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Variants of Korselt’s Criterion

_omas Wright

Abstract. Under suõciently strong assumptions about the ûrst term in an arithmetic progression,
we prove that for any integer a, there are inûnitelymany n ∈ N such that for each prime factor p ∣ n,
we have p−a ∣ n−a. _is can be seen as a generalization of Carmichael numbers,which are integers
n such that p − 1 ∣ n − 1 for every p ∣ n.

1 Introduction

Recall that a Carmichael number is a composite number n for which

an ≡ a (mod n)

for every a ∈ Z. As Fermat’s Little _eorem states that the above congruence is true
whenever n is prime, Carmichael numbers thus serve as the disproof of the converse
of Fermat’s Little_eorem.

While the ûrst Carmichael numbers were discovered in 1910 by R. D. Carmichael
[Ca], the search for Carmichael numbers was aided by the discovery of a necessary
and suõcient condition by A. Korselt [Ko] in 1899.

Korselt’sCriterion n is a Carmichael number if and only if n is squarefree and p− 1 ∣
n − 1 for each prime p ∣ n.

Much like the relationship between Carmichael numbers and Fermat’s Little_e-
orem above, Korselt’s criterion is also seen to be easily satisûed if n is prime.

Korselt’s criterion is of fundamental importance in the study of Carmichael num-
bers, as it remains the primary tool used to prove statements about such numbers.
Because of its importance in the study of such pseudoprimes, mathematicians have
begun to ask questions about what might happen should one wish to generalize Ko-
rselt’s criterion. _emost obvious of these generalizations is to change the 1 to another
number; it is this generalization that motivates this paper.

Motivating Question For any a ≠ 1, are there inûnitely many composite n such that
for every prime p ∣ n, p − a ∣ n − a?

_e question is not new. In their 1994 proof of the inûnitude of Carmichael num-
bers, Alford, Granville, and Pomerance [AGP] stated the following:
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One can modify our proof to show that for any ûxed nonzero integer a, there
are inûnitelymany squarefree, composite integers n such that p−a divides n−1
for all primes p dividing n. However, we have been unable to prove this for
p − a dividing n − b, for b other than 0 or 1. Such questions have signiûcance
for variants of pseudoprime tests, such as the Lucas probable prime test, strong
Fibonacci pseudoprimes, and elliptic pseudoprimes.
Our question, then, is the speciûc case of a = b. For purposes of nomenclature,

we will refer to a number n for which p ∣ n implies p − a ∣ n − a as an a-Carmichael
number. A regular Carmichael number is then a 1-Carmichael number.

_ere has been little progress on this problem since 1994. In fact, there was no
progress at all until 2011, when Ekstrom, Pomerance, and _akur [EPT] gave a con-
ditional proof of inûnitude in the case of a = b = −1; this result was later proven
unconditionally in a 2013 paper by the author. At present, however, −1 remains the
only value for a (besides 1 and 0)where anything has been proven, even conditionally.

In this paper, we use a conjecture of Roger Heath-Brown to resolve the case of
p − a ∣ n − a for every a ∈ Z. As this divisibility condition is easily satisûed when
n is prime, our theorem can be seen as a reasonable generalization in the search for
pseudoprimes. It is not clear that our results can be pushed to cases of a ≠ b; this is in
part because it is not clear for which cases of a and b one expects inûnitely many n.
In the next section, we will discuss the conjecture ofHeath-Brown and our results.

2 Conjectures About Primes in Arithmetic Progressions

_e results of this paper will hinge upon the size of the ûrst prime in an arithmetic
progression. _e standing conjecture in the area was made by Heath-Brown [HB],
who claimed the following.

Conjecture 1 Let (c,m) = 1. _en the smallest prime p that is congruent to cmodm
is≪ m(logm)2.

