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PERCOLATION ON STATIONARY TESSELLATIONS:
MODELS, MEAN VALUES, AND SECOND-ORDER STRUCTURE

BY GÜNTER LAST AND EVA OCHSENREITHER

Abstract

We consider a stationary face-to-face tessellation X of R
d and introduce several

percolation models by colouring some of the faces black in a consistent way. Our main
model is cell percolation, where cells are declared black with probability p and white
otherwise. We are interested in geometric properties of the unionZ of black faces. Under
natural integrability assumptions, we first express asymptotic mean values of intrinsic
volumes in terms of Palm expectations associated with the faces. In the second part
of the paper we focus on cell percolation on normal tessellations and study asymptotic
covariances of intrinsic volumes of Z∩W , where the observation windowW is assumed
to be a convex body. Special emphasis is given to the planar case where the formulae
become more explicit, though we need to assume the existence of suitable asymptotic
covariances of the face processes of X. We check these assumptions in the important
special case of a Poisson–Voronoi tessellation.

Keywords: Tessellation; percolation; Poisson–Voronoi tessellation; intrinsic volume; the
Euler characteristic; asymptotic mean; asymptotic covariance
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1. Introduction

Let X be a face-to-face tessellation of R
d , meaning, a random collection of convex and

bounded polytopes with nonempty interior (called cells) covering the whole space and such
that, for any different cells C and C′ ∈ X, the intersection C ∩ C′ is either empty, or a face
of both C and C′. Assume that any bounded subset of R

d is intersected by only finitely many
cells. We interpret X as a particle process, and assume that X is stationary, meaning that the
distribution of X coincides with that of {C + x : C ∈ X} for all x ∈ R

d . For k ∈ {0, . . . , d},
let Xk denote the particle process of k-dimensional faces of cells in X, and assume throughout
that the intensity measure of Xk is locally finite. For more details on stationary tessellations,
we refer the reader to [12, Chapter 10] and the next section.

For p ∈ [0, 1] and n ∈ {0, . . . , d}, we define n-percolation on X as follows. Given X,
we colour the polytopes in Xn independently black with probability p. All other polytopes in
Xn are white. If n ≤ d − 1 and k ∈ {n + 1, . . . , d}, then we colour F ∈ Xk black if all its
(k − 1)-faces are black. We are interested in the union Z of all black faces of X. This is a
stationary random closed set (see [12, Chapter 2]). In the n = d case we refer to this as cell
percolation and in the n = 0 case as vertex percolation. In the planar case, d = 2, we refer to
1-percolation as edge percolation. In the general case we also speak of face percolation. As is
common, we set q = 1 − p for 0 ≤ p ≤ 1.
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312 G. LAST AND E. OCHSENREITHER

Figure 1: Cell percolation on a Poisson–Voronoi tessellation and vertex percolation on a Poisson–
Delaunay tessellation.

Cell percolation on a Poisson–Voronoi tessellation (see Figure 1) was studied in [3], where
it was shown that the critical probability of this model of continuum percolation is 1

2 . The
present paper was motivated by [10], introducing vertex, edge, and cell percolation on several
planar lattices. The authors of [10] noticed that in many models the only nontrivial zero of the
mean Euler characteristic is a remarkably accurate approximation of the critical probability.

Our first aim in this paper is to establish n-percolation on X as an interesting model of
stochastic geometry and continuum percolation. Our main aim is to study first- and second-
order geometric properties of the black phase Z. In Section 2 we collect some preliminaries
on stationary tessellations and Palm probabilities, and define face percolation. Asymptotic
mean values of intrinsic volumes of Z ∩ W are studied in Section 3, where we assume that
the observation window W is a convex polytope. Asymptotic covariances of intrinsic volumes
in the case of cell percolation on a normal tessellation are treated in Section 4 assuming that
the asymptotic covariances of intrinsic volumes of face processes exist. Theorem 4.1 shows
that these covariances are polynomials in the colouring probability p, and the coefficients are
determined by both the global fluctuation of the intrinsic volumes within the face processes
and the local geometry of X. The important special case of cell percolation on a planar and
normal tessellation is discussed in Section 5. In Section 6 we check that a Poisson–Voronoi
tessellation satisfies all assumptions required for our general results. All asymptotic covariances
are then given by fairly explicit integral formulae. For cell percolation in the planar Poisson–
Voronoi case, the asymptotic variance of the Euler characteristic is determined by the intensity
and second moment of the number of vertices of a typical cell and has a global maximum at
the critical threshold p = 1

2 (see Corollary 6.1). In Appendix A we give some integrability
properties of a Poisson–Voronoi tessellation.

2. Notation and preliminaries

2.1. Palm calculus

It is convenient to follow [8, 9] by assuming the basic sample space (�,F ,P) to be equipped
with a measurable flow θx : � → �, x ∈ R

d , i.e. (ω, x) �→ θxω is measurable, θx+y = θx ◦θy
for all x, y ∈ R

d , and θ0 is the identity on �. Assume also that P is stationary, i.e. P ◦ θx =
P, x ∈ R

d .
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Percolation on stationary tessellations 313

A random measure μ on R
d is a kernel from � to R

d such that μ(ω, ·) is locally finite for
all ω ∈ �. If μ(ω,B) is integer valued for all bounded Borel sets B ⊂ R

d then μ is a point
process; it is a simple point process if μ({x}) ≤ 1 for all x ∈ R

d , in which case we identify μ
with its support {x ∈ R

d : μ({x}) > 0}.
A random measure μ is invariant if, for any Borel set B ⊂ R

d ,

μ(θxω,B − x) = μ(ω,B), x ∈ R
d , ω ∈ �.

It then follows that μ is stationary, i.e. the distribution of μ(· + x) is independent of x ∈ R
d .

When μ is invariant, γμ := E[μ([0, 1]d)] is the intensity of μ. If 0 < γμ < ∞ then the Palm
probability measure P

0
μ of μ is defined by

P
0
μ(A) := γ−1

μ

∫∫
1A(θxω)1{x ∈ [0, 1]d}μ(ω, dx)P(dω), A ∈ F .

It satisfies the refined Campbell theorem∫∫
f (θxω, x) μ(dx)P(dω) = γμ

∫∫
f (ω, x) dx P

0
μ(dω) (2.1)

for all measurable f : �× R
d → [0,∞). This can also be written as

E

[∫
f (θx, x) μ(dx)

]
= γμE

0
μ

[∫
f (θ0, x) dx

]
,

where E
0
μ denotes the expectation with respect to P

0
μ.

For ease of reference, we state Neveu’s exchange formula; it is used frequently in this
paper. This formula also goes under the name mass-transport principle (see [8, 9] for a brief
discussion).

Proposition 2.1. (Neveu’s exchange formula.) Let μ and μ′ be invariant random measures
on R

d with positive finite intensities, and let h : �× R
d → [0,∞) be measurable. Then

γμE
0
μ

[∫
h(θx,−x)μ′(dx)

]
= γμ′E0

μ′

[∫
h(θ0, x) μ(dx)

]
.

2.2. Coloured tessellations and face percolation

We start by introducing some basic terminology for tessellations, referring to [12] for further
detail. Let Kd denote the space of convex bodies (convex and compact subsets of R

d ),
and equip it with the Borel σ -field associated with the Hausdorff distance. A polytope is a
finite intersection of half-spaces which is bounded and nonempty. The system P d of all such
polytopes is a measurable subset of Kd . A tessellation (of R

d ) is a countable system ϕ of
polytopes with nonempty interior (cells) covering the whole space such that any two different
elements of ϕ have disjoint interior and any bounded subset of R

d is intersected by only finitely
many cells. Let k ∈ {0, . . . , d − 1}. A k-face of C ∈ P d is a k-dimensional intersection
of C with a supporting hyperplane of C. We let Fk(C) denote the system of all k-faces of
C, and define Fd(C) := {C} if C is a full-dimensional polytope and Fd(C) := ∅ otherwise.
A tessellation ϕ is face-to-face if, for C and C′ ∈ ϕ, the intersection C ∩C′ is either empty, or
a face of both C and C′. Let T denote the set of all face-to-face tessellations. We define the
system of k-faces of ϕ ∈ T by

Fk(ϕ) :=
⋃
C∈ϕ

Fk(C)

https://doi.org/10.1239/jap/1417528483 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528483


314 G. LAST AND E. OCHSENREITHER

and the system of faces of ϕ by

F (ϕ) :=
d⋃
k=0

Fk(ϕ).

