Martingale central limit theorems without uniform asymptotic negligibility

R.J. Adler and D.J. Scott

Abstract

Central limit theorems are obtained for martingale arrays without the requirement of uniform asymptotic negligibility. The results obtained generalise the sufficiency part of Zolotarev's extension of the classical Lindeberg-Feller central limit theorem [V.M. Zolotarev, Theor. Probability Appl. 12 (1967), 608-618] and also the main martingale central limit theorem (not functional central limit theorem however) of D.L. McLeish [Ann. Probability 2 (1974), 620-628.

1. Introduction

In his 1967 paper [7] Zolotarev established two forms of a central limit theorem for sums of independent random variables, which did not require the summands to be uniformly asymptotically negligible as does the classical Lindeberg-Feller central limit theorem (see Loève [4], p. 280). The idea behind Zolotarev's investigation is quite simple; the summands are divided into "big" ones (those for which the uniform asymptotic negligibility condition doesn't hold) and "small" ones (those for which it does). If the big summands approach normality, and the small ones obey the Lindeberg condition, then the central limit theorem will hold, and moreover these requirements are necessary. In this paper we extend the sufficiency part of Zolotarev's results to the martingale case. The results obtained

Received 2 April 1975. This investigation was begun by the firstnamed author under the supervision of Dr C.C. Heyde, to whom thanks are due for his invaluable assistance and encouragement.
extend the central limit theorem of McLeish ([5], Theorem (2.3)) which constitutes the most general central limit theorem for martingales so far obtained, containing the results of Brown [1], Dvoretzky [2], and Scott [6]. The results are not functional central limit theorems however. It is clear that when uniform asymptotic negligibility conditions are not imposed it is not in general possible to obtain functional central limit theorems.

2. Notation and results

Let (Ω, A, P) be a probability space and for each $n \geq 1$ let $\left\{S_{k}(n), F_{k}(n) ; 1 \leq k \leq k_{n}\right\}$ be a martingale sequence defined on (Ω, A, P). Put $S_{0}(n)=X_{0}(n)=0$ almost surely, $S_{k}(n)=\sum_{j=1}^{k} X_{j}(n)$ and assume $E S_{k}^{2}(n)=s_{k}^{2}(n)<\infty$ for $1 \leq k \leq k_{n}$ and all $n \geq 1$. We define

$$
\begin{aligned}
\sigma_{j}^{2}(n) & =E X_{j}^{2}(n) \\
\tilde{\sigma}_{j}^{2}(n) & =E\left\{X_{j}^{2}(n) \mid F_{j-1}(n)\right\}, \\
\Phi(x) & =\int_{-\infty}^{x} e^{-x^{2} / 2} d x \\
\Phi_{j}^{(n)}(x) & =\Phi\left(x / \sigma_{j}(n)\right),
\end{aligned}
$$

and

$$
\Delta_{j}^{(n)}(x)=P\left\{X_{j}(n) \leq x \mid F_{j-1}(n)\right\}-\Phi_{j}^{(n)}(x)
$$

THEOREM. Let γ_{n} be a bounded sequence of positive real numbers. If

$$
\begin{equation*}
\gamma_{n}^{-1} \alpha_{n}\left(\log \alpha_{n}^{-1}\right)^{\frac{1}{2}}+0 \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n}=\sup _{j \in \bar{U}_{n}} \sup _{x} E\left|\Delta_{j}^{(n)}(x)\right| \tag{2}
\end{equation*}
$$

and U_{n} is the set of values of the index j such that $\sigma_{j}^{2}(n)<\gamma_{n}$, and
the following conditions hold
(3)
(4)
(6)

$$
\text { (A) }\left\{\begin{array}{l}
\sum_{j \in U_{n}} \sigma_{j}^{2}(n) \leq 1, \tag{5}\\
\max _{j \in U_{n}}\left|x_{j}(n)\right| \xrightarrow{P} 0, \\
\max _{j \in U_{n}}\left|x_{j}(n)\right| \text { is uniformly bounded in } L_{2} \quad n o r m, \\
\sum_{j \in U_{n}} x_{j}^{2}(n)+\sum_{j \in \bar{U}_{n}} \sigma_{j}^{2}(n) \xrightarrow{P} 1,
\end{array}\right.
$$

then

$$
P\left(S_{k_{n}}(n) \leq x\right) \rightarrow \Phi(x) \text { as } n \rightarrow \infty, \quad \forall x
$$

Here $" \xrightarrow{P}$ " denotes "converges in probability to".
We can obtain the result of the theorem under slightly more restrictive conditions, by means of the following lemma.