Other versions of this conjecture have been used to prove results aboutCarmichael
numbers and associated constructs. For instance, Banks and Pomerance [BP] used a
variant of this conjecture to prove inûnitelymany Carmichael numbers in arithmetic
progressions, and Ekstrom, Pomerance, and_akur [EPT] used another form of this
conjecture to prove the aforementioned result about numbers n for which p ∣ n im-
plies p + 1 ∣ n + 1. In both cases, the authors actually used slightly weaker variants
of the Heath-Brown conjecture; in fact, both papers showed that their results can be
proved using either m1+(log m)

κ−1
for some κ < 1 or m1+ η

log log m for some η > 0 as the
upper bound. While the results in [BP] and [EPT] have beenmajorized in subsequent
papers byMatomäki and the author (see [Ma,Wr2]), the idea for usingHeath-Brown’s
conjecture to prove results aboutCarmichael numbers can be seen to come from these
works.

In this paper,we stick primarily with the original Heath-Brown version of the con-
jecture, as it is not clear that our results would still hold with the variants mentioned
above. We do aòord ourselves the following relaxation of the conjecture.

https://doi.org/10.4153/CMB-2015-027-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-027-3


Variants of Korselt’s Criterion 871

Conjecture 2 Let (c,m) = 1. _en there exists some constant A such that smallest
prime p that is congruent to cmodm is≪ m(logm)A.

Our results would still hold if one assumed that the ûrst prime in an arithmetic
progression were≪ m(logm)log log m ; however, we use the conjecture above for the
purposes of transparency.

It should be noted that all of these conjectures about ûrst primes in an arithmetic
progression appear to be well beyond tje scope of modern mathematics. Currently,
the best bound for ûrst prime in an arithmetic progressionmod c is≪ c5.2,whichwas
proved by Xylouris [Xy] in 2009. Even the assumption of the Generalized Riemann
Hypothesis would only reduce this bound to≪ c2+є .

Regardless, ifwe are aòorded the conjectures above,we are able to resolve the prob-
lem of a-Carmichael numbers completely.

Main _eorem Assume Conjecture 2. _en for any a, there are inûnitelymany posi-
tive integers n such that p− a ∣ n− a for each prime p ∣ n. In fact, there exists a constant
C such that the number of a-Carmichael numbers up to X is≫ XC/(log log log X)

2
.

_e proof of themain theorem is a combination of the ideas of [AGP,EPT] aswell
as some new ideas. As in [AGP], we begin with an integer L for which themaximum
order of an element mod L is small relative to L. Using this, we use the conjecture to
ûnd primes of the form dk + a with relatively small k for many of the d ∣ L. From
here, we establish that there exists a relatively small k for which many of the dk + a
are prime simultaneously; thenwe invoke the conjecture again to ûnd that there exists
a relatively small prime P that is congruent to amod kL. With this setup, we prove
that there exists some collection of these primes dk + a whose product is congruent
to 1mod P − a; multiplying this product by P then gives us an a-Carmichael num-
ber. Since there are inûnitely many such L, there are inûnitely many a-Carmichael
numbers.

It is worth noting that there are several new ideas in this paper:
● In contrast to [BP] and [EPT], we use the Heath-Brown Conjecture not once but

twice; we ûrst use it to ûnd a suitable set of primes with which to work, and then
we use it again to ûnd another prime to append to this set in order to create an
a-Carmichael number.

● Additionally, instead of simply taking d to be any divisor of L, we ûrst group the
prime divisors of L into sets of size A + 1; we then take the d’s to be only those
divisors of L that can be written as products of some of these sets of A + 1 primes.
Doing this ensures thatwe do not double-count any of the primes of the form dk+a.

● Most importantly, for our various choices of d, we do not attempt to ûnd a density
of primes of the form dk + a. Instead, we only look to ûnd a single prime of this
form for each d. _is is the key to our approach because it dramatically lessens our
value for k. Heath-Brown’s conjecture can be applied for k as small as logA d, while
density estimates can only be used if k is at least dє (even under Montgomery’s
conjecture for primes in arithmetic progressions [MV, Conjecture 13.9]). Because
k is small, the order of amod k will be small as well.
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3 Finding Primes: Conjecture Application #1

As in other papers on Carmichael numbers, we begin by letting Q be a collection of
primes q for which q − 1 is relatively smooth. More speciûcally, let P(n) denote the
largest prime factor of n, and let 1 < θ < 2. _en we deûne

Q = {q prime ∶ yθ

log y
≤ q ≤ yθ , q ≡ −1 (mod α), P(q − 1) ≤ y} .

