REMARKS ON BOUNDED SOLUTIONS OF LINEAR SYSTEMS

Elena Topuzu and Paul Topuzu

In the case of continuous time systems with bounded operators (coefficients) the following result, of Perron type is well known: "The linear differential system $\dot{x}=A x+f(t)$ has, for every function f continuous and bounded on \mathbb{R}, a unique bounded solution on \mathbb{R}, if and only if the spectrum of the operator A has no points on the imaginary axis".

In this paper we give a discrete version of this result. The case of continuous time systems with A an unbounded, infinitesimal generator of a C_{0} group, is considered in the last section.

1. Preliminaries

Let X be a complex Banach space. We denote by $\mathcal{B}(X)$ the Banach algebra of all bounded linear operators from X into itself. If $A \in \mathcal{B}(X)$ and I is the unity of $\mathcal{B}(X)$ then

$$
\rho(A)=\left\{\lambda \in \mathbb{C}: \exists(\lambda I-A)^{-1}=R(\lambda, A) \in \mathcal{B}(X)\right\}
$$

and

$$
\sigma(A)=\{\lambda \in \mathbb{C}: \lambda \notin \rho(A)\}
$$

will denote respectively, the resolvent set and the spectrum of the operator A.
Let now $A: X \rightarrow X$ a bounded linear operator. For every continuous function $f: \mathbb{R} \rightarrow X$ we consider the differential equation

$$
(A, f) \quad \dot{x}=A x+f(t)
$$

Connections between admissibility, asymptotical behaviours of solutions of the system (A, f) and some spectral properties of the operator A, have been studied by many authors $[1,2,3,4]$.

It is known (see for example, $[1,2]$) that (A, f) has a unique bounded solution on \mathbb{R}, for every f continuous and bounded on \mathbb{R}, if and only if

$$
\begin{equation*}
i \mathbb{R}=\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda=0\} \subset \rho(A) \tag{1.1}
\end{equation*}
$$

In this paper, using a discrete Green's function (constructed in Section 2), a similar result is given for linear discrete time systems.

Section 3 is concerned with the case when A is unbounded. In this case we do not know if (1.1) is a sufficient condition to assure the validity of the previous result.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

2. Bounded solutions of linear discrete time systems

Let us consider $A \in \mathcal{B}(X)$ and

$$
f=\left(f_{n}\right)_{n \in Z}=\left(\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right)
$$

a \mathbb{Z}-indexed sequence of elements from X.
If $0 \in \rho(A)$ then it is easy to see that the linear discrete time system
$(A, f)_{d}$

$$
x_{n+1}=A x_{n}+f_{n}
$$

has solution $\left(x_{n}\right)_{n \in Z}$ given by

$$
x_{n}= \begin{cases}A^{n} x_{0}+\sum_{j=1}^{n-1} A^{n-j-1} f_{j}, & \text { for } n \geqslant 1 \\ A^{n} x_{0}+\sum_{j=n}^{-1} A^{n-j-1} f_{j}, & \text { for } n<-1\end{cases}
$$

uniquely determined by the value $x_{0} \in X$. In particular, if $f_{n}=0$ for every $n \in \mathbb{Z}$ then $\left(x_{n}=A^{n} x_{0}\right)_{n \in Z}$ is the unique solution for the discrete time system

$$
\begin{equation*}
x_{n+1}=A x_{n}, \quad x_{0} \in X \tag{A}
\end{equation*}
$$

Throughout this section A will be a bounded linear operator with the property $0 \in \rho(A)$.

Also we denote

$$
\ell^{\infty}(\mathbb{Z}, X)=\left\{x=\left(x_{n}\right)_{n \in \mathbb{Z}}:\|x\|=\sup _{n}\left\|x_{n}\right\|<\infty\right\}
$$

and

$$
\begin{aligned}
& D_{1}=\{\lambda \in \mathbb{C}:|\lambda|<1\} \\
& C_{1}=\{\lambda \in \mathbb{C}:|\lambda|=1\}
\end{aligned}
$$

PROPOSITION 2.1. If $\sigma(A) \cap C_{1}=\emptyset$ and $\left(x_{n}=A^{n} x_{0}\right)_{n \in Z}$ is a solution of the system $(A)_{d}$ with $x_{0} \neq 0$ then $\left(x_{n}\right)_{n \in Z} \notin \ell^{\infty}(\mathbb{Z}, X)$.