Note that Fd(ϕ) = ϕ.
In this paper we define a coloured tessellation to be a tuple ψ = (ϕ, ϕ0, . . . , ϕd), where

ϕ ∈ T and ϕk ⊂ Fk(ϕ) such that Fk−1(F ) ⊂ ϕk−1 whenever k ≥ 1 and F ∈ ϕk . Any face in⋃d
k=0 ϕk is called black, while the other faces of ϕ are called white. If F ∈ F (ϕ) is black then,

by definition, all its faces are black as well. Write X(ψ) := ϕ and X1
k(ψ) := ϕk .

Let Tc denote the space of all coloured tessellations, and let Tc denote the smallest σ -field
on Tc such that, for all measurable H ⊂ P d , the numbers

|{C ∈ X(ψ) : C ∈ H }|, |{C ∈ X1
0(ψ) : C ∈ H }|, . . . , |{C ∈ X1

k(ψ) : C ∈ H }|
become a measurable function of ψ ∈ Tc. Here and later |A| denotes the cardinality of a set A.
The σ -field T on T is defined similarly.

A random coloured tessellation 	 is a measurable mapping from the probability space
(�,F ,P) to (Tc,Tc). We note thatX(	) andX1

0(	), . . . , X
1
d(	) are particle processes in the

sense of [12]. The same is true for F0(X(	)), . . . ,Fd(X(	)). We are interested in the union

Z :=
d⋃
k=0

⋃
F∈X1

k (	)

F (2.2)

of all black faces. It can be shown that Z is a random closed set (see [12] for a definition of
this concept). We shall always assume that 	 is stationary, that is,

	 + x
D= 	, x ∈ R

d , (2.3)

where, for ψ = (ϕ, ϕ0, . . . , ϕd) ∈ Tc, ψ + x := (ϕ + x, ϕ0 + x, . . . , ϕd + x), H + x :=
{F +x : F ∈ H } forH ⊂ Kd , andA+x := {y+x : y ∈ A} forA ⊂ R

d . ThenZ is stationary
as well, that is,

Z + x
D= Z, x ∈ R

d .

We are mainly concerned with what we calln-percolation (or face percolation) on a stationary
tessellation. To introduce this concept, assume that we are given a random face-to-face
tessellation X, i.e. a random element of the space T . Assume that X is stationary, i.e. that
the distribution of X + x does not depend on x ∈ R

d . A coloured tessellation 	 is an
n-percolation on X with (percolation) parameter p if X(	) = X, and the particle process
X1
n(	) is a p-thinning of Fn(X), that is, given X, the faces in Fn(X) are included in X1

n(	)

independently of each other with probability p; see [7] for more detail on thinnings. The
complete vector (X1

0(	), . . . , X
1
d(	)) of black faces is then defined as follows. For k < n,

the system X1
k(	) is the union of all Fk(F ) for F ∈ X1

n(	). For k > n, the system X1
k(	) is

defined recursively. A polytope F ∈ Xk belongs toX1
k(	) if and only if Fk−1(F ) ⊂ X1

k−1(	).
In the n = d case we speak of cell percolation and in the n = 0 case of vertex percolation.

Now fix a coloured tessellation 	 such that

	(θxω) = 	(ω)− x, ω ∈ �, x ∈ R
d . (2.4)

Then	 is stationary in the sense of (2.3). Throughout we use the following shorthand notation
for the systems of all (respectively all black) k-faces for k ∈ {0, 1, . . . , d}:

Xk := Fk(X), X1
k := X1

k(	).
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The invariance assumption (2.4) implies that, for ω ∈ � and x ∈ R
d ,

(Xk(θxω),X
1
k(θxω)) = (Xk(ω)− x,X1

k(ω)− x). (2.5)

For k ∈ {0, . . . , d}, let
η(k) := {s(F ) : F ∈ Xk} (2.6)

be the point process of Steiner points of the faces inXk = Fk(X) (see [12] for the definition of
the Steiner point s(K) of a nonempty K ∈ Kd ). Since s(K + x) = s(K)+ x for all x ∈ R

d ,
(2.5) implies that η(k) is invariant. By assumption on X, η(k) contains infinitely many points,
so the intensity γk := γη(k) = E[η(k)([0, 1]d)] is positive. We assume that γk < ∞, so the
Palm probability measure P

0
k := P

0
η(k)

is well defined. The expectation with respect to P
0
k is

denoted by E
0
k . Note that, under P

0
k , the origin is almost surely in the relative interior of some

k-dimensional face.
Let ψ = (ϕ, ϕ0, . . . , ϕd) be a coloured tessellation, and let x ∈ R

d . Since ϕ is face-to-
face, there is unique F ∈ F (ϕ) such that x is in the relative interior of F . We then write
F(ψ, x) ≡ F(ϕ, x) = F . To treat the local neighbourhood of x ∈ R

d , we introduce the set
Sl (ψ, x) ≡ Sl (ϕ, x) for l ∈ {0, . . . , d} as follows. Let k be the dimension of F(ψ, x). If
l ≥ k (respectively l < k) then we let Sl (ψ, x) be the set of all faces G ∈ Fl (ϕ) such that
F(ψ, x) ⊂ G (respectively G ⊂ F(ψ, x)). It is convenient to abbreviate

(F (x),Sl (x)) := (F (	, x),Sl (	, x)), x ∈ R
d . (2.7)

Hence, F(x) is the face ofX containing x in its relative interior, while Sl (x) is the system of all
l-faces containing F(x) or contained in F(x), respectively. Taking into account the translation
covariance of F(·, ·), it follows from (2.4) that

P
0
k(F (0) ∈ ·) = γ−1

k E

∫
1{x ∈ [0, 1]d , F (x)− x ∈ ·} η(k)(dx)

is the distribution of a typical k-face. The next result is a version of [12, Theorem 10.1.1]. The
proof can easily be given with Neveu’s exchange formula (see also [2]).

Proposition 2.2. Let k, l ∈ {0, . . . , d}, and let g : P d × P d → [0,∞) be a measurable
function. Then

γkE
0
k

∑
G∈Sl (0)

g(F (0),G− s(G)) = γlE
0
l

∑
F∈Sk(0)

g(F − s(F ), F (0)). (2.8)

3. Mean value analysis

Let X be a stationary face-to-face tessellation, i.e. a random element of T . For k ∈
{0, . . . , d}, let Xk = Fk(X) denote the particle process of k-faces of X. We assume that

d∑
k=0

E

∑
F∈Xk

1{F ∩K = ∅} < ∞, K ∈ Kd , (3.1)

a common assumption in stochastic geometry [12]. It is easy to see that (3.1) implies that
γk := Eη(k)([0, 1]d) < ∞, where the point process η(k) is defined by (2.6). The refined
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316 G. LAST AND E. OCHSENREITHER

Campbell theorem (2.1) allows us to rewrite (3.1) as

d∑
k=0

E
0
kVd(F (0)+K) < ∞, K ∈ Kd , (3.2)

where Vd denotes the volume and where we have used the fact that (A + x) ∩ B = ∅ for
A,B ⊂ R

d and x ∈ R
d if and only if x ∈ B − A := {y − z : y ∈ A, z ∈ B}. Recall that

F(x) ∈ F (X) is the unique face that contains x ∈ R
d in its relative interior. Often we have to

assume that
d∑

i,k=0

E
0
k[[Vi(F (0))]2] < ∞, (3.3)

where Vi denotes the ith intrinsic volume. Note that (3.2) is a consequence of (3.3), the Steiner
formula (see [12]), and the Cauchy–Schwarz inequality.

For n ∈ {0, . . . , d}, we consider n-percolation 	 on X. It is no restriction of generality to
assume that (2.4) holds. Let the stationary random closed set Z be given by (2.2). The density
of the ith intrinsic volume of Z is defined by the limit

δi(p) := lim
t→∞Vd(Wt)

−1
E[Vi(Z ∩Wt)], (3.4)

where Wt := t1/dW and W ∈ P d is assumed to have volume one and to contain the origin in
its interior. For cell percolation, δd(p) = p is the volume fraction of Z. We shall show below
that the limits (3.4) exist and do not depend on W .

