ON AN INTEGRAL INVOLVING THE \boldsymbol{H}-FUNCTION

U. C. JAIN

(Received 5 January 1967, revised 10 March 1967)

Abstract

The aim of this note is to evaluate an integral involving the product of two H-functions.

1. Introduction

The H-function introduced by Fox [3], p. 408 will be defined and represented as follows:

$$
\begin{align*}
& H_{p, q}^{m, n}\left[\begin{array}{l}
x
\end{array} \left\lvert\, \begin{array}{l}
\left(a_{1}, \alpha_{1}\right), \cdots,\left(a_{p}, \alpha_{p}\right) \\
\left(b_{1}, \beta_{1}\right), \cdots,\left(b_{q}, \beta_{q}\right)
\end{array}\right.\right] \tag{1.1}\\
&=\frac{1}{2 \pi i} \int_{L} \frac{\prod_{1}^{m} \Gamma\left(b_{j}-\beta_{j} \xi\right) \prod_{1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} \xi\right)}{\prod_{m+1}^{q} \Gamma\left(1-b_{j}+\beta_{i} \xi\right) \prod_{n+1}^{p} \Gamma\left(a_{j}-\alpha_{j} \xi\right)} x^{\xi} d \xi,
\end{align*}
$$

where x is not equal to zero and an empty product is interpreted as unity, p, q, m, n are integers satisfying $1 \leqq m \leqq q, 0 \leqq n \leqq p ; \alpha_{j}(j=1, \cdots, p)$, $\beta_{j}(j=1, \cdots, q)$ are positive numbers; and $a_{j}(j=1, \cdots, p), b_{j}(j=1, \cdots, q)$ are complex numbers such that no pole of $\Gamma\left(b_{h}-\beta_{h} \xi\right)(h=1, \cdots, m)$ coincides with any pole of $\left(1-a_{i}+\alpha_{i} \xi\right)(i=1, \cdots, n)$; i.e.,

$$
\begin{equation*}
\alpha_{i}\left(b_{h}+\nu\right) \neq \beta_{h}\left(a_{i}-\eta-1\right), \tag{1.2}
\end{equation*}
$$

$(\nu, \eta=0,1, \cdots ; h=1, \cdots, m ; i=1, \cdots, n)$.
Further the contour L runs from $\sigma-i \infty$ to $\sigma+i \infty$ such that the points

$$
\begin{equation*}
\xi=\left(b_{h}+v\right) / \beta_{h}(h=1, \cdots, m ; v=0,1, \cdots) \tag{1.3}
\end{equation*}
$$

which are poles of $\Gamma\left(b_{h}-\beta_{h} \xi\right)(h=1, \cdots, m)$, lie to the right, and the points:

$$
\begin{equation*}
\xi=\left(a_{i}-\eta-1\right) / \alpha_{i}(i=1, \cdots, n ; \eta=0,1, \cdots) \tag{1.4}
\end{equation*}
$$

which are poles of $\Gamma\left(1-a_{i}+\alpha_{i} \xi\right)(i=1, \cdots, n)$, lie to the left of L.
Such a contour is possible on account of (1.2).
The conventional notation $\phi(s) \doteqdot h(x)$ will be used to denote the classical Laplace transform

$$
\begin{equation*}
\phi(s)=s \int_{0}^{\infty} e^{-s x} h(x) d x \tag{1.5}
\end{equation*}
$$

In what follows $\left\{\left(a_{p}, \alpha_{p}\right)\right\}$ stands for $\left(a_{1}, \alpha_{1}\right), \cdots,\left(a_{p}, \alpha_{p}\right)$.

The following results $[6 ; 5$, p. $14 ; 5$, p. 26] will be required:
(i)
(2.1) $\int_{0}^{\infty} x^{\eta-1} H_{p, q}^{m, n}\left[z x^{\sigma} \left\lvert\, \begin{array}{l}\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\ \left\{\left(b_{q}, \beta_{q}\right)\right\}\end{array}\right.\right] H_{\gamma, \delta}^{\alpha, \beta}\left[x \left\lvert\, \begin{array}{l}\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\} \\ \left\{\left(e_{\delta}, f_{\delta}\right)\right\}\end{array}\right.\right] d x$
$=H_{p+\delta, q+\gamma}^{m+\beta, n+\alpha}\left[z \begin{array}{l}\left\{\left(a_{n}, \alpha_{n}\right)\right\},\left\{\left(1-e_{\delta}-\eta f_{\delta}, \sigma f_{\delta}\right)\right\},\left(a_{n+1}, \alpha_{n+1}\right), \cdots,\left(a_{p}, \alpha_{p}\right) \\ \left\{\left(b_{m}, \beta_{m}\right)\right\},\left\{\left(1-c_{\gamma}-\eta d_{\gamma}, \sigma d_{\gamma}\right)\right\},\left(b_{m+1}, \beta_{m+1}\right), \cdots,\left(b_{q}, \beta_{q}\right)\end{array}\right]$
where $\sigma>0, \lambda>0, \lambda^{\prime}>0,|\arg z|<\frac{1}{2} \lambda \pi$,