Proof: Let us suppose that

$$
x=\left(x_{n}\right)_{n \in \mathbb{Z}}=\left(A^{n} x_{0}\right)_{n \in Z} \in \ell^{\infty}(\mathbb{Z}, X)
$$

that is

$$
\|x\|_{\infty}=\sup _{n \in \mathbb{Z}}\left\|x_{n}\right\|<\infty
$$

(i) If $\sigma(A) \subset D_{1}$ then we find a positive number $a<1$ such that

$$
\sigma(A) \subset\{\lambda \in \mathbb{C}:|\lambda|<a<1\}
$$

and hence (see for example, [5]) we can find $N>0$ such that

$$
\left\|A^{n}\right\|<N a^{n}, \quad \text { for every } \quad n>0
$$

from where, in particular, we obtain that:

$$
\sup _{n>0}\left\|A^{n} x\right\|<\infty, \quad \text { for every } x \in X
$$

Since for $m<0, \quad x_{m}=A^{m} x_{0}$, we have

$$
\left\|x_{0}\right\|=\left\|A^{-m} x_{m}\right\| \leqslant\left\|A^{-m}\right\| \cdot\left\|x_{m}\right\| \leqslant N a^{-m} \cdot\|x\|_{\infty}, \quad \forall m<0
$$

from where we obtain that $x_{0}=0$.
(ii) If

$$
\sigma(A) \subset \operatorname{Ext}\left(D_{1}\right)=\{\lambda \in \mathbb{C}:|\lambda|>1\}
$$

then $\sigma\left(A^{-1}\right) \subset D_{1}$ and

$$
\sup _{n \in Z}\left\|A^{n} x_{0}\right\|=\sup _{n \in Z}\left\|A^{-n} x_{0}\right\|=\sup _{n \in Z}\left\|\left(A^{-1}\right)^{n} x_{0}\right\| .
$$

Hence, using case (i),

$$
\left(A^{n} x_{0}\right)_{n \in Z} \in \ell^{\infty}(\mathbb{Z}, X)
$$

if and only if $x_{0}=0$. Moreover it follows that

$$
\sup _{n>0}\left\|\left(A^{-1}\right)^{n} x\right\|=\sup _{n<0}\left\|A^{n} x\right\|<\infty, \quad \text { for every } x \in X
$$

(iii) Finally, if

$$
\sigma(A)=\sigma_{1} \cup \sigma_{2}, \sigma_{1} \neq \emptyset, \sigma_{2} \neq \emptyset \text { and } \sigma_{1} \subset D_{1}, \sigma_{2} \subset \operatorname{Ext}\left(D_{1}\right)
$$

then, by the Dunford functional calculus, we can define the coresponding spectral projections

$$
P_{1}=\frac{1}{2 \pi i} \int_{\Gamma_{1}} R(\lambda, A) d \lambda, \quad P_{2}=\frac{1}{2 \pi i} \int_{\Gamma_{2}} R(\lambda, A) d \lambda
$$

where, for $j=1,2, \quad \Gamma_{j}$ is the boundary of a Cauchy domain D_{j} which contains σ_{j} and $\bar{D}_{1} \cap \bar{D}_{2}=\emptyset$.

It is well known [2,6] that $P_{1}+P_{2}=I, \quad P_{1} P_{2}=0$ and if $X_{j}=P_{j} X, j=1,2$ then both the subspaces X_{1} and X_{2} are invariant under the operator A. Moreover if A_{j} is the restriction of A to the subspace X_{j} then $\sigma\left(A_{j}\right)=\sigma_{j}, j=1,2$.