LEMMA. Let $\varepsilon_{k_{n}}^{2}(n)=1$. Then the conditions (A) are simplified by the equivalent sets of conditions (B), (C), and (D). Under $\gamma_{n} \rightarrow 0,(B)$, (C), and (D) are also equivalent to (E), and under (1) and $\gamma_{n} \rightarrow 0$, to (F) also.
(B) $\left\{\begin{array}{l}\sum_{j \in U_{n}}\left(X_{j}^{2}(n)-\sigma_{j}^{2}(n)\right) \xrightarrow{P} 0, \\ \sum_{j \in U_{n}} x_{j}^{2}(n) I\left(\left|X_{j}(n)\right| \geq \varepsilon\right) \xrightarrow{P} 0, \varepsilon>0,\end{array}\right.$
(9)
(C) $\left\{\begin{array}{l}\sum_{j \in U_{n}}\left(\tilde{\sigma}_{j}^{2}(n)-\sigma_{j}^{2}(n)\right) \xrightarrow{P} 0, \\ \sum_{j \in U_{n}} E\left\{X_{j}^{2}(n) I\left(\left|X_{j}(n)\right| \geq \varepsilon\right) \mid F_{j-1}(n)\right\} \xrightarrow{P} 0, \forall \varepsilon>0,\end{array}\right.$
(D) $\left\{\begin{array}{l}\sum_{j \in U_{n}}\left(x_{j}^{2}(n)-\sigma_{j}^{2}(n)\right) \xrightarrow{P} 0, \\ \sup _{j \in U_{n}} x_{j}^{2}(n) \xrightarrow{P} 0,\end{array}\right.$
(E) $\left\{\begin{array}{l}\sum_{j \in U_{n}}\left[\tilde{\sigma}_{j}^{2}(n)-\sigma_{j}^{2}(n)\right) \xrightarrow{P} 0, \\ \sum_{j \in U_{n}} \int_{|x| \geq \varepsilon} x^{2} d \Delta_{j}^{(n)}(x) \xrightarrow{P} 0, \forall \varepsilon>0,\end{array}\right.$
(F)
(12)

$$
\left\{\begin{array}{l}
\sum_{j \in U_{n}}\left[\tilde{\sigma}_{j}^{2}(n)-\sigma_{j}^{2}(n)\right) \xrightarrow{P} 0 \\
\sum_{j=1}^{k_{n}} \int_{|x|<\varepsilon} x^{2} d \Delta_{j}^{(n)}(x) \xrightarrow{P} 0, \quad \forall \varepsilon>0
\end{array}\right.
$$

We use $I(\cdot)$ to denote the indicator function.
When the martingale differences $\left\{X_{j}(n)\right\}$ are actually independent we can observe that the above results contain the sufficiency part of Zolotarev's results by choosing $\gamma_{n}=\beta_{n}^{\frac{3}{2}}$, where $\beta_{n}=\sup _{1 \leq j \leq k_{n}} L\left\{P\left(X_{j}(n) \leq x\right), \Phi_{j}^{(n)}(x)\right)$ and L is the Levy metric. Noting Lemma 2 of [7] it is not difficult to show (1), (C), and $\gamma_{n} \rightarrow 0$ are equivalent to the conditions of the theorem of [7] and (1), (F), and $\gamma_{n} \rightarrow 0$ are equivalent to the conditions of the theorem (second version) of [7].

If the martingale difference array $\left\{X_{j}(n)\right\}$ satisfies the conditions of Theorem (2.3) of [5] then clearly

$$
\sup _{n} \sup _{1 \leq j \leq k_{n}} \sigma_{j}^{2}(n)<M<\infty,
$$

and taking $\gamma_{n}=2 M,\left\{X_{j}(n)\right\}$ also satisfies the conditions of our theorem. Thus the results above extend McLeish's Theorem (2.3) also.