Our first aim in this paper is to derive a polynomial formula for these densities. That this
formula is based on the joint distribution of (Vi(F (0)), |Sn(0)|) under the measures P

0
k should

be no surprise (see (2.7) for notation).

Theorem 3.1. For n-percolation onX satisfying (3.3), the limit for δi(p) in (3.4) exists for any
i ∈ {0, . . . , d} and p ∈ [0, 1], and equals

n−1∑
k=i
(−1)i+kγkE0

k[(1 − q |Sn(0)|)Vi(F (0))] +
d∑
k=n
(−1)i+kγkE0

k[p|Sn(0)|Vi(F (0))]. (3.5)

In particular, for cell percolation and i < d,

δi(p) =
d∑
k=i
(−1)i+k+1γkE

0
k[q |Sd (0)|Vi(F (0))].

Before proving Theorem 3.1 we give some geometric preliminaries. Intrinsic volumes can
be defined for convex bodies by the Steiner formula. By additivity, they can then be extended
to finite unions of convex bodies (see, e.g. [12]). Groemer [4] defined intrinsic volumes for a
much wider class of approximable sets containing the relative interior of convex bodies and the
intersection of a relative open polytope with the boundary of a convex body, such that they are
still additive and rigid motion invariant. In particular, denoting the relative interior of a set B
by relint(B),

Vi(relint(K)) = (−1)i+dim(K)Vi(K), K ∈ Kd . (3.6)
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Let int(B) and ∂B denote the interior and the boundary of B. We can writeZ∩Wt as a disjoint
union

Z ∩Wt = (Z ∩ int(Wt )) ∪ (Z ∩ ∂Wt)

=
d⋃
k=0

⋃
F∈X1

k

(relint(F ) ∩ int(Wt )) ∪
d⋃
k=0

⋃
F∈X1

k

(relint(F ) ∩ ∂Wt).

Since the tessellation X is stationary, the intersection of a k-face F with Wt is almost surely
(a.s.) empty if relint(F ) ∩ int(Wt ) = ∅. Thus, relint(F ) ∩ int(Wt ) = relint(F ∩Wt) a.s. It
follows that both Z ∩ int(Wt ) and Z ∩ ∂Wt are approximable. The additivity of the intrinsic
volumes and (3.6) a.s. yield

Vi(Z ∩ int(Wt )) =
d∑
k=0

∑
F∈X1

k

Vi(relint(F ∩Wt)) =
d∑
k=0

(−1)i+k
∑
F∈X1

k

Vi(F ∩Wt) (3.7)

because dim(F ∩Wt) = k a.s. forF ∈ Xk if the intersection is nonempty. Since the observation
windowW is a polytope, we can partition ∂W in the relative interior of the lower-dimensional
faces of W and obtain

Vi(Z ∩ ∂Wt) =
d∑
k=0

d−1∑
l=0

∑
U∈Fl (W)

∑
F∈X1

k

Vi(relint(F ) ∩ relint(Ut ))

=
d∑
k=0

d−1∑
l=0

∑
U∈Fl (W)

∑
F∈X1

k

Vi(relint(F ∩ Ut)),

where, much as before, Ut := t1/dU denotes the scaled face and the last equation holds a.s.
because of the stationarity of the tessellation, and because the intersection of F and Ut is a.s.
empty if relint(F ) ∩ relint(Ut ) = ∅. Using (3.6), it follows that

Vi(Z ∩ ∂Wt) =
d∑
k=0

d−1∑
l=0

∑
U∈Fl (W)

∑
F∈X1

k

(−1)i+dim(F∩Ut ) Vi(F ∩ Ut) a.s. (3.8)

Proof of Theorem 3.1. First, we show that

lim
t→∞ t

−1
E[Vi(Z ∩ ∂Wt)] = 0, (3.9)

for which, because of representation (3.8), it is enough to show that

lim
t→∞ t

−1
E

[ ∑
F∈X1

k

(−1)i+dim(F∩Ut )Vi(F ∩ Ut)
]

= 0

for k ∈ {0, . . . , d} and U ∈ F (W) with dim(U) < d. From n-percolation, by definition,

E

[ ∑
F∈X1

k

(−1)i+dim(F∩Ut )Vi(F ∩ Ut)
]

=
∞∑
r=1

(1{k < n}(1 − qr)+ 1{k ≥ n}pr)

× E

∫
(−1)i+dim(F (x)∩Ut )Vi(F (x) ∩ Ut)1{|Sn(x)| = r} η(k)(dx).
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318 G. LAST AND E. OCHSENREITHER

Using the monotonicity of intrinsic volumes, we obtain∣∣∣∣E
[ ∑
F∈X1

k

(−1)i+dim(F∩Ut )Vi(F ∩ Ut)
]∣∣∣∣ ≤ E

∫
Vi(F (x) ∩ Ut) η(k)(dx)

≤ E

∫
Vi(F (x)) 1{F(x) ∩ ∂Wt = ∅} η(k)(dx)

= γkE
0
k

∫
Vi(F (0)) 1{(F (0)+ x) ∩ ∂Wt = ∅} dx,

where the refined Campbell theorem (2.1) justifies the final identity. We claim that

lim
t→∞

1

t
E

∫
Vi(F (x)) 1{F(x) ∩ ∂Wt = ∅} η(k)(dx) = 0, k ∈ {0, . . . , d}. (3.10)

Indeed, λd(∂W − t−1/dK) → λd(∂W) = 0 as t → ∞ for anyK ∈ Kd , where λd denotes the
Lebesgue measure on R

d ; see the proof of Theorem 4.1.3 of [12]. Moreover, as in that proof,
λd(∂W − t−1/dK) ≤ cλd(B

d + K) for all t ≥ 1 and all convex bodies K , where Bd is the
unit ball and c > 0 does not depend onK . Hence, (3.10) follows from the Steiner formula, the
Cauchy–Schwarz inequality, our assumption (3.3), and dominated convergence. In particular,
(3.9) holds.

Now we treat the main terms (3.7). The definition of n-percolation implies that

EVi(Z ∩ int(Wt )) =
d∑
k=0

∞∑
r=1

(1{k < n}(1 − qr)+ 1{k ≥ n}pr)

× E

∫
Vi(F (x) ∩Wt) 1{|Sn(x)| = r} η(k)(dx).

Since, for k ∈ {0, . . . , d} and x ∈ η(k),
|Vi(F (x) ∩Wt)− Vi(F (x)) 1{x ∈ Wt }| ≤ Vi(F (x)) 1{F(x) ∩ ∂Wt = ∅},

(3.10) implies that

lim
t→∞

1

t
EVi(Z ∩ int(Wt ))

= lim
t→∞

1

t

d∑
k=0

∞∑
r=1

(1{k < n}(1 − qr)+ 1{k ≥ n}pr)

× E

∫
Vi(F (x)) 1{x ∈ Wt, |Sn(x)| = r} η(k)(dx). (3.11)

But the refined Campbell theorem (2.1) yields

1

t
E

∫
Vi(F (x)) 1{x ∈ Wt, |Sn(x)| = r} η(k)(dx) = γkE

0
k[Vi(F (0))1{|Sn(0)| = r}].

Combining (3.11) with (3.9) yields assertion (3.5).
For cell percolation, (3.5) equals

δi(p) =
d∑
k=i
(−1)i+k γk E

0
k[(1 − q |Sd (0)|)Vi(F (0))].

Applying Theorem 10.1.4 of [12] gives the second assertion for i < d.

