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Martingale central limit theorems

without uniform

asymptotic negligibility

R.J. Adler and D.J. Scott

Central l imit theorems are obtained for martingale arrays without

the requirement of uniform asymptotic neg l ig ib i l i ty . The resul ts

obtained generalise the sufficiency part of Zolotarev's extension

of the c lass ica l Lindeberg-Feller central l imit theorem [V.M.

Zolotarev, Theor. Probability Appl. 12 (1967), 608-618] and also

the main martingale central l imit theorem (not functional central

limit theorem however) of D.L. McLeish [Ann. Probability 2

(197*0, 620-628.

1 . Introduction

In his 1967 paper [7] Zolotarev established two forms of a central

limit theorem for sums of independent random variables, which did not

require the summands to be uniformly asymptotically negligible as does the

classical Lindeberg-Feller central limit theorem (see Loeve [4], p. 280).

The idea behind Zolotarev's investigation is quite simple; the summands

are divided into "big" ones (those for which the uniform asymptotic

negligibility condition doesn't hold) and "small" ones (those for which i t

does). If the big summands approach normality, and the small ones obey the

Lindeberg condition, then the central limit theorem will hold, and moreover

these requirements are necessary. In this paper we extend the sufficiency

part of Zolotarev's results to the martingale case. The results obtained
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extend the central limit theorem of McLeish ([5], Theorem (2.3)) which

constitutes the most general central limit theorem for martingales so far

obtained, containing the results of Brown [J ] , Dvoretzky [2], and Scott

[6] . The results are not functional central limit theorems however. It is

clear that when uniform asymptotic negligibility conditions are not imposed

i t is not in general possible to obtain functional central limit theorems.

2. Notation and results

Let (fl, A, P) be a probabili ty space and for each n - 1 l e t

fsAn), F, (n); 1 £ k 5 k } be a martingale sequence defined on (ft, A, P) .

k
Put SAn) = XAn) = 0 almost surely, SAn) = £ X.(n) and assume0 0 K j=1 0

E&n) = s|(w) < « for 1 £ k < k and all n > 1 . We define

02An) = E&n) ,
0

rX 2,
e~x /2d

r

x) = e~x /2dx ,

$i.M)(x) = *[x/o.(n)) ,
J 3

and

A{.n\x) = p{x.{n) £ x | F An)) - $ln)(x) .

THEOREM. Let y be a bounded sequence of positive real numbers. If

1 f
(1) Y w <*n log an

I (n)
(2) a = sup supaA^. (x)

and £/ ts t?2e set c / values of the -index j such that o-(n) < y , and
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the following conditions hold

(3)

(5)

(6)

then

(A)

max \xAn)\ - ^ 0
3

n

max is uniformly bounded in Lo norm,

<#„) -Z+ i ,

P 5 , (n) < x -»• $(a;) as n •*• °° ,

I fan) +
3

Here "-£»." denotes "converges in probability to".

We can obtain the result of the theorem under slightly more

restrictive conditions, by means of the following lemma.

LEMMA. Let s. (n) = 1 . Then the conditions (A) are simplified by
Kn

the equivalent sets of conditions (B), (C), and (D). Under y -*• 0 , (B)j

(C)^ and (D) are also equivalent to (E), and under (1) and y •*• 0 , to (F)

also.

(B)

(7)

(8)

(9)

(C) .

I \fan)-o2Xn)\ - ^ 0 ,

I fan)l{\xAn)\ > e) ~^- 0 , e > 0 ,

I \o2(n)-&:.(n)} - ^ 0 ,
j£U l 3 3 )

n

I E{fan)l[\X.(n)\ 2 e) | F. (n)\ - ^ 0 , Ve > 0 ,
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(D)

(10)

I \x2M-o2An)} -^ 0 ,

(ID
(E)

2 Psup XXn) — • 0 3

0 ,

(F)

(12)

I [ xZd&\x) -?- 0 , Ve > 0 ,
7 n | a : | - E

I fo^(n)-o2(n)l - ^ 0 ,
;cu v « 3 I

kn
f f x2dL{r-\x)
,=lJ|*|<e

 J
0 , Ve > 0 .

We use J(*) to denote the indicator function.

When the martingale differences {JT-(n)} are actually independent we
3

can observe that the above results contain the sufficiency part of

%
Z o l o t a r e v ' s r e s u l t s by choosing Y = 8 , where

3 = sup L \P{X ,{n) Sx), $ . ' ( x ) and L i s the Levy m e t r i c . Noting
n 1^7'Sfe l 3 3 )

Lemma 2 of [7] it is not difficult to show (l), (C), and Y "* 0 are

equivalent to the conditions of the theorem of [7] and (l), (F), and

Y •*n
[7].

Y •* 0 are equivalent to the conditions of the theorem (second version) of

If the martingale difference array {x.(rc)} satisfies the conditions
3

of Theorem (2.3) of [5] then clearly

2
sup sup o .(n) < M < oo ,
n l<j<fcn

 3

and taking Y = 2W , {x .(n)} also sa t i s f i e s the conditions of ourn 3

theorem. Thus t he r e s u l t s above extend McLeish's Theorem (2 .3) a l s o .
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3. Proof of the theorem

We must show that

(13) E exp\itS. M "*• e~
n '

for each real t . For every Q € U we let Y .(n) be distributed as

iff 10, cn(n) independently of each other and of the a-field generated by

kn
U F.(w) and for j d U simply set J.(n) = X.(n) . Then letting

j=l 3 n 3 0

n

3=k+l

we will show first that

E explitR. (n)\-E explitS. (n) -»• 0 .