$$
\begin{array}{ll}
R\left[\eta+\sigma \frac{b_{h}}{\beta_{h}}+\frac{e_{i}}{f_{i}}\right]>0 & (h=1, \cdots, m ; i=1, \cdots, \alpha), \\
R\left[\eta+\sigma \frac{a_{h^{\prime}}-1}{\alpha_{h^{\prime}}}+\frac{c_{j}-1}{d_{j}}\right]<0 & (h=1, \cdots, n ; j=1, \cdots, \beta)
\end{array}
$$

and λ and λ^{\prime} stands for the quantities

$$
\begin{aligned}
& \sum_{1}^{n}\left(\alpha_{j}\right)-\sum_{n+1}^{p}\left(\alpha_{j}\right)+\sum_{1}^{m}\left(\beta_{j}\right)-\sum_{m+1}^{q}\left(\beta_{j}\right), \\
& \sum_{1}^{\beta}\left(d_{j}\right)-\sum_{\beta+1}^{\gamma}\left(d_{j}\right)+\sum_{1}^{\alpha}\left(f_{j}\right)-\sum_{\alpha+1}^{\delta}\left(f_{j}\right),
\end{aligned}
$$

respectively, throughout this paper.
(ii)

$$
s^{1-l} H_{p+1, q}^{m, n+1}\left[z s^{-\sigma} \left\lvert\, \begin{array}{c}
(1-l, \sigma),\left\{\left(a_{p}, \alpha_{p}\right)\right\} \tag{2.2}\\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right] \doteq x^{l-1} H_{p, q}^{m, n}\left[z x^{\sigma} \left\lvert\, \begin{array}{l}
\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right]
$$

where $\sigma>0, R(s)>0, \lambda>0,|\arg z|<\frac{1}{2} \lambda \pi$ and

$$
R\left[l+\sigma \frac{b_{h}}{\beta_{h}}\right]>0 \quad(h=1, \cdots, m)
$$

(iii)

$$
s H_{\gamma, \delta}^{\alpha, \beta}\left[(s+a) \left\lvert\, \begin{array}{c}
\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\} \tag{2.3}\\
\left\{\left(e_{\delta}, f_{\delta}\right)\right\}
\end{array}\right.\right] \doteqdot \frac{1}{x} e^{-a x} H_{\gamma+1, \delta}^{\alpha, \beta}\left[\frac{1}{x} \left\lvert\, \begin{array}{c}
\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\},(0,1) \\
\left\{\left(e_{\delta}, f_{\delta}\right)\right\}
\end{array}\right.\right]
$$

where $R(s)>0, R(a)>0, \lambda^{\prime}>1$ and $R\left[\left(c_{h}-1\right) / d_{h}\right]<0(h=1, \cdots, \beta)$.

3. The integral

The formula to be proved here is

$$
\begin{align*}
& \int_{0}^{\infty} x^{l-1} H_{p, \gamma}^{m, n}\left[z x^{\sigma} \left\lvert\, \begin{array}{c}
\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right] H_{\gamma, \delta}^{\alpha, \beta}\left[(x+a) \left\lvert\, \begin{array}{c}
\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\} \\
\left\{\left(e_{\delta}, f_{\delta}\right)\right\}
\end{array}\right.\right] d x \tag{3.1}\\
& =\sum_{\gamma=0}^{\infty} \frac{(-1)^{r} a^{r}}{r!} H_{p+\delta+1, \alpha+\gamma+1}^{m+\beta, n+\alpha+1} \\
& {\left[z \left\lvert\, \begin{array}{l}
(1-l, \sigma),\left\{\left(a_{n}, \alpha_{n}\right)\right\},\left\{\left(1-e_{\delta}-(l-r) f_{\delta}, \sigma f_{\delta}\right)\right\},\left(a_{n+1}, \alpha_{n+1}\right), \cdots,\left(a_{p}, \alpha_{p}\right) \\
\left\{\left(b_{m}, \beta_{m}\right)\right\},\left\{\left(1-c_{\gamma}-(l-r) d_{\gamma}, \sigma d_{\gamma}\right)\right\},(1-l+r, \sigma),\left(b_{m+1}, \beta_{m+1}\right), \cdots,\left(b_{q}, \beta_{q}\right)
\end{array}\right.\right]}
\end{align*}
$$

where $\sigma>0, R(a)>0, \lambda>0, \lambda^{\prime}>1,|\arg z|<\frac{1}{2} \lambda \pi,|\arg a|<\frac{1}{2} \lambda^{\prime} \pi$,

$$
\begin{array}{ll}
R\left[l+\sigma \frac{a_{i}-1}{\alpha_{i}}+\frac{c_{j}-1}{d_{j}}\right]<0 & (i=1, \cdots, n ; j=1, \cdots, \beta) \\
R\left[l+\sigma \frac{b_{h}}{\beta_{h}}\right]>0 & (h=1, \cdots, m)
\end{array}
$$