It is known that there exist Y , γ such that if y > Y , then ∣Q∣ ≥ γ yθ

log yθ (see [Wr2,
Lemma 2.1]). From this, we let

L = ∏
q∈Q

q.

_e usual procedure in these cases is to examine the number of primes of the form
dk + a for the various d ∣ L. We then show that there are enough primes of this form
to guarantee that there exists some k for which there are many primes of this form.
Here, though, we make an alteration to ensure that we are not counting the same
primes multiple times. To this end, we deûne the following.

Deûnition 3.1 Let us index the divisors of L as q1 , q2 , . . . , qω(L). We will assume
that Conjecture 2 is true for logA d for some power A. We then deûne

Q i = q(A+1)(i−1)+1q(A+1)(i−1)+2 . . . q(A+1)i .

Note that for any such Q i , we have

Q i >
y(A+1)θ

logA+1 y
.

We will then only consider divisors d of L such that d can be written as the product
of Q’s. For a given k, let

Pk ={ p = dk + a ∶ p prime, d ∣ L, d = ∏
j∈S

Q j for some S ⊂ { 1, 2, . . . , [ ω(L)
A+ 1

]}} .

4 Goals and Bounds

Our goalwill be to show that there exists aPk that is suõciently large for ourpurposes.
Here, suõciently largewill be deûned in terms of the following theorem of van Emde
Boas and Kruyswijk [EK] andMeshulam [Me].

_eorem 4.1 Let n(L) denote the smallest number such that any set of at least n(L)
elements of (Z/LZ)× must contain some subsetwhose product of its elements is 1mod L.
Let λ(L) denote themaximal order (with regard tomultiplication) of an elementmod L.
_en

(4.1) n(L) < λ(L)( 1 + log( L
λ(L))) .

Moreover, let r > t > n(L). _en any set of r elements of (Z/LZ)× contains at least
(r
t)/(

r
n(L)) distinct subsets of size at most t and at least t − n whose product is 1 mod L.

https://doi.org/10.4153/CMB-2015-027-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-027-3


Variants of Korselt’s Criterion 873

A comprehensive proof of this theorem is given in [AGP, Proposition 1.2]; rather
than reprint the proof here, we refer the interested reader to that paper.

Obviously, this theorem indicates that itwill be important for us to learn about the
size of λ(L). To this end, we note that L consists of primes q for which q − 1 only has
prime factors that are less than y. For a prime r, let ar be the largest power such that
rar ≤ yθ . _en

λ(L) ≤ ∏
r≤y ,

r prime

rar ≤ ∏
r≤y ,

r prime

yθ ≤ e2yθ .

Using this observation to bound (4.1) gives the following lemma.

Lemma 4.2 For n(L) as above, n(L) ≤ e3yθ .

5 Counting Elements of Pk

In order to determine the size of Pk , wemust now invoke Conjecture 2. To this end,
we have the following theorem.

_eorem 5.1 Assume Conjecture 2. _en there exists an integer k such that

∣Pk ∣ >
2

ω(L)
A+1

(log L)A .

We note that throughout the remainder of the paper, we will assume that y and A
are large enough that the ûrst prime in an arithmetic progressionmod L is strictly less
than L logA L (rather than ≤).

Proof Assume the conjecture. _en for each d that can be written as the product of
Q’s, there exists a k < logA L for which dk + a is prime.

Now, we must prove that none of these primes are double-counted (i.e., none of
the primes are being counted as dk + a for two diòerent values of d). Let us assume
that there exist d1 , k1 , d2 , k2 such that d1k1 + 1 = d2k2 + 1. We know that there exists
some Q i that divides d1 but not d2. So Q i must divide k2. By the conjecture,

k2 < logA d ≤ logA L.

But for any Q i ,

Q i >
y(A+1)θ

logA+1 y
> logA+1−є L,

contradicting that Q can divide k2.
Since the number of possible d’s is 2[

ω(L)
A+1 ] and every k is < logA L, theremust there-

fore exist a k where

∣Pk ∣ ≥
2

ω(L)
A+1

(log L)A .
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6 Invoking the Conjecture Again

Now,wewill use theHeath-Brown conjecture again to prove that there exists another
prime which we can multiply by some of the primes in Pk to ûnd an a-Carmichael
number.