Let now $\left(x_{n}\right)_{n \in Z}=\left(A^{n} x_{0}\right)_{n \in Z}$ be arbitrary solution of the system $(A)_{d}$. Then for every $n \in \mathbb{Z}$ we can write:

$$
x_{n}=A^{n}\left(P_{1}+P_{2}\right) x_{0}=A^{n} P_{1} x_{0}+A^{n} P_{2} x_{0}=A_{1}^{n} P_{1} x_{0}+A_{2}^{n} P_{2} x_{0}
$$

If $P_{1} x_{0}=0$ (or $P_{2} x_{0}=0$) then $x_{n}=A_{2}^{n} P_{2} x_{0}$ (respectively $x_{n}=A_{1}^{n} P_{1} x_{0}$) and by (ii) (respectively by (i)) the boundedness of $\left(x_{n}\right)_{n \in Z}$ implies $P_{2} x_{0}=0$ (respectively $P_{1} x_{0}=0$), that is, $x_{0}=0$.

If $P_{1} x_{0} \neq 0$ and $P_{2} x_{0} \neq 0$ then $\sup _{n>0}\left\|A_{1}^{n} P_{1} x_{0}\right\|<\infty$ while $\left(A_{2}^{n} P_{2} x_{0}\right)_{n \geqslant 0}$ is unbounded and hence, $\left(x_{n}=A_{1}^{n} P_{1} x_{0}+A_{2}^{n} P_{2} x_{0}\right)_{n \in Z}$ is unbounded.

Proposition 2.2. Let A be a bounded linear operator from X into itself, with the property $0 \notin \sigma(A)$. The linear discrete time system $(A, f)_{d}$ has for each

$$
f=\left(f_{n}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z}, X)
$$

a unique solution

$$
x=\left(x_{n}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z}, X)
$$

if and only if $\sigma(A) \cap C_{1}=\emptyset$.
Proof: Let us suppose that for every $f \in \ell^{\infty}(\mathbb{Z}, X)$ the system $(A, f)_{d}$ has a unique bounded solution $\left(x_{n}\right)_{n \in Z}$. In particular, for every fixed $y \in X$ and for each $a \in C_{1}$ the system

$$
\begin{equation*}
x_{n+1}=A x_{n}-a^{n-1} y \tag{2.1}
\end{equation*}
$$

has a unique bounded solution.
By the substitution $x_{n}=a^{n-1} z_{n}$ the system (2.1) becames

$$
\begin{equation*}
z_{n+1}=a^{-1} A z_{n}-a^{-1} y \tag{2.2}
\end{equation*}
$$

It follows from here that $\left(x_{n}\right)_{n \in Z}$ is a solution for (2.1) if and only if

$$
\left(z_{n}\right)_{n \in \mathbb{Z}}=\left(a^{1-n} x_{n}\right)_{n \in \mathbb{Z}}
$$

is a solution of (2.2); moreover $\left(x_{n}\right)_{n \in Z}$ is bounded if and only if $\left(z_{n}\right)_{n \in \mathcal{Z}}$ is bounded. Since the system (2.1) has, for every $y \in X$ and $a \in C_{1}$, a unique bounded solution, it
follows that the system (2.2) has a unique bounded solution too, for every $y \in X$ and $a \in C_{1}$.

For $a \in C_{1}$ let us denote by

$$
z_{y}=\left(z_{n}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z}, X)
$$

the unique bounded solution of the discrete time system (2.2).
Now we remark that

$$
z_{n+k+1}=a^{-1} A z_{n+k}-a^{-1} y
$$

and therefore, for every $k \in \mathbb{Z},\left(z_{n+k}\right)_{n \in \mathbb{Z}}$ is also a bounded solution of (2.2). If we use the uniqueness property, it follows that $z_{n+k}=z_{n}$, for every $n \in \mathbb{Z}$, and $k \in \mathbb{Z}$; In particular we obtain $z_{k}=z_{0}$, for all $k \in \mathbb{Z}$. Hence we deduce that the solution $z_{y}=\left(z_{n}\right)_{n \in \mathbb{Z}}$ is given by a constant sequence, that is $z_{n}=z_{0}$ for every $n \in \mathbb{Z}$. By virtue of (2.2) we can write

$$
z_{0}=a^{-1} A z_{0}+a^{-1} y
$$

or equivalently

$$
(a I-A) z_{0}=y
$$

and hence, for every $y \in X$ we can find a unique element z_{0} (which depend on y) such that $(a I-A) z_{0}=y$.

From the previous arguments that $a \in \rho(A)$ and taking into acount that $a \in C_{1}$ was arbitrary, we obtain $\sigma(A) \cap C_{1}=\emptyset$.