The tessellation X is normal if, for 0 ≤ k ≤ d, any k-face is a.s. contained in d − k + 1
cells. In this case we have the duality relation below.
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Proposition 3.1. For cell percolation on a normal tessellation X satisfying (3.3) and p ∈
[0, 1],

δi(p) = (−1)d+i+1δi(1 − p), i ∈ {0, . . . , d − 1}.
Proof. To make the dependence on the colouring probability p ∈ [0, 1] explicit, write Zp

instead of Z. The very definition of cell percolation yields

Zc
p

D= Z1−p, (3.12)

where Bc and B denote the complement and the closure of a set B ⊂ R
d , respectively. Define

the set of all white k-faces byX0
k := Xk \X1

k . The additivity of intrinsic volumes and (3.6) a.s.
yield

Vi(Z
c
p ∩ int(Wt )) =

d∑
k=0

∑
F∈X0

k

Vi(relint(F ) ∩ int(Wt )) =
d∑
k=0

∑
F∈X0

k

(−1)i+kVi(F ∩Wt),

because we have, a.s., F ∩Wt = ∅ if relint(F )∩ int(Wt ) = ∅ and dim(F ∩Wt) = dim(F ) if
F ∩Wt = ∅. Since X is normal, it follows from the inclusion–exclusion principle that

Vi(Z
c
p ∩ int(Wt )) = (−1)d+iVi(Zc

p ∩Wt).

Since Vi(Zc
p ∩ int(Wt ))+ Vi(Zp ∩ int(Wt )) = Vi(int(Wt )), we obtain

Vi(Zc
p ∩Wt) = t i/dVi(W)+ (−1)d+i+1Vi(Zp ∩ int(Wt )),

where we have also used the homogeneity of intrinsic volumes. Combining this with (3.12)
and using (3.9) yields the assertion.

Combining Proposition 3.1 with Theorem 3.1 we obtain the following result.

Proposition 3.2. For cell percolation on a normal tessellation X satisfying (3.3) and i ∈
{0, . . . , d},

δi(p) =
d∑
k=i
(−1)d−kpd−k+1 γkE

0
k[Vi(F (0))].

In the plane we can use the equation γ1 = γ0 +γ2 (see [12]) to rewrite (3.5) in the important
special case i = 0. We restrict attention to cell percolation, leaving the cases of edge and vertex
percolation to the reader. These results generalize [10, Section 2].

Corollary 3.1. For cell percolation on X in R
2,

δ0(p) = γ0q
2 − γ2pq − γ0

∞∑
m=3

P
0
0{|S2(0)| = m}qm.

4. Second-order properties of cell percolation

In this section we consider cell percolation 	 on a normal tessellation X. We are interested
in the limits

σi,j (p) := lim
t→∞Vd(Wt)

−1 cov(Vi(Z ∩Wt), Vj (Z ∩Wt)) (4.1)

for i, j ∈ {0, . . . , d}, where Wt := t1/dW and W ∈ Kd is a fixed convex body of unit
volume and which contains the origin in its interior. Note that this definition depends on W .
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Our aim is to establish a set of assumptions guaranteeing that these asymptotic covariances
exist. It is not hard to see that the result must be a polynomial in the percolation parameter p.
The coefficients, however, are complicated, and are determined by the global fluctuation of the
intrinsic volumes within the face processes X0, . . . , Xd as well as by the local geometry of X,
which is independent of W .

We need to assume the existence of the limits

ρ
k,l
i,j := lim

t→∞Vd(Wt)
−1 cov

(∫
Vi(F (x) ∩Wt) η

(k)(dx),
∫
Vj (F (x) ∩Wt) η

(l)(dx)

)
(4.2)

for all i, j, k, l ∈ {0, . . . , d}. Again, these limits depend on W . To describe the extended local
neighbourhood of a point x ∈ R

d , we take l ∈ {0, . . . , d} and m ∈ {0, . . . , d + 1}, and define
Sml (x) to be the system of all l-dimensional faces sharing m neighbouring cells with the face
F(x), that is,

Sml (x) := {G ∈ Xl : |{C ∈ X : G ⊂ C, F(x) ⊂ C}| = m}.
Assume that

d∑
i,j,k=0

γdE
0
d [Vi(Sk(0))2Vj (F (0))] < ∞, (4.3)

where, for any finite S ⊂ Kd , Vi(S) := ∑
G∈S Vi(G) is the total ith intrinsic volume of the

members of S. For j = 0, (4.3) implies (3.3) because (2.8) yields, for i, k ∈ {0, . . . , d},
γkE

0
k[Vi(F (0))2] ≤ γkE

0
k[Vi(F (0))2V0(Sd(0))] ≤ γdE

0
d [Vi(Sk(0))2V0(F (0))].

Theorem 4.1. For cell percolation	 on a normal tessellationX satisfying (4.3) and for which
the limits (4.2) exist, for i, j ∈ {0, . . . , d}, the limits (4.1) exist, and σi,j (p) equals

d∑
k=i

d∑
l=j
(−1)k+lp2d−k−l+2

(
ρ
k,l
i,j +

d+1−max(k,l)∑
m=1

(p−m − 1)γk E
0
k[Vi(F (0)) Vj (Sml (0))]

)
.

Proof. By normality and the inclusion–exclusion principle, we have, a.s.,

Vi(Z ∩Wt) =
d∑
k=0

(−1)d−k
∑
F∈X′

k

Vi(F ∩Wt), (4.4)

where X′
k denotes all F ∈ Xk that are intersections of d − k + 1 black cells. The definition of

cell percolation gives

EVi(Z ∩Wt) =
d∑
k=0

(−1)d−kpd−k+1
E

∑
F∈Xk

Vi(F ∩Wt). (4.5)

As (4.3) implies (3.3), all the expectations in (4.5) are finite. Equation (4.4) yields

Vi(Z ∩Wt)Vj (Z ∩Wt) =
d∑

k,l=0

(−1)k+l
∫∫

Vi(F (x) ∩Wt)Vj (F (y) ∩Wt)

× 1{F(x) ∈ X′
k, F (y) ∈ X′

l} η(l)(dy) η(k)(dx).
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Decomposing the inner integration according to F(y) ∈ Sml (x) and using the definition of cell
percolation, we obtain

E[Vi(Z ∩Wt)Vj (Z ∩Wt)]

=
d∑

k,l=0

(−1)k+l
d+1−max(k,l)∑

m=0

p2d−k−l−m+2

× E

∫∫
Vi(F (x) ∩Wt) 1{F(y) ∈ Sml (x)}Vj (F (y) ∩Wt) η

(l)(dy) η(k)(dx).

Combining this last relation with (4.5) gives

cov(Vi(Z ∩Wt), Vj (Z ∩Wt))

=
d∑

k,l=0

(−1)k+lp2d−k−l+2

×
[(

E

∫∫
Vi(F (x) ∩Wt)1{F(y) ∈ S0

l (x)}Vj (F (y) ∩Wt) η
(l)(dy) η(k)(dx)

− E

[∫
Vi(F (x) ∩Wt) η

(k)(dx)

]
E

[∫
Vj (F (y) ∩Wt) η

(l)(dy)

])

+
d+1−max(k,l)∑

m=1

p−m
E

∫∫
Vi(F (x) ∩Wt)1{F(y) ∈ Sml (x)}Vj (F (y) ∩Wt)

× η(l)(dy) η(k)(dx)

]
.

Since 1{F(y) ∈ S0
l (x)} = 1 − ∑d+1−max(k,l)

m=1 1{F(y) ∈ Sml (x)}, we obtain

cov(Vi(Z ∩Wt), Vj (Z ∩Wt))

=
d∑

k,l=0

(−1)k+lp2d−k−l+2

×
[

cov

(∫
Vi(F (x) ∩Wt) η

(k)(dx),
∫
Vj (F (x) ∩Wt) η

(l)(dx)

)

+
d+1−max(k,l)∑

m=1

(p−m − 1)E
∫∫

Vi(F (x) ∩Wt) 1{F(y) ∈ Sml (x)}

× Vj (F (y) ∩Wt) η
(l)(dy) η(k)(dx)

]
.

By assumption (4.2), the sum of the covariance terms on the right-hand side divided by t
converges to ρk,li,j . Using the refined Campbell theorem, we observe that, for m ≥ 1,

1

t

∣∣∣∣E
∫∫

Vi(F (x) ∩Wt) 1{F(y) ∈ Sml (x)}Vj (F (y) ∩Wt) η
(l)(dy) η(k)(dx)

− E

∫∫
1{x ∈ Wt }Vi(F (x)) Vj (Sml (x)) η(k)(dx)

∣∣∣∣
≤ 1

t
E

∫
1{∂Wt ∩ F(z) = ∅}Vi(Sk(z)) Vj (Sl (z)) η(dz)

≤ γdE
0
d [λd(∂W − t−1/dF (0)) Vi(Sk(0)) Vj (Sl (0))].
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By the dominated convergence theorem, this tends to 0 as t → ∞. Indeed, for t ≥ 1,

λd(W − F(0)) Vi(Sk(0))Vj (Sl (0))

is a dominating random variable whose integrability is deduced from the Steiner formula, the
Cauchy–Schwarz inequality, and assumption (4.3).