Lemma 6.1 Assume Conjecture 2. If y and L are suõciently large, then for the k
chosen in _eorem 5.1, there exists a prime P such that P ≡ a(mod Lk) and P−a

Lk ≤
logA L.

_is follows from the statement of the conjecture. Deûne k′ = P−a
Lk . _en we have

the following theorem.

_eorem 6.2 For k and k′ as above, there exists a subset of Pk whose product is 1
mod Lkk′.

Proof Recall that

∣Pk ∣ >
2

ω(L)
A+1

(log L)A .

Since k ≤ logA L, k′ ≤ logA+1 L and λ(L) ≤ e2yθ , it is clear that

λ(kk′L) ≤ λ(k)λ(k′)λ(L) ≤ (log2A+1 L)e2yθ ,

which means n(kk′L) ≤ e3yθ . Hence, ∣Pk ∣ > n(kk′L), and thus the proof follows
from _eorem 4.1.

Let p1 , p2 , . . . , ps be a set of primes in Pk whose product is 1mod Lkk′. We will
denote n′ = p1p2 . . . ps . From this, we ûnally prove the existence of an a-Carmichael
number.

_eorem 6.3 Let P and n′ be as above, and let n = Pn′. _en n is an a-Carmichael
number.

Proof We know that n′ ≡ 1(mod Lkk′). Since P ≡ a(mod Lkk′) by construction,
we know that Pn′ ≡ a(mod Lkk′). So for every prime p ∣ n′, we have

p − a = dk ∣ Lkk′ ∣ Pn′ − a.

Moreover, for P, we know that P − a = Lkk′ ∣ Pn′ − a. _us, n is an a-Carmichael
number.

Since there exist inûnitelymany L that can be constructed in this fashion, there are
inûnitely many a-Carmichael numbers.

7 Counting the a-Carmichael Numbers

If we wish to count the number of a-Carmichael numbers up to x, we have the fol-
lowing theorem.
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_eorem 7.1 Assuming Conjecture 2, there exists a constant C such that the number
of a-Carmichael numbers up to X is≫ X

C
(log log log X)2 .

Proof In order to apply_eorem 4.1, wemust choose an r and a t and ûnd a bound
for n = n(Lkk′) such that n < t < r < ∣Pk ∣. As such, let

r = ( 7
4
)

ω(L)
A+1

, t = ( 3
2
)

ω(L)
A+1

.

Since n ≤ e3yθ and ω(L) ≥ γyθ/ log y, it is clear that both n < ( 54 )
ω(L)
A+1 and n ≤ 1

20 t for
suõciently large y. According to _eorem4.1, the number of subsets ofPk consisting
of atmost t and at least t−n(L) termswhose product is 1mod Lkk′ is at least (r

t)/(
r
n).

Recalling the standard bound that

( u
v
)
v
≤ (u

v
) ≤ ( ue

v
)
v
,

we have that

(r
t
)/(r

n
) ≥ (( 7

6
)

ω(L)
A+1 )

t
/(( 7

5
)

ω(L)
A+1
e)

1
20 t

≥ (( 7
6
)/( 7

5
)

1
20 )

t(ω(L))
A+1 ( 1

e
)

1
20 t

≥ (1.1)
t(ω(L))
A+1 ≥ e

t log 1.1
A+1 (

γyθ

log y )

where the last line comes from the fact that ω(L) ≥ γyθ

log y . Deûne X = Px t , where P

is the prime given in Lemma 6.1. We recall that L ≤ eκ yθ
for some κ < 1.02 (see [RS,

_eorems 7 and 8]). So

X = Px t ≤ (L log2A+1 L)(L logA+1 L)t < e3y
θ t .(7.1)

Note that for suõciently large y,

(log log logX)2 ≥ log y.(7.2)

From (7.1) and (7.2), it follows that

e ty
θ
(

log 1.1
A+1 )(

γ
log y ) ≫ X(

log 1.1
3(A+1) )(

γ
(log log log X)2 ) .

_is is then a lower bound for the number of a-Carmichael numbers up to X, thereby
proving themain theorem.
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