Conversely, let us now suppose that $\sigma(A) \cap C_{1}=\emptyset$. By virtue of Proposition 2.1 we know that the equation $(A)_{d}$ has no bounded solution on \mathbb{Z}, except the case $x_{0}=0$. If for a sequence $\left(f_{n}\right)_{n \in \mathcal{Z}} \in \ell^{\infty}(\mathbb{Z}, X)$, the equation
$(A, f)_{d}$

$$
x_{n+1}=A x_{n}+f_{n}
$$

has two bounded solutions

$$
\left(x_{n}^{\prime}\right)_{n \in \mathbf{Z}} \text { and }\left(x_{n}^{\prime \prime}\right)_{n \in Z}
$$

then $\left(x_{n}^{\prime}-x_{n}^{\prime \prime}\right)_{n \in Z}$ is a bounded solution of equation $(A)_{d}$ and hence $x_{n}^{\prime}=x_{n}^{\prime \prime}$ for every $n \in \mathbb{Z}$.

It remain to show that for each bounded sequence $f=\left(f_{n}\right)_{n \in \mathbb{Z}}$, the equation $(A, f)_{d}$ has a bounded solution.

Let us take $f=\left(f_{n}\right)_{n \in Z} \in \ell^{\infty}(\mathbb{Z}, X)$. By writing

$$
\sigma_{1}=\sigma(A) \cap D_{1}, \quad \sigma_{2}=\sigma(A) \cap \operatorname{Ext}\left(D_{1}\right)
$$

we have that $\sigma_{1} \cup \sigma_{2}=\sigma(A)$ and $\sigma_{1} \cap \sigma_{2}=\emptyset$. Therefore we can associate the spectral projections P_{1}, P_{2} and the linear operators A_{1}, A_{2} (as in Proposition 2.1); it is possible that $\sigma_{1}=\emptyset$ (or $\sigma_{2}=\emptyset$) and in this case $P_{1}=0$ (or $P_{2}=0$).

The function $G: \mathbb{Z} \rightarrow \mathcal{B}(X)$ defined by

$$
G(n)= \begin{cases}A_{1}^{n} P_{1} & \text { if } n \geqslant 0 \\ -A_{2}^{n} P_{2} & \text { if } n<0\end{cases}
$$

will be called the discrete Greens function associated with the operator A.
Now for each

$$
f=\left(f_{n}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z}),
$$

we define:

$$
\begin{aligned}
x_{n}= & \sum_{j=-\infty}^{\infty} G(n-j-1) f_{j}=\sum_{j=-\infty}^{n-1} G(n-j-1) f_{j} \\
& -\sum_{j=n}^{\infty} G(n-j-1) f_{j}=\sum_{j=-\infty}^{n-1} A_{1}^{n-j-1} P_{1} f_{j}-\sum_{j=n}^{\infty} A_{2}^{n-j-1} P_{2} f_{j}
\end{aligned}
$$

and so we obtain a sequence $\left(x_{n}\right)_{n \in Z}$.
Since

$$
\begin{aligned}
A x_{n}+f_{n} & =A\left(P_{1}+P_{2}\right) x_{n}+\left(P_{1}+P_{2}\right) f_{n} \\
& =\left(A_{1} P_{1}+A_{2} P_{2}\right)\left(\sum_{j=-\infty}^{n-1} A_{1}^{n-j-1} P_{1} f_{j}-\sum_{j=-\infty}^{n-1} A_{2}^{n-j-1} P_{2} f_{j}\right) \\
& +\left(P_{1}+P_{2}\right) f_{n}=P_{1} f_{n}+\sum_{j=n}^{\infty} A_{1}^{n-j} P_{1} f_{j}-\sum_{j=n}^{\infty} A_{2}^{n-j} P_{2} f_{j}+P_{2} f_{n} \\
& =\sum_{j=-\infty}^{n} A_{1}^{n-j} P_{1} f_{j}-\sum_{j=n+1}^{\infty} A_{2}^{n-j} P_{2} f_{j}=x_{n+1}
\end{aligned}
$$