Proof. If we use the operational pairs (2.2) and (2.3) in the ParsevalGoldstein theorem of operational Calculus [4, p. 105], we get after a little simplifications:

$$
\begin{gather*}
\int_{0}^{\infty} x^{l-1} H_{p, q}^{m, n}\left[z x^{\sigma} \left\lvert\, \begin{array}{c}
\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right] H_{\gamma, \delta}^{\alpha, \beta}\left[(x+a) \left\lvert\, \begin{array}{c}
\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\} \\
\left\{\left(e_{\delta}, t_{\delta}\right)\right\}
\end{array}\right.\right] d x \\
=\int_{0}^{\infty} x^{-l-1} e^{-a x} H_{p+1, q}^{m, n+1}\left[z x^{-\sigma} \left\lvert\, \begin{array}{c}
(1-l, \sigma),\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right] \times \tag{3.2}\\
\times H_{\gamma+1, \delta}^{\alpha, \beta}\left[\frac{1}{x} \left\lvert\, \begin{array}{c}
\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\},(0,1) \\
\left\{\left(e_{\delta}, f_{\delta}\right)\right\}
\end{array}\right.\right] d x
\end{gather*}
$$

Now we expand $e^{-a x}$ and then integrate the right hand side of (3.2) term by term to get (3.1).

The term by term integration is permissible [$2, \mathrm{p} .500]$, since,
(i) $e^{-a x}=\sum_{r=0}^{\infty}\left((-1)^{r} a^{r} x^{r}\right) / r$! is uniformly convergent in any fixed interval $0 \leqq x \leqq b$
(ii) $x^{-l-1} H_{p+1, q}^{m, n+1}\left[z x^{-\sigma} \left\lvert\, \begin{array}{c}(1-l, \sigma),\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\ \left\{\left(b_{q}, \beta_{q}\right)\right\}\end{array}\right.\right] H_{\gamma+1, \delta}^{\alpha, \beta}\left[\frac{1}{x} \left\lvert\, \begin{array}{c}\left\{\left(c_{\gamma}, d_{\gamma}\right)\right\},(0,1) \\ \left\{\left(e_{\delta}, f_{\delta}\right)\right\}\end{array}\right.\right]$ is continuous [1, p. 278] and
(iii) the integral on the right hand side of (3.2) is absolutely convergent under the conditions mentioned in (3.1).

For $\sigma=1, \alpha_{j}=\beta_{k}=d_{i}=f_{h}=1 \quad(j=1, \cdots, p ; k=1, \cdots, q$; $i=1, \cdots, \gamma ; h=1, \cdots, \delta)$ (3.1) reduces to a result recently given by Saxena [7, p. 47].

Particular case. If we take $\alpha=1, \beta=\gamma=0, \delta=2, e_{1}=0, f_{1}=1$, $e_{2}=-\nu$ and $f_{2}=\mu$ in (3.1), it reduces to the following integral involving Maitland's generalized Bessel function [8, p. 257], [1, p. 279]:

$$
\begin{aligned}
\int_{0}^{\infty} x^{l-1} H_{p, q}^{m, n} & {\left[z x^{\sigma} \left\lvert\, \begin{array}{l}
\left\{\left(a_{p}, \alpha_{p}\right)\right\} \\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right] J_{\nu}^{\mu}(x+a) d x } \\
& =\sum_{r=0}^{\infty} \frac{(-1)^{r} a^{r}}{r!} H_{p+2, q}^{m, n+1}\left[z \left\lvert\, \begin{array}{c}
(1-l, \sigma),\left\{\left(a_{p}, \alpha_{p}\right)\right\},(1+\nu+r \mu-l \mu, \sigma \mu) \\
\left\{\left(b_{q}, \beta_{q}\right)\right\}
\end{array}\right.\right]
\end{aligned}
$$

where $\sigma>0, R(a)>0, \lambda>0,|\arg z|<\frac{1}{2} \lambda \pi, \mu<1,|\arg a|<\frac{1}{2}(1-\mu) \pi$ and

$$
R\left[l+\sigma \frac{b_{h}}{\beta_{h}}\right]>0 \quad(h=1, \cdots, m)
$$

Acknowledgement

The author is thankful to Dr. K. C. Gupta for his help and guidance in the preparation of this paper.

References

[1] B. L. J. Braaksma, 'Asymptotic expansions and analytic continuations for a class of Barnes-integrals', Compositio Mathematica (1963).
[2] T. J. Bromwich, Theory of infinite series (London, 1926).
[3] C. Fox, 'The G - and H-functions as symmetrical Fourier kernels', Trans. Amer. Math. Soc. 98 (1961), 408.
[4] S. Goldstein, 'Operational representation of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function', Lond. Math. Soc. 34 (1932), 103-125.
[5] K. C. Gupta, A study of Meijer transforms (Thesis approved for Ph.D. degree, University of Rajasthan, 1966).
[6] K. C. Gupta and U. C. Jain, 'The H-function-II', Proc. Nat. Acad. Sci. India (in press).
[7] R. K. Saxena, 'An integral involving products of G-functions’, Proc. Nat. Acad. Sciences 36 (1966), 47-48.
[8] E. M. Wright, 'The asymptotic expansion of the generalized Bessel functions', Proc. Lond. Math. Soc. 38 (1935), 257-270.

Department of Mathematics

University of Udaipur
Udaipur, India