Now, using the convention that £ a. = 0 for k > Z ,

(15) E exp\UR, (n)\-E exp\itS (n)

exp

exp

j=k+l

k-1
itY.M + I itX.M

.7=1
-e

itY.M \E exp I itX.(«) -e

fe-l

J i
UX.M)[e

itYAn) itXAn)

= L **{

The sum in (15) can be treated in the following way. Define a sequence of
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numbers A by A = / 2 log a" . By Fel ler [3] (page 175) we have

= 1 -

</2

Since for j € £/ , a.(w) 5 1 , i t follows that

(16) $ ( ^ M / C K ( « ) ) = l - *(4n/

We have thus

< <M2 l o s an )

-e

„] \ itx.,An) i >= E\\ e d&l (x)

5 E

-rA
f W * 4-

iA

Treating these forms separately

-A

(17) !.-<! db{n\x) < E[p{xAn) S

5 2a 2 log a"1 + a
n[ n ) n

on using (2) and (l6). Furthermore
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(18) J2 5 E-

5 tE
J A I K ( * ) + 2a

3 *

But k Z U enta i l s <*,(«) i Y and since I o£(«) 5 1 there are
n K n I 2 ? K at

most Y indices in U . Combining this with (l8), (17), and a similar
n n

bound for J , we obtain

L .
ktu

itXAn) itlAn)

1 O g

Under ( l ) t h i s goes to zero as n •*• <*> and thus (lk) i s proved.

We have

(19) E expUtR. (n)] = [« expf l_ itlAn) |] [ff exp[

= exp|-*2/2

n n

and because of (lU) i t is clearly sufficient to prove the right hand side

o;f (19) converges to exp[-t /2j for every real t , and in fact we need

only show that for any subsequence in') there exists a further

subsequence in"} along which the convergence holds. Thus we may assume

without loss of generality that

(20) £_ ai.(n) "*" L as n

n

for some 0 5 1 5 1 , and thus that
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(21) I X?(n) -£+ 1 - L a s n •* <=° .
K

Using this assumption we show that the small martingale differences

constitute a martingale difference array which satisfies the conditions

(a), (b), and (c) of Theorem (2.3) of [5] (with the slight modification

that the convergence in (c) is to 1 - L > not 1 ) , so that

E expf I UXk(n)) •+ exp(-*2/2 [l-L])

and thus the result follows from (lk), (19), and (20).

For any n , le t

i 6 « Vn\ = |^. ( n ) ; 1 = 1 , 2 , . . . . » „ } »

where j 7 < j , if Z. < Z- , and put
T. *2 2

Z,(n) = Jf. (n) .
u H

(strictly j - , should fce indexed by n also, but this has been omitted for

the sake of simplicity.) Then for each n - 1 , we let

T (n) = ZQM = ° almost surely,

and

t \n) = ET^(n) < °° , m = 1 , 2 , . . . , w .
W O T W

Since

S { ^ , ( M ) I G An)\ = E\X. {n) \ F. fn)[ = 0 almost surely,

{rm(w), G (w); m = l , 2, . . . , m } i s a martingale sequence for each
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n > 1 . Moreover we have from (A),

(22) max | z 7 (n ) | = max |.y.(n)| i s uniformly bounded in £ p norm,

(23) max \zAn)\ = max | * . ( n ) | - ^ 0 ,

and from (21) ,

m

(2k) I Z?(n) = I X2An) - ^ 1 - L .
1=1 L jiUn

 3

Thus {Z7(n), G (n); m = 1, 2, . . . , m } i s a mar t ingale d i f ference a r ray

which s a t i s f i e s t he condi t ions of Theorem (2 .3) of [5] and the proof i s

complete.

4. Proof of lemma

We give an indication only of how to prove the results since the

method in most cases is similar.

Suppose for instance conditions (B) hold. Then there exists for any

subsequence {n1} a further subsequence {n"} such that

I O2.(n") •* L as n" + ~

for some L € [0 , 1] . Then by cons idera t ion of

{Z7(«)> G,(w), 1=1, . . . , m } for each n € {«"} we may use t he method

of C6] t o show t h a t t he condi t ions (A) hold along t he subsequence in") .

But t h i s implies condi t ions (A) hold as n •*• °° . S imi la r ly by

subsequencing and using the methods of Scot t [6] we may show (B) , (C) , and

(D) are equivalent under sAn) = 1 .

o

To show t h a t (B) , (C), and (D) a re equivalent t o (E) under 8, (n) = 1
n

and y "* 0 , note t h a t condi t ions (E) and (C) are equivalent s ince
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(25) I
1

I x2d*{x/oAn)) + I f
i i

x 5G W I' £U J Ixl^c

where the f irs t term on the right hand side of (25) is bounded by

I o^(«) [ x2d$(x) 2 sup ( x2d$(x)

|x|>E/(sup a An))

a n d s u p o . ( n ) £ y " ^ 0 a s n -*•<*>.
3

Finally we show conditions (F) and (E) are equivalent under

8? (n) = 1 , Y + 0 and ( l ) . Note (25) and observe that
Kn n

(26) I I

\x\<e

K

and the result will follow provided we can show the second term in (26)
converges to zero. Recalling that the number of indices in U does not

exceed Y we haven
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( .Lj .

£ Y~ # sup x dA . '(a;)
n y€£/ J | x | < e J

-e J |x |<e

'n { n n

-*• 0 as n •* °°
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