we conclude that $\left(x_{n}\right)_{n \in Z}$ is a solution of the equation $(A, f)_{d}$.
On the other hand

$$
\begin{aligned}
\left\|x_{0}\right\| & \leqslant\left\|\sum_{j=-\infty}^{n-1} A_{1}^{n-j-1} P_{1} f_{j}\right\|+\left\|\sum_{j=n}^{\infty} A_{2}^{n-j-1} P_{2} f_{j}\right\| \\
& \leqslant \sum_{j=0}^{\infty}\left\|A_{1}^{j} P_{1} f_{n-j-1}\right\|+\sum_{j=1}^{\infty}\left\|\left(A_{2}^{-1}\right)^{j} P_{2} f_{n-j-1}\right\| \\
& \leqslant\left(\left\|A_{1}^{j}\right\| \cdot\left\|P_{1}\right\|+\sum_{j=1}^{\infty}\left\|\left(A_{2}^{-1}\right)^{j}\right\| \cdot\left\|P_{2}\right\|\right) \cdot\|f\|_{\infty} .
\end{aligned}
$$

Since

$$
\sigma\left(A_{1}\right) \subset \text { int } D_{1}
$$

and

$$
\sigma\left(A_{2}^{-1}\right) \subset\left\{\frac{1}{\lambda}:|\lambda|>1\right\} \subset \text { int } D_{1}
$$

we can find two numbers $N_{1}, N_{2}>0$ and $a \in(0,1)$ such that

$$
\left\|A_{1}^{j}\right\| \leqslant N_{1} \cdot a^{j}, \quad\left\|\left(A_{2}^{-1}\right)^{j}\right\| \leqslant N_{2} \cdot a^{j}
$$

Hence

$$
\left\|x_{n}\right\| \leqslant \max \left(N_{1}, N_{2}\right) \cdot(1+a) \cdot(1-a)^{-1} \cdot\|f\|_{\infty}
$$

for every $n \in \mathbb{Z}$. Hence $\left(x_{n}\right)_{n \in \mathbb{Z}}$ is a bounded solution of the equation $(A, f)_{d}$.

3. Bounded solutions of linear systems with unbounded operators

Throughout this section, A will be a closed linear operator which generates a C_{0}-group $\{T(t)\}_{t \in \mathbb{R}}$ of bounded linear operators on a Banach space X.

Propisition 3.1. If for every function f, continuous and bounded on \mathbb{R}, the system (1.1) has a unique mild solution

$$
x(t)=T(t) x(0)+\int_{0}^{t} T(t-s) f(s) d s
$$

bounded on \mathbb{R}, then

$$
\sigma(A) \cap\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)=0\}=\sigma(A) \cap i \mathbb{R}=\emptyset
$$

Proof: For every $\beta \in \mathbb{R}$ and $y \in X$ we can consider the equations:

$$
\begin{aligned}
\left(A ;-e^{i \beta t} y\right) & \dot{x}=A x-e^{i \beta t} y \\
(A-i \beta I ;-y) & \dot{z}=(A-i \beta I) z-y
\end{aligned}
$$

It is well known that $A-i \beta I$ generates the following C_{0}-group of bounded linear operators

$$
\{S(t)\}_{t \in \mathbb{B}}=\left\{e^{-i \beta t} \cdot T(t)\right\}_{t \in \mathbb{R}}
$$

and therefore, every solution $x(\cdot)$ of equation $\left(A ;-e^{i \beta t} y\right)$ is defined on \mathbb{R} by

$$
\begin{equation*}
x(t)=T(t) x(0)-\int_{0}^{t} T(t-s) e^{i \beta_{s}} y d s \tag{3.1}
\end{equation*}
$$

Also, every solution of equation $(A-i \beta I,-y)$ is defined on \mathbb{R} by

$$
z(t)=S(t) z(0)-\int_{0}^{t} S(t-s) y d s
$$

or

$$
\begin{equation*}
z(t)=T(t) e^{-i \beta t} z(0)-\int_{0}^{t} T(t-s) e^{-i \beta(t-s)} y d s \tag{3.2}
\end{equation*}
$$

In particular, if $x(0)=z(0)=x^{0} \in X$, then

$$
e^{i \beta t} z(t)=T(t) x(0)-\int_{0}^{t} T(t-s) e^{i \beta s} y d s
$$

and therefore we have a one to one correspondence between the solutions of equations ($A ;-e^{i \beta t} y$) and ($A-i \beta I:-y$), given by the equality:

$$
x(t)=e^{i \beta t} z(t)
$$

for every $t \in \mathbb{R}$.
Moreover, from the previous equality it follows that this correspondence preserves the bounded solutions and therefore, by virtue of the hypothesis, for every $\beta \in \mathbb{R}$ and $y \in X$, the equation $(A-i \beta I ;-y)$ has a unique solution on \mathbb{R}.