3. Proof of the theorem

We must show that

$$
\begin{equation*}
E \exp \left(i t S_{k_{n}}(n)\right) \rightarrow e^{-t^{2} / 2} \tag{13}
\end{equation*}
$$

for each real t. For every $j \in \bar{U}_{n}$ we let $Y_{j}(n)$ be distributed as $N\left(0, \sigma_{j}^{2}(n)\right)$ independently of each other and of the σ-field generated by k_{n}
$\bigcup_{j=1}^{U} F_{j}(n)$ and for $j \in U_{n}$ simply set $Y_{j}(n)=X_{j}(n)$. Then letting

$$
R_{k}(n)=\sum_{j=1}^{k} Y_{j}(n)+\sum_{j=k+1}^{k_{n}} X_{j}(n), 1 \leq k \leq k_{n},
$$

we will show first that

$$
\begin{equation*}
\left|E \exp \left(i t R_{k_{n}}(n)\right)-E \exp \left(i t S_{k_{n}}(n)\right)\right| \rightarrow 0 \tag{14}
\end{equation*}
$$

Now, using the convention that $\sum_{j=k}^{l} a_{j}=0$ for $k>l$,
(15) $\left|E \exp \left(i t R_{k_{n}}(n)\right)-E \exp \left(i t S_{k_{n}}(n)\right)\right|$

$$
\left.=\mid \sum_{k=0}^{k_{n}} E\left[\exp \left(\sum_{j=k+1}^{k_{n}} i t Y_{j}(n)+\sum_{j=1}^{k-1} i t X_{j}(n)\right) \mid e^{i t Y_{k}(n)}-e^{i t X_{k}(n)}\right)\right] \mid
$$

$$
=\left\lvert\, \sum_{k=0}^{k_{n}} E\left[\operatorname { e x p } [\begin{array} { l }
{ k _ { n } } \\
{ j = k + 1 }
\end{array} i t Y _ { j } (n)] \left[E\left[\left(\exp \sum_{j=1}^{k-1} i t X_{j}(n)\right)\left(e^{i t Y_{k}(n)}-e^{i t X_{k}(n)}\right]\right) \mid\right.\right.\right.
$$

$$
\leq \sum_{k=0}^{k_{n}} E\left|E\left\{\left(\exp \sum_{j=1}^{k-1} i t X_{j}(n)\right)\left(e^{i t Y_{k}(n)}-e^{i t X_{k}(n)}\right) \mid F_{k-1}(n)\right\}\right|
$$

$$
\leq \sum_{k=0}^{k_{n}} E\left|E\left\{e^{i t Y_{k}(n)} e^{i t X_{k}(n)} \mid F_{k-1}(n)\right\}\right|
$$

$$
=\sum_{k \in \bar{U}_{n}} E\left|E\left\{e^{i t Y_{k}(n)}-e^{i t X_{k}(n)} \mid F_{k-1}(n)\right\}\right|
$$

The sum in (15) can be treated in the following way. Define a sequence of
numbers A_{n} by $A_{n}=\sqrt{2 \log \alpha_{n}^{-1}}$. By Feller [3] (page 175) we have

$$
\begin{aligned}
\Phi\left(-A_{n}\right) & =1-\Phi\left(A_{n}\right) \\
& <A_{n}^{-1} e^{-A_{n}^{2} / 2} \\
& =\alpha_{n}\left(2 \log \alpha_{n}^{-1}\right)^{-\frac{3}{2}} .
\end{aligned}
$$

Since for $j \in \bar{U}_{n}, \sigma_{j}(n) \leq 1$, it follows that

$$
\begin{align*}
\Phi\left(-A_{n} / \sigma_{j}(n)\right) & =1-\Phi\left(A_{n} / \sigma_{j}(n)\right) \tag{16}\\
& <\alpha_{n}\left(2 \log \alpha_{n}^{-1}\right)^{-\frac{3}{2}} .
\end{align*}
$$