5. On the covariance structure in the plane

In this section we consider cell percolation on a planar and normal tessellation X satisfying
(4.3) and for which the limits (4.2) exist. Let f0(P ) denote the number of vertices of a polygon
P ⊂ R

2. For a typical cell F(0), E
0
2f0(F (0)) = 6 (see [12, Theorem 10.1.6]). For the second

moment
μ2 := E

0
2[f0(F (0))

2],
Jensen’s inequality gives

μ2 ≥ 36. (5.1)

In the case of a Poisson–Voronoi tessellation, numerical integration of exact integral expressions
gives μ2 ≈ 37.78 (see [5]), so then var f0(F (0)) ≈ (1.33)2.

The following result expresses the asymptotic covariance structure in terms of second-order
properties of the typical cell and the typical edge. We assume that

lim
t→∞ t

−1 var(εt ) = 0, (5.2)

where, for t > 0, εt := ∑
F∈X1

V0(F ∩ ∂Wt). Recall the definitions of ρ2,2
1,1 , ρ2,2

1,0 , and ρ2,2
0,0 at

(4.2).

Theorem 5.1. For a planar normal tessellation X satisfying (4.3) and (5.2), suppose that the
limits (4.2) exist. Then the asymptotic covariance structure is given by

σ2,2(p) = pqγ2E
0
2[V2(F (0))

2],
σ1,2(p) = pq(q − p)γ2E

0
2[V2(F (0))V1(F (0))],

σ0,2(p) = pq − p2q2γ2E
0
2[V2(F (0))f0(F (0))],

σ1,1(p) = p2q2(ρ
2,2
1,1 + γ1E

0
1[V1(F (0))

2])+ pq(q − p)2γ2E
0
2[V1(F (0))

2],
σ0,1(p) = p2q2(q − p)(ρ

2,2
1,0 − γ2E

0
2[V1(F (0))f0(F (0))])

+ pq(q − p)(1 + pq)γ2E
0
2[V1(F (0))],

σ0,0(p) = γ2μ2p
3q3 + γ2pq(1 + 11pq + 10p2q2)+ ρ

2,2
0,0p

2q2(q − p)2.

Proof. The formulae for σ2,2, σ1,2, and σ0,2 follow directly from Theorem 4.1 by using
γ2 E

0
2[V2(F (0))] = 1.

For σ1,1, first recall that, for any convex body K ⊂ R
2, V1(K) = 1

2H1(∂K) if K has
nonempty interior; otherwise, V1(K) = H1(K), where H1 denotes the one-dimensional
Hausdorff measure on R

2. It follows that∫
V1(F (x) ∩Wt) η

(1)(dx) =
∫
V1(F (x) ∩Wt) η

(2)(dx)− 1

2
H1(∂Wt),
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and, therefore, ρ1,1
1,1 = ρ

1,2
1,1 = ρ

2,2
1,1 . Proposition 2.2 yields, via a straightforward calculation,

γ1E
0
1[V1(F (0)) V1(S

1
1(0))] = 4γ2E

0
2[V1(F (0))

2] − 2γ1E
0
1[V1(F (0))

2],
γ1E

0
1[V1(F (0)) V1(S

1
2(0))] = 2γ2E

0
2[V1(F (0))

2].
Inserting the above formula into Theorem 4.1 yields the asserted formula for σ1,1 after a simple
calculation.

For the remaining covariances σ0,1 and σ0,0, consider Euler’s formula; it yields

(|X0,t | + εt )+ (|X2,t | + 1) = (|X1,t | + εt )+ 2,

whereXk,t denotes the set of all k-faces that have nonempty intersection withWt . Furthermore,
by normality we have 2(|X1,t |+εt ) = 3(|X0,t |+εt ). Combining this with the previous equation
yields

|X0,t | = 2|X2,t | − εt − 2, |X1,t | = 3|X2,t | − εt − 3. (5.3)

With these two relations we determine σ0,1 and σ0,0 as follows. Using (5.3) and assumption
(5.2), we obtain

ρ
1,0
1,0 = ρ

2,0
1,0 = 2ρ2,2

1,0 , ρ
1,1
1,0 = ρ

2,1
1,0 = 3ρ2,2

1,0 , ρ
1,2
1,0 = ρ

2,2
1,0 ,

while with Proposition 2.2 we obtain

γ1E
0
1[V1(F (0)) V0(S

1
0(0))] = 2γ2E

0
2[V1(F (0)) f0(F (0))] − 4γ2E

0
2[V1(F (0))],

γ1E
0
1[V1(F (0)) V0(S

1
1(0))] = 2γ2E

0
2[V1(F (0)) f0(F (0))] − 2γ2E

0
2[V1(F (0))],

γ1E
0
1[V1(F (0))] = γ2E

0
2[V1(F (0))].

Together with Theorem 4.1, these observations yield the asserted formula for σ0,1.
Next, we determine ρk,l0,0. Again, with (5.3) and assumption (5.2), we obtain

ρ
0,0
0,0 = 4ρ2,2

0,0 , ρ
0,1
0,0 = 6ρ2,2

0,0 , ρ
0,2
0,0 = 2ρ2,2

0,0 , ρ
1,1
0,0 = 9ρ2,2

0,0 , ρ
1,2
0,0 = 3ρ2,2

0,0 .

To treat the second summand of σ0,0, let f (k, l,m) := γkE
0
k|Sml (0)| for k, l ∈ {0, 1, 2} and

m ∈ {1, . . . , 3 − max(k, l)}. Using Proposition 2.2 together with normality yields

f (0, 0, 1) = γ0E
0
0

[ ∑
G∈S2(0)

f0(G)− 9

]
= γ2μ2 − 9γ0,

f (1, 0, 1) = γ1E
0
1

[ ∑
G∈S2(0)

f0(G)− 4

]
= γ2μ2 − 4γ1,

f (0, 1, 1) = γ0E
0
0

[ ∑
G∈S2(0)

f0(G)− 6

]
= γ2μ2 − 6γ0,

f (1, 1, 1) = γ1E
0
1

[ ∑
G∈S2(0)

f0(G)− 2

]
= γ2μ2 − 2γ1,

f (0, 0, 2) = f (0, 1, 2) = f (2, 0, 1) = f (0, 2, 1) = f (2, 1, 1) = 3γ0,

f (1, 2, 1) = f (1, 0, 2) = 2γ1,

f (0, 0, 3) = γ0,

f (1, 1, 2) = γ1,

f (2, 2, 1) = γ2.

Using Theorem 4.1 and the relations γ0 = 2γ2 and γ1 = 3γ2 completes our proof.
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Clearly, all asymptotic covariances considered in Theorem 5.1 are 0 for p = 0 or 1. We
continue with a brief discussion of their maxima and minima.

Corollary 5.1. Let the assumptions of Theorem 5.1 be satisfied. Then the variance σ2,2 has a
global maximum at p = 1

2 , and σ1,2 has a global maximum at p = 1
2 (1 − 1/

√
3) and a global

minimum at p = 1
2 (1 + 1/

√
3).

The covariance σ0,2 has a global minimum at p = 1
2 and the variance σ1,1 has a global

maximum (minimum) at p = 1
2 according to whether

2γ2E
0
2[V1(F (0))

2] < (>) ρ
2,2
1,1 + γ1E

0
1[V1(F (0))

2].
The variance σ0,0 has a strict global maximum (minimum) at p = 1

2 according to whether

μ2 > (<)
86

3
+ 4ρ2,2

0,0

3γ2
.

