Canad. Math. Bull. Vol. 23 (4), 1980

COMPLETE QUASI-UNIFORM SPACES

BY

SHIRLEY M. HUFFMAN, TROY L. HICKS, AND JOHN W. CARLSON

ABSTRACT. An example is given of a topological space that does not admit a strongly complete quasi-uniform structure.

The basic definitions relating to quasi-uniform spaces are given in Murdeshwar and Naimpally [2]. A quasi-uniform space (X, \mathcal{U}) is complete (strongly complete) if every \mathcal{U} -Cauchy filter has non-empty adherence (limit). An open cover \mathscr{C} of a topological space is a directed open cover provided that if U and Vare members of \mathscr{C} , then there is a $W \in \mathscr{C}$ such that $U \cup V \subset W$. A topological space (X, t) is orthocompact (countably orthocompact, weakly orthocompact) if for every (countable, directed) open cover \mathcal{O} , there exists an open refinement \mathscr{R} such that \mathscr{R} is a cover and for each $x \in X$, $\bigcap \{R \mid x \in R \in \mathscr{R}\} \in t$.

In answer to a long-standing open question, we construct a topological space E that does not admit a strongly complete quasi-uniform structure. The space does admit a \mathscr{C} -complete, hence a complete quasi-uniform structure. The space is weakly orthocompact but not countably orthocompact, and it is a dense subspace of a space which does admit a strongly complete quasi-uniform structure.

EXAMPLE. Let $Y = \prod_{i=1}^{\infty} X_i$ with the product topology *t*, where for each $i \in \mathbb{N}$, $X_i = \{0, 1\}$ with topology $t_i = \{\{0\}, X_i, \phi\}$. Let $E = \{x \in Y \mid \text{for some } i, x(i) \neq 1\}$ and let *u* denote the subspace topology. For each $i \in \mathbb{N}$, let x_i be defined by $x_i(i) = 0$ and $x_i(j) = 1$ whenever $j \neq i$; let y_i be defined by $y_i(j) = 1 - x_i(j)$; let $\overline{0}$ be defined by $\overline{0}(i) = 0$ for all $i \in \mathbb{N}$. For each $i \in \mathbb{N}$, x_i belongs to a smallest open set $S_i = \{x \in E \mid x(i) = 0\}$, and $\overline{0}$ belongs to every open set of *E*.

PROPOSITION 1. The space (E, u) is weakly orthocompact so that the fine transitive quasi-uniform structure is complete.

Proof. Let \mathscr{C} be a directed open cover of E. Since $\mathscr{G} = \{S_i \mid i \in \mathbb{N}\}$ is a refinement of every open cover, $\mathscr{G}^* = \{\bigcup_{i=1}^n S_i \mid n \in \mathbb{N}\}$ is also a refinement of \mathscr{C} . As \mathscr{G} is well ordered by set inclusion, it is a Q-cover. Thus the fine transitive quasi-uniform structure on (E, u) is complete by the second corollary to Theorem 2.2 of [1].

Received by the editors January 3, 1979 and, in revised form, May 3, August 7, and October 3, 1979.

LEMMA. For each quasi-uniformity \mathcal{U} compatible with u and for each $V \in \mathcal{U}$, there exists $j \in \mathbb{N}$ such that $S_i \neq V(x_i)$.

Proof. Let $V \in \mathcal{U}$ and choose $W \in \mathcal{U}$ such that $W^2 \subset V$. Suppose that for each $j \in \mathbb{N}$, $S_j = V(x_j)$. For each $j \in \mathbb{N}$, $\overline{0} \in W(x_j)$ so that $W(\overline{0}) \subset V(x_j)$ and $W(\overline{0}) \subset \bigcap_{i=1}^{\infty} S_i = \{\overline{0}\}$, a contradiction.

PROPOSITION 2. The space E does not admit a strongly complete quasi-uniform structure.

Proof. Let \mathscr{F} denote the filter $\{F \mid \{y_i \mid i \in \mathbb{N}\} \subset F \subset E\}$. To show that \mathscr{F} does not converge, let $x \in S_i$. Then $y_i \notin S_i$ so that $S_i \notin \mathscr{F}$. Now let \mathscr{U} be any quasiuniform structure compatible with u; we show that \mathscr{F} is a \mathscr{U} -Cauchy filter. Let $U \in \mathscr{U}$ and let $V \in \mathscr{U}$ such that $V^2 \subset U$. By the preceding lemma, there exists $j \in \mathbb{N}$ such that $S_j \neq V(x_j)$. Let $x \in V(x_j) - S_j$. Then x(j) = 1 and $y_j \in V(x)$ so that $y_i \in U(x_i)$. For all $i \neq j$, $y_i \in S_i \subset U(x_i)$, thus $U(x_i) \in \mathscr{F}$.

COROLLARY. The space E is not countably orthocompact.

REMARK. The following questions remain open: Does there exist a (Hausdorff, regular) topological space that admits no (strongly) complete quasiuniform structure?

ACKNOWLEDGEMENT. The referee's input resulted in a shortened and improved paper.

References

1. Fletcher, P. and Lindgren, W. F., C-complete quasi-uniform spaces, Arch. Math. 30 (1978), 175-180.

2. Murdeshwar, M. G. and Naimpally, S. A., *Quasi-uniform topological spaces*, Noordhoff Ltd. Groningen (1966).

Southwest Missouri State University Springfield, Missouri 65802

UNIVERSITY OF MISSOURI-ROLLA Rolla, Missouri 65401

AND

498

Emporia Kansas State College Emporia, Kansas 66801