We have thus

$$
\begin{aligned}
& E\left|E\left\{e^{i t X_{k}(n)}-e^{i t Y_{k}(n)} \mid F_{k-1}(n)\right\}\right| \\
& =E\left|\int e^{i t x} d \Delta_{k}^{(n)}(x)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Treating these forms separately
(17) $\quad I_{1} \leq E \int_{-\infty}^{-A_{n}}\left|d \Delta_{k}^{(n)}(x)\right| \leq E\left(P\left[X_{k}(n) \leq-A_{n} \mid F_{k-1}(n)\right\}+\Phi\left(-A_{n} / \sigma_{k}(n)\right)\right)$

$$
\begin{aligned}
& \leq 2 \Phi\left(-A_{n} / \sigma_{k}(n)\right)+\alpha_{n} \\
& \leq 2 \alpha_{n}\left(2 \log \alpha_{n}^{-1}\right)^{-\frac{1}{2}}+\alpha_{n}
\end{aligned}
$$

on using (2) and (16). Furthermore

$$
\begin{align*}
I_{2} & \leq E\left\{\mid \int_{-A_{n}}^{A} i t e^{i t x_{\Delta}^{(n)}(x) d x\left|+\left|\left[e^{i t x_{\Delta}^{(n)}(x)}\right]_{-A_{n}}^{n}\right|\right\}}\right. \tag{18}\\
& \leq t E \int_{-A_{n}}^{n}\left|\Delta_{k}^{(n)}(x)\right| d x+2 \alpha_{n} \\
& \leq 2 t A_{n}{ }_{n}+2 \alpha{ }_{n} \\
& =2 \alpha_{n}\left(1+t \sqrt{2 \log \alpha_{n}^{-1}}\right) .
\end{align*}
$$

But $k \in \bar{U}_{n}$ entails $\sigma_{k}^{2}(n) \geq \gamma_{n}$ and since $\sum_{k \in \bar{U}_{n}} \sigma_{k}^{2}(n) \leq 1$ there are at most γ_{n}^{-1} indices in \bar{U}_{n}. Combining this with (18), (17), and a similar bound for I_{3}, we obtain

$$
\begin{aligned}
& \sum_{k \in \bar{U}}^{n} \\
& E\left|E\left\{e^{i t X_{k}(n)} e^{i t Y_{k}(n)} \mid F_{k-1}(n)\right\}\right| \\
& \leq \gamma_{n}^{-1}\left\{4 \alpha_{n}+2 t \alpha_{n} \sqrt{2 \log \alpha_{n}^{-1}}+4 \alpha_{n}\left(2 \log \alpha_{n}^{-1}\right)^{-\frac{1}{2}}\right\}
\end{aligned}
$$

Under (1) this goes to zero as $n \rightarrow \infty$ and thus (14) is proved.
We have
(19) $\quad E \exp \left[i t R_{k_{n}}(n)\right]=\left[E \exp \left(\sum_{k \in \bar{U}_{n}} i t Y_{k}(n)\right)\right]\left[E \exp \left(\sum_{k \in U_{n}} i t X_{k}(n)\right)\right]$

$$
=\exp \left[-t^{2} / 2 \sum_{k \in \bar{U}_{n}} \sigma_{k}^{2}(n)\right)\left[E \exp \left(\sum_{k \in U_{n}} i t X_{k}(n)\right)\right],
$$

and because of (14) it is clearly sufficient to prove the right hand side of (19) converges to $\exp \left(-t^{2} / 2\right)$ for every real t, and in fact we need only show that for any subsequence $\left\{n^{\prime}\right\}$ there exists a further subsequence $\left\{n^{\prime \prime}\right\}$ along which the convergence holds. Thus we may assume without loss of generality that

$$
\begin{equation*}
\sum_{k \in \bar{U}_{n}} \sigma_{k}^{2}(n) \rightarrow L \quad \text { as } \quad n \rightarrow \infty \tag{20}
\end{equation*}
$$

for some $0 \leq L \leq 1$, and thus that
(21)

$$
\sum_{k \in U_{n}} X_{k}^{2}(n) \xrightarrow{P} 1-L \text { as } n \rightarrow \infty
$$