6. Poisson–Voronoi percolation

In this section we consider cell percolation on the Voronoi tessellation X generated by a
stationary Poisson process η in R

d with intensity γ > 0. For a formal definition, we introduce
the space N of all locally finite subsets χ of R

d whose convex hull coincides with R
d and

whose points are in general quadratic position (the latter means that no d + 2 points of A lie
on the boundary of some ball and any k ∈ {2, . . . , d + 1} points in χ do not lie in a (k − 2)-
dimensional affine subspace of R

d ). The Voronoi cell C(χ, x) of x ∈ χ ∈ N is the set of all
y ∈ R

d satisfying |y− x| ≤ min{|y− z| : z ∈ χ}. The system {C(χ, x) : x ∈ χ} of all Voronoi
cells with respect to χ is called the Voronoi tessellation (of R

d ).
We can assume without loss of generality that η(ω) ∈ N for all ω ∈ �. The Poisson–

Voronoi tessellation X := {C(η, x) : x ∈ η} is then stationary, face-to-face, and normal (see
[12, Theorems 10.2.2 and 10.2.3]).

For x, y ∈ R
d , set ηx := η ∪ {x} and ηx,y := η ∪ {x, y}. To abbreviate our notation, define

random variables for i, k ∈ {0, . . . , d} and x, y ∈ R
d by

V
(k)
i (x) :=

∑
F∈Fk(C(ηx,x))

Vi(F ) and V
(k)
i (x, y) :=

∑
F∈Fk(C(ηx,y ,x))

Vi(F ).

We now show that the assumptions of Theorem 4.1 and Theorem 5.1 are satisfied, and also obtain
a more explicit representation for the limits (4.2). In particular, these limits are independent of
the observation window W . The special case i = j = k = l = d − 1 is basically well known;
see [1] for d = 2 and [11] for general d .

Theorem 6.1. For the Poisson–Voronoi tessellation in R
d , the finiteness condition (4.3) is

satisfied, and the limits (4.2) exist and are given by

(d − k + 1)(d − l + 1)ρk,li,j

= γ E[V (k)i (0)V (l)j (0)] + γ 2
∫
(E[V (k)i (x, 0) V (l)j (0, x)] − EV

(k)
i (0)EV (l)j (0)) dx. (6.1)

For a planar Poisson–Voronoi tessellation, the zero limit in (5.2) holds.

Proof. Assumption (4.3) is a consequence of the Cauchy–Schwarz inequality, Lemma A.2,
and Lemma A.4.
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We prove (6.1) in two steps. First consider an asymptotic covariance that is similar to ρk,li,j
but easier to determine. Defining

τ
k,l
i,j (t) := cov

( ∫
Wt

V
(k)
i (x) η(dx),

∫
Wt

V
(l)
j (x) η(dx)

)
, t > 0,

we show that limt→∞ t−1τ
k,l
i,j (t) equals

γ E[V (k)i (0)V (l)j (0)] + γ 2
∫

[E[V (k)i (x, 0) V (l)j (0, x)] − EV
(k)
i (0)EV (l)j (0)] dx, (6.2)

and that this asymptotic covariance is finite. In the second step, we show that the asymptotic
covariance in (6.2) equals ρk,li,j (up to a constant), specifically,

(d − k + 1)(d − l + 1)ρk,li,j = lim
t→∞ t

−1τ
k,l
i,j (t). (6.3)

We start from the Mecke formula (see, e.g. [12]), so

τ
k,l
i,j (t) = E

∫
Wt

V
(k)
i (x) V

(l)
j (x) η(dx)+ E

∫
Wt

∫
Wt

V
(k)
i (x) V

(l)
j (y) 1{x = y} η(dx) η(dy)

− E

∫
Wt

V
(k)
i (x) η(dx)E

∫
Wt

V
(l)
j (x) η(dx)

= γ

∫
Wt

E[V (k)i (x) V
(l)
j (x)] dx

+ γ 2
∫
Wt

∫
Wt

[E[V (k)i (x, y) V
(l)
j (y, x)] − EV

(k)
i (x)EV

(l)
j (y)] dx dy.

Using the stationarity of η, translation invariance of the functions V (k)i (·) and V (k)i (·, ·), and a
change of variables, we obtain

τ
k,l
i,j (t)

t
= γ E[V (k)i (0) V (l)j (0)]

+ γ 2

t

∫∫
[E[V (k)i (x, 0) V (l)j (0, x)] − EV

(k)
i (0)EV (l)j (0)]1{x + y, y ∈ Wt } dx dy

= γ E[V (k)i (0) V (l)j (0)]
+ γ 2

∫
[E[V (k)i (x, 0) V (l)j (0, x)] − EV

(k)
i (0)EV (l)j (0)] Vd(Wt ∩ (Wt − x))

Vd(Wt)
dx.

By the dominated convergence theorem, this converges to the right-hand side of (6.2) as t → ∞,
which is in fact the right-hand side of (6.1). Since Vd(Wt ∩ (Wt − x))/t ≤ 1, a dominating
function is given by

|E[V (k)i (x, 0) V (l)j (0, x)] − EV
(k)
i (0)EV (l)j (0)|. (6.4)

Indeed, in the following we show that the integral of this function is finite.
Next, we need a technical tool. The Voronoi flower of x ∈ η is defined by

S(η, x) :=
⋃

y∈C(η,x)
B(y, ‖y − x‖),
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whereB(x, r) denotes the closed ball with center x ∈ R
d and radius r ≥ 0. Using this definition

and the triangle inequality, we obtain∫
|E[V (k)i (x, 0) V (l)j (0, x)] − EV

(k)
i (0)EV (l)j (0)| dx

≤
∫ ∣∣E[

1
{
S(η0,x, x) ⊂ B

(
x, 1

3‖x‖), S(η0,x, 0) ⊂ B
(
0, 1

3‖x‖)}V (k)i (x, 0) V (l)j (0, x)
]

− EV
(k)
i (0)EV (l)j (0)

∣∣ dx

+
∫ ∣∣E[(

1
{
S(η0,x, 0) ⊂ B

(
0, 1

3‖x‖)} + 1
{
S(η0,x, x) ⊂ B

(
x, 1

3‖x‖)}
− 1

{
S(η0,x, 0) ⊂ B

(
0, 1

3‖x‖), S(η0,x, x) ⊂ B
(
x, 1

3‖x‖)})
× V

(k)
i (x, 0) V (l)j (0, x)

]∣∣ dx

=: I1 + I2.

In the following we assume that x = 0, and later use the identity relation

1
{
S(η0,x, x) ⊂ B

(
x, 1

3‖x‖)} = 1
{
S(ηx, x) ⊂ B

(
x, 1

3‖x‖)}. (6.5)

Indeed, when S(η0,x, x) ⊂ B(x, 1
3‖x‖), the origin cannot be contained in S(η0,x, x), so it

cannot be a neighbour of x with respect to η0,x . Because S(η0,x, x) is determined by x and the
neighbours of x with respect to η0,x , deleting the origin does not change the Voronoi flower of
x, i.e. S(ηx, x) = S(η0,x, x) ⊂ B(x, 1

3‖x‖). In the case S(η0,x, x) ⊂ B(x, 1
3‖x‖), the Voronoi

flower cannot get larger if we add more points to the point process, i.e. S(η0,x, x) ⊂ S(ηx, x).
This implies that S(ηx, x) ⊂ B(x, 1

3‖x‖).
Now we use the stopping set property of theVoronoi flowers S(ηx, x) and S(η0, 0) (see [14]).

Because a Voronoi cell and its corresponding Voronoi flower are determined by the Poisson
points contained in the flower, the random variables

1
{
S(ηx, x) ⊂ B

(
x, 1

3‖x‖)}V (k)i (x, 0), 1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (k)i (0, x)

are determined by the restrictions of η toB(x, 1
3‖x‖) andB(0, 1

3‖x‖), respectively. Using (6.5),
an analogous equation for the Voronoi flower of the origin, and the facts that B(x, 1

3‖x‖) and
B(0, 1

3‖x‖) are disjoint and the restrictions of a Poisson process to disjoint sets are independent,
we have

I1 =
∫ ∣∣E[

1
{
S(ηx, x) ⊂ B

(
x, 1

3‖x‖)}V (k)i (x)
]
E

[
1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (l)j (0)
]

− EV
(k)
i (0)EV (l)j (0)

∣∣ dx.

