in (4.3) is compatible with the extension of structure group of a
principal bundle. In other words, for any homomorphism p: G — G’ of algebraic
groups, the Atiyah obstruction class for the principal G’-bundle E_.(G’) obtained by
extending the structure group of E/, using p coincides with the image of 7 (defined
in (4.3)) in H'(Y,ad(E.(G’)) ® Ky) by the homomorphism

H'(Y,ad(Eg) ® Ky) — H'(Y,ad(Eg(G)) @ Ky)

constructed using p. Using this observation it is straightforward to check that the
following identity holds:

(4.14) 21/ —1 - degree(EL(x")) = (dx/, ),
where dx’ (respectively, 7) is defined in (4.12) (respectively, (4.3)) and (—, —) is the
Serre duality pairing H(Y, ad (ES)*) ® H'(Y,ad(E}) ® Ky) — C.

Since the given condition in the statement of the lemma says that

degree(E;(x) =0

for all character x’, the equality (4.8) follows from (4.13) and (4.14). This completes
the proof of the lemma. ]

We already noted that Lemma 4.2 completes the proof of Theorem 4.1. Therefore,
the proof of Theorem 4.1 is complete. ]
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5 Einstein-Hermitian Connection on Stable Parabolic Bundles

As before, 1: Eg — X is a parabolic G-bundle with G a reductive group.
A complex connection on Eg is a C* form, with values in g, of Hodge type (1, 1)
on the total space of Eg
0 € C™(Eg, ) ¢ 9)

such that

(1) for each point x € X the restriction 8|, to the fiber (Eg), coincides with the
Maurer—Cartan form w, defined in (3.1), and

(2) 0 intertwines the action of G on Eg and the adjoint action of G on g, or, in other
words, 0 is equivariant for the actions of G.

(See [KN, p. 64, Proposition 1.1].)

Note that if the above form 6 defining a complex connection is a holomorphic
form, then it defines a holomorphic connection on Eg. In other words, holomorphic
connections are a special case of complex connections.

Given a complex connection form 6, the g-valued two-form

(5.1) Q) :=db + %[97 6]

is known as the curvature of  (see [KN, p. 77, Theorem 5.2]).

Since 6 is of Hodge type (1,0), it follows immediately that the curvature form
Q(0) isasum of a (2,0)-form and a (1, 1)-form. We will show that £2(6) is of Hodge
type (1, 1), that is, the (2, 0) Hodge type component vanishes.

Since the connection form 6 is G-equivariant, it follows immediately that the cur-
vature form €2(f) defined in (5.1) is also G-equivariant. Since a Maurer—Cartan
form w satisfies the identity

dw+l[w,w] =0
2

it follows that the curvature form $2(6) is given by a G-equivariant smooth section
of ( /\2 N) ®c g, where N is the normal bundle to the orbits for the action of G on
Eg. Over the complement 1~ !(X \ D) C Eg, the normal bundle N is identified with
*TRX, where TRX is the real tangent bundle over X; the isomorphism is given by
the differential of 1. Now, the projection %) is holomorphic and X does not admit
any nonzero form of Hodge type (2, 0). Consequently, £2(f) is a g-valued form on Eg
of Hodge type (1, 1). Therefore, we have

(5.2) Q(0) = 6.

A complex connection 6 is called flat if the curvature 2(0) defined in (5.1) van-
ishes identically.

From (5.2) it follows immediately that the vanishing of €2(#) is equivalent to
form 6 being holomorphic. Therefore, a flat complex connection on Eg is the same
as a holomorphic connection on Eg.

Fix a maximal compact subgroup

K(G) C G.
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Asin (2.8), let gk(g): Eg/K(G) — X be the quotient map for the action of G on Eg.
Take a smooth section o of gx(g). So

o: X — Eg/K(G)

is a C* map and gk o o is the identity map of X. As in Definition 2.1, such a
section o will be called a C*° reduction of structure group of E¢ to K(G) provided for
each point x € X the projection gk (g) is a submersion at o (x) € Eg/K(G).

For a section ¢ of the projection gk ) consider

dx(c)(@(X)) C Eq.

The section o gives a reduction of structure group of E; to K(G) if and only if for
each point p; € D and any point z € q;(lc)(a( pi)), the isotropy subgroup G, C G
(for the action of G on Eg) is contained in the compact subgroup K(G). (See the
comments following Definition 2.1.)

Take a reduction of structure group o: X — Eg/K(G) of E to K(G). Set

Z(K(G)) := gy (0(X)) C Eg.

There is a unique complex connection 6 on Eg satisfying the following condition: for
each point z € Z(K(G)), the kernel of the homomorphism

0(z): T,Eqc — g
is contained in the subspace
TYZ(K(G)) = V-1 T;Z(K(G)) C T.Eq,

where T™ is the real tangent space and J(z) is the almost complex structure of Eg at
the point z; here TRZ(K(G)) — v/—1](z) TRZ(K(G)) denotes the space of all tangent
vectors of (1,0) type, that is, tangent vectors of the form w — /—1](z)(w), where
we TRZ(K(G)).

The above assertion is a reformulation of [Ko, Proposition 4.9, p. 11].

Definition 5.1 A unitary connection on a parabolic G-bundle Eg is a complex con-
nection # on Eg such that there is a reduction o of structure group of E¢ to the
maximal compact subgroup K(G) with the property that the complex connection on
E¢ corresponding to o coincides with 6.

We will now recall from [BBN2] the definition of a (semi)stable parabolic G-
bundle.

A parabolic G-bundle Eg over X is called stable (respectively, semistable) if for any
reduction of structure group Ey of Eg to any proper parabolic subgroup H C G
and for every nontrivial antidominant character y of H trivial on the center of G the
following inequality holds:

par-deg(EY) > 0
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(respectively, par-deg(EY) > 0), where EJ is the parabolic line bundle over X con-
structed in (4.1) from Ey and .

A semistable parabolic G-bundle Eg; is called polystable if there is a Levi subgroup
H C G and a reduction of structure group Ey C Eg of Eg to H such that

(1) the parabolic H-bundle Ej is stable, and
(2) for every character x of H trivial on the center of G the associated parabolic line
bundle E} (constructed in (4.1)) is of parabolic degree zero.

See [BBN2, p. 134, Definition 3.13] for the above definitions. These definitions
were modeled on [Ra].

Theorem 5.2  Let Eg be a parabolic G-bundle over X, where G is a connected semisim-
ple linear algebraic group over C. The parabolic G-bundle Eg admits a flat unitary con-
nection if and only if Eg is polystable.

Proof Assume that Eg is polystable. Take a I'-linearized principal G-bundle E(; over
Y such that Eg corresponds to E/; (see [BBN2, Theorem 3.7]). From [BBN2, Theo-
rem 3.14] and [BBN1, Proposition 4.1] it follows that the given condition that Eg is
polystable implies that E, is polystable. Consequently, the G-bundle E/, admits a uni-
tary holomorphic I'-connection [BBN1, Proposition 4.7]; recall that a holomorphic
connection on a bundle over a curve is the same as a flat complex connection. Now
using Proposition 3.4 it follows immediately that E; admits a flat unitary connection.

For the converse direction, assume that E; admits a flat unitary connection. There-
fore, the G-bundle E/, over Y admits a unitary holomorphic connection (Proposi-
tion 3.4). Hence E(, is polystable [RS, Theorem 1]. From this it follows that Eg is
polystable (see [BBN2, Theorem 3.14]). This completes the proof of the theorem.
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