Using this assumption we show that the small martingale differences constitute a martingale difference array which satisfies the conditions (a), (b), and (c) of Theorem (2.3) of [5] (with the slight modification that the convergence in (c) is to $1-L$, not 1), so that

$$
E \exp \left(\sum_{k \in U_{n}} i t X_{k}(n)\right) \rightarrow \exp \left(-t^{2} / 2[1-L]\right)
$$

and thus the result follows from (14), (19), and (20).
For any n, let

$$
\left\{x_{j}(n) ; j \in U_{n}\right\}=\left\{x_{j_{\eta}}(n) ; \tau=1,2, \ldots, m_{n}\right\},
$$

where $j_{\tau_{1}}<j_{\eta_{2}}$ if $\tau_{1}<\tau_{2}$, and put

$$
z_{\chi}(n)=x_{j_{\eta}}(n)
$$

(Strictly j_{q} should be indexed by n also, but this has been omitted for the sake of simplicity.) Then for each $n \geq 1$, we let

$$
\begin{aligned}
& T_{0}(n)=Z_{0}(n)=0 \text { almost surely } \\
& T_{m}(n)=\sum_{l=1}^{m} z_{\eta}(n) \\
& G_{m}(n)=F_{j_{m+1}-1}(n)
\end{aligned}
$$

and

$$
t_{m}^{2}(n)=E T_{m}^{2}(n)<\infty, m=1,2, \ldots, m_{n}
$$

Since

$$
E\left\{X_{\eta}(n) \mid G_{Z-1}(n)\right\}=E\left\{X_{j_{\eta}}(n) \mid F_{j_{\eta}-1}(n)\right\}=0 \text { almost surely }
$$

$\left\{T_{m}(n), G_{m}(n) ; m=1,2, \ldots, m_{n}\right\}$ is a martingale sequence for each
$n \geq 1$. Moreover we have from (A),
(22) $\max _{l \leq \imath S_{n}}\left|z_{\eta}(n)\right|=\max _{j \in U_{n}}\left|X_{j}(n)\right|$ is uniformly bounded in L_{2} norm,
(23) $\max _{l \leq l \leq m_{n}}\left|z_{Z}(n)\right|=\max _{j \in U_{n}}\left|X_{j}(n)\right| \xrightarrow{P} 0$,
and from (21),

$$
\begin{equation*}
\sum_{\eta=1}^{m} z_{\eta}^{2}(n)=\sum_{j \in U_{n}} X_{j}^{2}(n) \xrightarrow{P} 1-L \tag{24}
\end{equation*}
$$

Thus $\left\{Z_{Z}(n), G_{m}(n) ; m=1,2, \ldots, m_{n}\right\}$ is a martingale difference array which satisfies the conditions of Theorem (2.3) of [5] and the proof is complete.

4. Proof of lemma

We give an indication only of how to prove the results since the method in most cases is similar.

Suppose for instance conditions (B) hold. Then there exists for any subsequence $\left\{n^{\prime}\right\}$ a further subsequence $\left\{n^{\prime \prime}\right\}$ such that

$$
\sum_{j \in U_{n}} \sigma_{j}^{2}\left(n^{\prime \prime}\right) \rightarrow L \text { as } n^{\prime \prime} \rightarrow \infty
$$

for some $L \in[0,1]$. Then by consideration of $\left\{z_{\eta}(n), G_{\eta}(n), Z=1, \ldots, m_{n}\right\}$ for each $n \in\left\{n^{\prime \prime}\right\}$ we may use the method of [6] to show that the conditions (A) hold along the subsequence $\left\{n^{\prime \prime}\right\}$. But this implies conditions (A) hold as $n \rightarrow \infty$. Similarly by subsequencing and using the methods of Scott [6] we may show (B), (C), and (D) are equivalent under $s_{k}^{2}(n)=1$.