Appealing to stationarity yields

I1 =
∫ ∣∣E[

1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (k)i (0)
]
E

[
1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (l)j (0)
]

− EV
(k)
i (0)EV (l)j (0)

∣∣ dx

=
∫ ∣∣E[

1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (k)i (0)
]
E

[
1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (l)j (0)
]

− E
[
1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (k)i (0)
]
EV

(l)
j (0)

− EV
(k)
i (0)E

[
1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (l)j (0)
]∣∣ dx

=:
∫

|J1 − J2 − J3| dx.
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To show that I1 is finite, observe first that |J1| ≤ min{|J2|, |J3|} by the triangle inequality, and
that J2 and J3 have the same finiteness property modulo different parameters, so I1 is finite if∫ |J2| dx is finite. Define the Voronoi neighbourhood of a point x ∈ χ with respect to χ by the
point set

N(χ, x) := {y ∈ χ \ {x} : C(χ, x) ∩ C(χ, y) = ∅}. (6.6)

Now J2 is a product, for which the second factor is

EV
(l)
j (0) ≤ E[|N(η0, 0)|d−l Vj (C(η0, 0))] ≤ [E|N(η0, 0)|2d−2l

E(Vj (C(η
0, 0))2)]1/2,

which is finite, while, for the other factor, we have

E
[
1
{
S(η0, 0) ⊂ B

(
0, 1

3‖x‖)}V (k)i (0)
]

≤ E
[
1
{
2 diam(C(η0, 0)) > 1

3‖x‖} |N(η0, 0)|d−k Vi(C(η0, 0))
]

≤ [
P
{
diam(C(η0, 0)) > 1

6‖x‖}]1/3 [E|N(η0, 0)|3d−3k
E(Vi(C(η

0, 0))3)]1/3.

Since
∫ [P{diam(C(η0, 0)) > 1

6‖x‖}]1/3 dx is finite (cf. Lemma A.1 and Corollary A.1),∫ |J2| dx < ∞, and, hence, I1 is finite.
To show that I2 < ∞, write I2 =: ∫ |E[(J1 + J2 − J3)V

(k)
i (x, 0)V (l)j (0, x)]| dx for the

integral defining I2 earlier. As for I1, it is enough to verify that the term involving J1 is finite.
This term is∫

E
[
1
{
S(η0,x, 0) ⊂ B

(
0, 1

3‖x‖)}V (k)i (x, 0) V (l)j (0, x)
]

dx

≤
∫

E
[
1
{
S(η0,x, 0) ⊂ B

(
0, 1

3‖x‖)}|N(η0,x, x)|d−k Vi(C(η0,x, x))

× |N(η0,x, 0)|d−l Vj (C(η0,x, 0))
]

dx

≤
∫ [

P
{
diam(C(η0, 0)) > 1

6‖x‖}]1/5 dx

× (E(|N(η0, 0)| + 1)5d−5k
E(|N(η0, 0)| + 1)5d−5l

EVi(C(η
0, 0))5

× EVj (C(η
0, 0))5)1/5.

This is finite by Lemma A.1, Lemma A.3, and Corollary A.1. Hence, the integral of the
dominating function given in (6.4) is finite and, therefore, the second summand on the right-
hand side of (6.2) is finite, too.

Using the monotonicity of the intrinsic volumes, normality and Hölder’s inequality, for the
first summand on the right-hand side of (6.2), we obtain

E[V (k)i (0) V (l)j (0)] ≤ E[|Fk(C(η0, 0))|Vi(C(η0, 0)) |Fl (C(η0, 0))|Vj (C(η0, 0))]
≤ E[|N(η0, 0)|d−k Vi(C(η0, 0)) |N(η0, 0)|d−l Vj (C(η0, 0))]
≤ (E|N(η0, 0)|6d−3k−3l

EVi(C(η
0, 0))3 EVj (C(η

0, 0))3)1/3.

This is finite by Lemma A.1 and Corollary A.1. So, the right-hand side of (6.2) is finite.
The next step is to prove (6.3). Because a Poisson–Voronoi tessellation is normal,∫

Vi(F (x) ∩Wt) η
(k)(dx) = 1

d − k + 1

∫
Vi(Fk(C(η, x)) ∩Wt) η(dx)
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and (6.3) is equivalent to

lim
t→∞

1

t
cov

(∫
Vi(Fk(C(η, x)) ∩Wt) η(dx),

∫
Vj (Fl (C(η, x)) ∩Wt) η(dx)

)

= lim
t→∞

1

t
cov

(∫
V
(k)
i (x) 1{x ∈ Wt } η(dx),

∫
V
(l)
j (x) 1{x ∈ Wt } η(dx)

)
. (6.7)

We start by showing that

lim
t→∞

1

t
var

(∫
[Vi(Fk(C(η, x)) ∩Wt) − V

(k)
i (x) 1{x ∈ Wt }] η(dx)

)
= 0. (6.8)

We abbreviate the notation by defining

h(χ, B) :=
∫

[Vi(Fk(C(χ, x)) ∩ B)− Vi(Fk(C(χ, x))) 1{x ∈ B}]χ(dx)

for χ ∈ N and Borel sets B ⊂ R
d . From the Poincaré inequality (see [13]) we have

var h(η,Wt)

t
≤ γ

t
E

∫
[h(ηx,Wt)− h(η,Wt)]2 dx. (6.9)

We now determine an upper bound for |h(ηx,Wt)−h(η,Wt)|, using theVoronoi neighbourhood
N(χ, x) of a point x ∈ χ defined in (6.6). Because the addition of a point x ∈ R

d to η changes
only the cells of the points y ∈ η for which y ∈ N(ηx, x),

|h(ηx,Wt)− h(η,Wt)|
=

∣∣∣∣Vi(Fk(C(ηx, x)) ∩Wt)− Vi(Fk(C(η
x, x))) 1{x ∈ Wt }

+
∑

y∈N(ηx,x)
Vi(Fk(C(η

x, y)) ∩Wt)− Vi(Fk(C(η
x, y))) 1{y ∈ Wt }

−
∑

y∈N(ηx,x)
Vi(Fk(C(η, y)) ∩Wt)− Vi(Fk(C(η, y))) 1{y ∈ Wt }

∣∣∣∣
≤ f (ηx, x) 1

{ ⋃
y∈N(ηx,x)∪{x}

C(ηx, x) ∩ ∂Wt = ∅

}
,

where, for x ∈ χ ∈ N and fixed k ∈ {0, . . . , d},

f (χ, x) := 2

[
Vi(Fk(C(χ, x)))+

∑
y∈N(χ,x)

Vi(Fk(C(χ, y)))+
∑

y∈N(χ,x)
Vi(Fk(C(χ−δx, y)))

]
.

Note that all moments of f (η0, 0) exist by Lemma A.4 and Lemma A.1. Using (6.9), the
translation covariance of C(·, ·), N(·, ·), and Fk , the stationarity of η, and the translation
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invariance of the intrinsic volumes, we obtain

var(h(η,Wt))

t
≤ γ

t
E

∫
1
{ ⋃
y∈N(ηx,x)∪{x}

C(ηx, x) ∩ ∂Wt = ∅

}
f (ηx, x)2 dx

= γ

t
E

∫
1
{( ⋃

y∈N(η0,0)∪{0}
C(η0, y)+ x

)
∩ ∂Wt = ∅

}
f (η0, 0)2 dx

= γE

[
λd

(
∂W − t−1/d

⋃
y∈N(η0,0)∪{0}

C(η0, y)

)
f (η0, 0)2

]
.

This converges to 0 as t → ∞ by the dominated convergence theorem. Using Lemma A.4,
Lemma A.1, and the Steiner formula,∑

y∈N(η0,0)∪{0}
λd(W − C(η0, y)) f (η0, 0)2

is a dominating function. This proves (6.8).
By using (6.8) and the Cauchy–Schwarz inequality we show that (6.7) holds (and, hence,

also (6.3)). We abbreviate

Uki :=
∫
Vi(Fk(C(η, x)) ∩Wt) η(dx) and V ki :=

∫
Vi(Fk(C(η, x))) 1{x ∈ Wt } η(dx).