Now, we fix the number $\beta \in \mathbb{R}$ and denote by $z_{y}(\cdot)$ the unique bounded solution on \mathbb{R} of equation $(A-i \beta I ;-y)$. If $z_{y}(0)=\boldsymbol{x}^{0} \in X$, then for every $\tau \in \mathbb{R}$, we have

$$
\begin{aligned}
z_{y}(t+\tau) & =S(t+\tau) x^{0}-\int_{0}^{t+\tau} S(t+\tau-s) y d s \\
& =S(t) S(\tau) x^{0}-\int_{-\tau}^{t} S(t-u) y d u \\
& =S(t)\left[S(\tau) x^{0}-\int_{-\tau}^{0} S(-u) y d u\right]-\int_{0}^{t} S(t-u) y d u
\end{aligned}
$$

It follows from here that the function

$$
t \rightarrow z_{y}(t+\tau)
$$

is a bounded solution on \mathbb{R} for the equation $(A-i \beta I ;-y)$ and thus, by hypothesis,

$$
z_{y}(t+\tau)=z_{y}(t), \quad \forall t, \tau \in \mathbb{R}
$$

and hence

$$
z_{y}(t)=z_{y}(0)=x^{0}, \quad \forall t \in \mathbb{R}
$$

Now we obtain that

$$
x^{0}=S(t) x^{0}-\int_{0}^{t} S(t-s) y d s, \quad \forall t \in \mathbb{R}
$$

or equivalently

$$
\frac{1}{t}\left[S(t) x^{0}-x^{0}\right]+\frac{1}{t} \int_{0}^{t} S(t-s) y d s \quad \forall t \neq 0
$$

Hence

$$
\lim _{t \rightarrow 0} \frac{1}{t} S(t) x^{0}-x^{0}=y
$$

so that

$$
x^{0} \in \mathcal{D}(A-i \beta I)=\mathcal{D}(A)
$$

and

$$
(A-i \beta I) x^{0}=y
$$

From the above arguments it follows that for every $y \in X$, we can find a unique element $x^{0} \in \mathcal{D}(A)$ with the property $(A-i \beta I) x^{0}=y$ and hence $A-i \beta I: \mathcal{D}(A) \rightarrow X$ is a bijective map. This $(A-i \beta I)^{-1}$, which is closed and defined on the whole of X, belongs to the space $\mathcal{B}(X)$, that is, $i \beta \notin \sigma(A)$.

References

[1] J.L. Dalecki and M. G. Krein, Stability of solutions of differential equations in Banach spaces, translations of Mathematical Monographs, 43 (American Mathematical Society, Providence, R.I., 1974).
[2] M.G. Krein, Lekcii po ustoigivosti rexenii differencialnyh uravnenii v Banahovom pronstranstve (Kiev, Inst. Mat. DAN SSSR, 1964).
[3] J.L. Massera and J.J. Schäffer, 'Linear differential equations and functional Analysis, I', Ann. of Math. 67 (1958), 517-573.
[4] O. Perron, 'Die stabilitätsfrege bei differentialgleichungen', Math. Z. 32 (1930), 703-728.
[5] E. Topuzu, 'On Z-transform and linear discrete time systems', Lucr. Sem. Mat. Fiz. al I. P. T. (1985), 47-48.
[6] K. Yosida, Functional analysis (Springer-Verlag, Berlin, Heidelberg, New York, 1965).

[^1]
[^0]: Received 27th July, 1995.

[^1]: Department of Mathematics
 West University of Timişoara
 Blv. V. Pârvan 4
 Timigoara 1900
 România