To show that (B), (C), and (D) are equivalent to (E) under $s_{k_{n}}^{2}(n)=1$ and $Y_{n} \rightarrow 0$, note that conditions (E) and (C) are equivalent since
(25)

$$
\begin{aligned}
& \sum_{j \in U_{n}} E\left\{X_{j}^{2}(n) I\left(\left|X_{j}(n)\right| \geq \varepsilon\right) \mid F_{j-1}(n)\right\} \\
&=\sum_{j \in U_{n}} \int_{|x| \geq \varepsilon} x^{2} d \Phi\left(x / \sigma_{j}(n)\right)+\sum_{j \in U_{n}} \int_{|x| \geq \varepsilon} x^{2} d \Delta_{j}^{(n)}(x)
\end{aligned}
$$

where the first term on the right hand side of (25) is bounded by

$$
\begin{aligned}
\sum_{j \in U_{n}} \sigma_{j}^{2}(n) \int_{|x| \geq \varepsilon / \sigma_{j}(n)} x^{2} d \Phi(x) & \geq \sup _{j \in U_{n}} \int_{|x| \geq \varepsilon / \sigma_{j}(n)} x^{2} d \Phi(x) \\
& =\int_{|x| \geq \varepsilon /\left(\sup _{j \in U_{n}} \sigma_{j}(n)\right)} x^{2} d \Phi(x)
\end{aligned}
$$

and $\sup _{j \in U} \sigma_{j}(n) \leq \gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Finally we show conditions (F) and (E) are equivalent under $s_{k_{n}}^{2}(n)=1, \gamma_{n} \rightarrow 0$ and (1). Note (25) and observe that (26) $\sum_{j \in U_{n}} \int_{|x| \geq \varepsilon} x^{2} d \Delta_{j}^{(n)}(x)$ $=\sum_{j \in U_{n}}\left\{\tilde{\sigma}_{j}^{2}(n)-\sigma_{j}^{2}(n)\right]-\sum_{j \in U_{n}} \int_{|x|<\varepsilon} x^{2} d \Delta_{j}^{(n)}(x)$ $=\sum_{j \in U_{n}}\left[\tilde{\sigma}_{j}^{2}(n)-\sigma_{j}^{2}(n)\right)+\sum_{j \in U_{n}} \int_{|x|<\varepsilon} x^{2} d \Delta{ }_{j}^{(n)}(x)-\sum_{j=1}^{k_{n}} \int_{|x|<\varepsilon} x^{2} d \Delta_{j}^{(n)}(x)$
and the result will follow provided we can show the second term in (26) converges to zero. Recalling that the number of indices in \bar{U}_{n} does not exceed γ_{n}^{-1} we have

$$
\begin{aligned}
E \sum_{j \in \bar{U}_{n}} \int_{|x|<\varepsilon} x^{2} d \Delta_{j}^{(n)}(x) & \\
& \leq \gamma_{n}^{-1} E\left(\sup _{j \in \bar{U}_{n}} \int_{|x|<\varepsilon} x^{2} d \Delta_{j}^{(n)}(x)\right) \\
& \leq \gamma_{n}^{-1} E\left(\sup _{j \in \bar{U}_{n}}\left\{\left|x^{2} \Delta_{j}^{(n)}(x)\right|_{-\varepsilon}^{\varepsilon}-2 \int_{|x|<\varepsilon} x \Delta_{j}^{(n)}(x) d x\right\}\right) \\
& \leq \gamma_{n}^{-1}\left(2 \varepsilon^{2} \alpha_{n}+4 \varepsilon^{2} \alpha_{n}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

References

[1] B.M. Brown, "Martingale central limit theorems", Ann. Math. Statist. 42 (1971), 59-66.
[2] Aryeh Dvoretzky, "Central limit theorems for dependent random variables and some applications", Abstract 81, Ann. Math. Statist. 40 (1969), 1871.
[3] William Feller, An introduction to probability theory and its applications, Volume I, 3rd ed. (John Wiley \& Sons, New York, Iondon, Sydney, 1968).
[4] Michel Loève, Probability theory, 3rd ed. (Van Nostrand, Princeton, New Jersey; Toronto, Ontario; London; 1963).
[5] D.L. McLeish, "Dependent central limit theorems and invariance principles", Ann. Probability 2 (1974), 620-628.
[6] D.J. Scott, "Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach", Adv. in Appl. Probability 5 (1973), 119-137.
[7] V.M. Zolotarev, "A generalization of the Lindeberg-Feller theorem", Theor. Probability Appl. 12 (1967), 608-618.

School of Mathematics, University of New South Wales, Kensington, New South Wales;

Department of Probability and Statistics, University of Sheffield, Sheffield, England.