The triangle and Cauchy–Schwarz inequalities imply that

0 ≤ lim
t→∞ t

−1| cov(Uki , U
l
j )− cov(V ki , V

l
j )|

≤ lim
t→∞ t

−1| cov(Uki − V ki , V
l
j )| + t−1| cov(Uki − V ki , U

l
j − V lj )|

+ t−1| cov(V ki , U
l
j − V lj )|

≤ lim
t→∞

√
t−1 var(Uki − V ki )

√
t−1 var(V lj )+

√
t−1 var(Uki − V ki )

√
t−1 var(Ulj − V lj )

+
√
t−1 var(V ki )

√
t−1 var(Ulj − V lj ).

This limit is 0 by (6.8) and the finiteness of limt→∞ t−1 var(V ki ), as already shown.
The remaining assumption (5.2) can be shown analogously to (6.8) by using the Poincaré

inequality.

Theorem 6.1 and Theorem 4.1 together yield the covariance structure for cell percolation
on a Poisson–Voronoi tessellation. The variance of the Euler characteristic in the planar case
is worth particular mention.

Corollary 6.1. For cell percolation on a planar Poisson–Voronoi tessellation, the asymptotic
variance σ0,0 of the Euler characteristic exists and is given by

σ0,0(p) = γ2μ2p
3q3 + γ2pq(1 − 8pq − 14p2q2),

for which there is a strict global maximum at p = 1
2 .

Proof. By Theorem 6.1 we can apply Theorem 5.1. Since the asymptotic variance ρ2,2
0,0

equals the intensity γ2, we obtain the formula for σ0,0. The second assertion follows from the
corresponding assertion of Theorem 5.1 and (5.1) or from a direct calculation.
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Appendix A. Integrability properties of Poisson–Voronoi tessellations

We consider the Voronoi tessellation X of R
d generated by a Poisson process η of intensity

γ > 0. Define the second-order neighbourhood of a point x ∈ χ with respect to χ ∈ N by

N2(χ, x) := {y ∈ χ : there exists z ∈ N(χ, x) with y ∈ N(χ, z)}
(cf. definition of N(χ, x) around (6.6)).

Lemma A.1. It holds that E|N2(η
0, 0)|m < ∞ for all m ∈ N.

Proof. Enumerate η as Y1, Y2, . . . such that 0 < ‖Y1‖ < ‖Y2‖ < · · · . Let n := |N2(η
0, 0)|,

and assume that n ≥ 2 is true a.s. Hence, there is a point x ∈ N2(η
0, 0) with ‖x‖ ≥ ‖Yn‖ =: t .

It is easy to see that x ∈ η is a second-order neighbour of 0 with respect to η0 if and only
if there exist y ∈ η \ {x} and balls B and B ′ with 0, y ∈ ∂B, x, y ∈ ∂B ′, int(B) ∩ η = ∅,
and int(B ′) ∩ η = ∅. Let B̃ denote either B or B ′, so that, for ‖x‖ ≥ t , diam(B̃) ≥ 1

2 t and
B̃ ∩ B(0, 1

2 t) = ∅.
There exist balls B1, . . . , Bl ⊂ int(B(0, t)) of diameter 1

8 t such that each ball B̃ of diameter
at least 1

2 t and B̃ ∩ B(0, 1
2 t) = ∅ contains at least one of the balls B1, . . . , Bl . By a scaling

argument, the number l of balls can be chosen independently of t .
So, |N2(η

0, 0)| ≥ n implies that η(Bi) = 0 for at least one i ∈ {1, . . . , l}. From the binomial
property of the Poisson process we have

P{η(B1) = 0 | ‖Yn‖ = t} =
(

1 − κd(t/16)d

κd td

)n−1

= (1 − 16−d)n−1,

and the conditional probability that at least one ball Bi contains no point of η is at most
l(1 − 16−d)n−1. Denoting the density of ‖Yn‖ by fn, P{|N2(η

0, 0)| ≥ n} equals∫
P{|N2(η

0, 0)| ≥ n | ‖Yn‖ = t} fn(t) dt ≤
∫
l(1 − 16−d)n−1fn(t) dt;

hence,
P{|N2(η

0, 0)| ≥ n} ≤ l(1 − 16−d)n−1.

Lemma A.2. For all m ∈ N and k, n ∈ {0, . . . , d}, E
0
n|Sk(0)|m < ∞.

Proof. By normality, it suffices to treat the case n > k. Proposition 2.2 implies that

(d − n+ 1) γnE
0
n|Sk(0)|m = γn E

0
n

[ ∑
F∈Sd (0)

|Sk(0)|m
]

= γd E
0
d

[ ∑
F∈Sn(0)

|Sk(s(F ))|m
]
.

Because n > k we can bound |Sk(s(F ))| for F ∈ Sn(0) by |Sk(0)|. Furthermore, each k-face
of the typical cell is contained in exactly d − k neighbouring cells of the typical cell and so

(d − n+ 1) γnE
0
n|Sk(0)|m ≤ γdE

0
d [|Sn(0)| |Sk(0)|m] ≤ γ E[|N(η0, 0)|d−n+md−mk],

which is finite by Lemma A.1.

The proof of the next lemma is given in [6, Theorem 2].

Lemma A.3. There exist constants c1 and c2 > 0 such that, for all u ≥ 0,

P{diam(C(η0, 0)) ≥ u} ≤ c1 exp(−c2u).
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Corollary A.1. For all i ∈ {0, . . . , d}, EVi(C(η
0, 0))m < ∞ for every m ∈ N.

Proof. We use C(η0, 0) ⊂ B(0, diam(C(η0, 0))) and the monotonicity of the intrinsic
volumes to obtain, for any m ∈ N,

EVi(C(η
0, 0))m ≤ EVi(B(0, diam(C(η0, 0))))m = Vi(B(0, 1))m E diam(C(η0, 0))im.

This is finite by Lemma A.3.

We introduce a modification of the system Sl (ϕ, x) for a tessellation ϕ ∈ T and x ∈ R
d

with F(x) ∈ Fk(ϕ), and define

S̃l (ϕ, x) :=
{

Sl (ϕ, x), min(k, l) < d,

{G ∈ Fk(ϕ) : G ∩ F(x) ∈ Fk−1(ϕ)}, k = l = d.

The proof of the following version of Proposition 2.2 can be easily given with Neveu’s exchange
formula.

Proposition A.1. Let k, l ∈ {0, . . . , d}, and let g : P d × P d → [0,∞) be a measurable
function. Then

γkE
0
k

∑
G∈S̃l (0)

g(F (0),G− s(G)) = γlE
0
l

∑
F∈S̃k(0)

g(F − s(F ), F (0)). (A.1)

Let R(B) be the radius of the circumball of a subset B ⊂ R
d .

Lemma A.4. For all m ∈ N,

d∑
k=0

E
0
k

[
R

(
F(0) ∪

⋃
G∈S̃d (0)

G

)m]
< ∞.

Proof. For k < d , we have

E
0
k

[
R

(
F(0) ∪

⋃
G∈S̃d (0)

G

)m]
≤ E

0
k max
G∈S̃d (0)

(2R(G))m ≤ 2mE
0
k

∑
G∈S̃d (0)

R(G)m

and in the k = d case

E
0
dR

(
F(0) ∪

⋃
G∈S̃d (0)

G

)m
≤ E

0
d(R(F (0))+ 2 max

G∈S̃d (0)
R(G))m

≤ 2m E
0
d

[
R(F(0))m + 2m

∑
G∈S̃d (0)

R(G)m
]
.

Owing to the fact that R(F(0)) ≤ 2 diam(C(η0, 0)) and Lemma A.3, it is in both cases enough
to show that

E
0
k

∑
G∈S̃d (0)

R(G)m < ∞.
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Using (A.1) with g(F,G) := R(G)m and the Cauchy–Schwarz inequality, we obtain

γkE
0
k

∑
G∈S̃d (0)

R(G)m = γdE
0
d [|S̃k(0)|R(F(0))m] ≤ γdE

0
d [|S̃k(0)|2]1/2

E
0
d [R(F(0))2m]1/2.

As above, the second factor is finite. For k < d, it follows by normality that |S̃k(0)| = d−k+1,
and, for k = d , we have |S̃k(0)| ≤ |N2(η

0, 0)|, so the first factor is finite by Lemma A.1.
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